
GLASNIK MATEMATIČKI
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Abstract. Let G be a connected graph and ξ(G) = Sze(G)−We(G),
where We(G) denotes the edge Wiener index and Sze(G) denotes the edge
Szeged index of G. In an earlier paper, it is proved that if T is a tree then
Sze(T ) = We(T ). In this paper, we continue our work to prove that for
every connected graph G, Sze(G) ≥ We(G) with equality if and only if
G is a tree. We also classify all graphs with ξ(G) ≤ 5. Finally, for each
non-negative integer n 6= 1 there exists a graph G such that ξ(G) = n.

1. Introduction

Throughout this paper we consider only simple connected graphs. For a
graph G, V (G) and E(G) denote the set of all vertices and edges, respectively.
As usual, the distance between the vertices u and v of G is denoted by
dG(u, v)(d(u, v) for short) and it is defined as the number of edges in a minimal
path connecting them. The Wiener index W (G) is defined as the sum of all
distances between vertices of G ([21]). The Wiener index has noteworthy
applications in chemistry and interested readers can be referred to papers
[4, 5] and references therein for details. We denote by Kn, Km,n, Pn and
Cn the complete n−vertex graph, (m,n)−complete bipartite graph, path and
cycle on n vertices, respectively.

We now describe some notations which will be kept throughout. A
biconnected graph is a connected graph in which two vertices must be removed
to disconnect the graph. A maximal biconnected subgraph is called a block.
Suppose G is a graph, w ∈ V (G) and e = uv, f = ab ∈ E(G). Then Nu(e)
denotes the set of all vertices closer to u than v and Mu(e) is the set of all
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edges closer to u than v. The sets Nv(e) and Mv(e) are defined analogously.
Set nu(e) = |Nu(e)|, mu(e) = |Mu(e)| and define:

d′(w, e) = min{d(w, u), d(w, v)},

D(e, f) = min{d′(u, f), d′(v, f)},

see [8, 9] for details. The edge Wiener index ([3, 11]) and the edge Szeged
index ([8]) of G are defined as follows:

We(G) =
∑

{e,f}⊆E(G)

D(e, f),

Sze(G) =
∑

e=uv∈E(G)

mu(e)mv(e).

Notice that in computing edge Szeged index of G, edges equidistant from both
ends of the edge e = uv are not counted.

The line graph L(G) of a graph G is a graph such that each vertex of L(G)
represents an edge of G and any two vertices of L(G) are adjacent if and only
if their corresponding edges share a common endpoint in G. Therefore,

(1.1) dL(G)(e, f) = DG(e, f) + 1

(1.2) W (L(G))−We(G) =

(

|E(G)|

2

)

.

Lukovits ([16]) introduced an all-path version of the Wiener index. To explain,
we assume that G is a connected graph with V (G) = {1, 2, ..., n}. Then
P (G) =

∑

i<j

∑

P∈πi,j
|P | is called the “all-path” version of the Wiener

index. Here, πi,j denotes the set of all path connecting vertices i, j and the
summations have to be performed between all pairs of vertices i and j and
for all paths between i and j. In the mentioned paper some mathematical
properties of P (G) together with its extremal values are investigated.

In the next section, we consider a graph G and present a “path-vertex”
matrix in the line graph of G to study the relationship between edge Wiener
and edge Szeged indices of G. This matrix is defined in a similar way as
“all-path” index of Lukovits.

By [19] a Krausz decomposition of a simple graph H is a partition of
E(H) into cliques such that each vertex of H appears in at most two of the
cliques. The following two results are important in our main results:

Proposition 1.1 (See [19, 7.1.39] and [20]). There is not a graph except
from K3 containing two distinct Krausz decompositions. In particular, (K1,3,
K3) is the only pair of non isomorphic connected graphs with isomorphic line
graphs.
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Proposition 1.2 (See [19, Theorem 7.1.16] and [10, 14]). For a simple
graph G, there is a solution to L(H) = G if and only if G decomposes into
complete subgraphs, with each vertex of G appearing in at most two in the list.

A triangle T in a graph G is said to be odd if |N(v)
⋂

V (T )| is odd for
some v ∈ V (G), where N(v) denotes the neighborhood of the vertex v. It is
called even if |N(v)

⋂

V (T )| is even for every v ∈ V (G).

Proposition 1.3 (See [19, Theorem 7.1.17]). For a simple graph G, there
is a solution to L(H) = G if and only if G does not have an induced subgraph
isomorphic to K1,3 or an induced subgraph isomorphic to K4− e such that its
triangles are not simultaneously odd.

The following lemma is crucial throughout the paper:

Lemma 1.4. Let G be a connected graph. Then the following are holds:

a) The blocks of L(G) are complete if and only if G is isomorphic to the
complete graph K3 or a tree.

b) If G has an incomplete block then G has an induced subgraph isomorphic
to K4 − e or a cycle Cn, n ≥ 4.

Proof. See [19, Theorem 7.1.16] and [2, Proposition 1] for details.

Throughout this paper our notation is standard and taken mainly from
[17–19]. The set of all shortest paths connecting vertices a and b of G is
denoted by PG(a, b) and for a shortest path P , l(P ) denotes the length of P .

Suppose G is a graph and H is a subgraph of G. H is called an
isometric subgraph of G, written H ≪ G, if for each pair x, y of vertices
in H , dH(x, y) = dG(x, y). We encourage the reader to consult [1, 22] for
computational techniques and [13, 15] for the algebraic point of view of the
Wiener and Szeged indices of graphs.

2. Main results

In [6], Dobrynin and Gutman conjectured that Sz(G) = W (G) if and
only if every block of G is complete. They proved in [7] their conjecture. In
[12] a new simpler proof of this conjecture is presented. In this section, we
extend this result to the case of edge version. In an exact phrase, we prove
that Sze(G) = We(G) if and only if G is a tree.

Suppose Y = {P1, P2, · · · , P(m2 )
} is a set of shortest paths in L(G) such

that for every edges α, β ∈ E(G), α 6= β, there exists a unique path P ∈ Y

connecting vertices α and β in L(G). The set Y is called a complete set of
shortest paths of L(G) (CSSP for short) and CSSP(L(G)) denotes the set of
all CSSP of L(G). Define the matrix BY = [bij ] as follows:

bij =

{

1 ej ∈ V (Pi − {pi1, pi(l(Pi)+1)})
0 otherwise

,
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where V (Pi) = {pi1, · · · , pi(l(Pi)+1)}. To clarify our definition we compute
below this matrix for a graph G isomorphic to a triangle with a pendant.
Clearly, L(G) is isomorphic to K4 − e and we have:

BY =

















0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















,

where Y is the set of shortest paths e1e2, e1e2e3, e1e4, e2e3, e2e4, e3e4 in
L(G).

e1

e2

e3

e4

e2

e3

e4

e1

Figure 1. The graphs G and L(G).

Obviously, if Pi is a path connecting vertices α and β in L(G) then
dL(G)(α, β) − 1 is the number of non-zero entries in the ith row of BY . Thus
by Eq. (1), the summation of all entries in BY is equal to the edge Wiener
index of G.

Lemma 2.1. Let P = u1, u2, · · · , un be a shortest path of a graph G where
ei = uiui+1, i = 1, 2, · · · , n− 1. Then for all i = 2, · · · , n− 2

e1 ∈ Mui
(ei) and en ∈ Mui+1(ei).

Proof. To traverse the path P from the source vertex u1 to the
destination vertex un, we traverse the vertex ui before ui+1 and so

d′(e1, ui+1) = d′(e1, ui) + d(ui, ui+1).

This implies that e1 ∈ Mui
(ei) and en ∈ Mui+1(ei).

Suppose G is an m−edge graph and Y is a CSSP of L(G). It is clear that
|Y | =

(

m
2

)

. If ej = uv is an edge of G then we define ξY (ej) = mu(ej)mv(ej)−
∑

i bij and ξY (G) =
∑

e∈G ξY (e). It is easy to see that ξY (G) = Sze(G) −
We(G) and so the value of ξY (G) is independent from Y . From now on for
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simplifying our notation we write ξ(G) instead of ξY (G). If H is an isometric
subgraph of G then we define ξY (H) =

∑

e∈E(H) ξY (e). Notice that ξY (H) is

not independent from Y . Moreover, it is easily seen that ξY (H) ≤ ξ(G).

Theorem 2.2. Let G be a connected graph. Then We(G) ≥ Sze(G) with
equality if and only if G is a tree. Moreover,

a) If L(G) contains an induced subgraph H ∼= K4 − e, then ξ(G) ≥ 3.
b) Suppose Cn, n ≥ 4 is a minimal induced cycle of L(G). Then ξ(G) ≥ n,

for every n ≥ 5. If n = 4, then ξ(G) ≥ 2.

Proof. Suppose G is an arbitrary connected graph,

E(G) = {e1 = α1β1, · · · , em = αmβm},

Y ∈ CSSP (L(G)), BY = [bij ] and for each Pi ∈ Y ,

V (Pi) = {ei1 = αi1αi2 , · · · , eil(Pi)+1
= αil(Pi)+1

αil(Pi)+2
}.

By Lemma 2.1, biir = 1 if and only if ei1 ∈ Mαir
(eir ) and eil(Pi)+1

∈

Mαir+1
(eir )

, where 2 ≤ r ≤ l(Pi). Therefore, the summation of entries of

the jth column of BY is at most mαj
(ej)mβj

(ej) with equality if and only if
for every ei ∈ Mαr

(er) and ej ∈ Mβr
(er) the shortest path connecting ei and

ej containing er is an element of Y . In other words, for each vertex ei, ej in
L(G) there exists a unique shortest path P connecting them through er, where
ei ∈ Mαr

(er), ej ∈ Mβr
(er) and 1 ≤ r ≤ m. Then the summation of all entries

in a given column is mαr
(er)mβr

(er) and the summation of numbers in these
column is equal to the edge Szeged index of G. Therefore, Sze(G) ≥ We(G).
If G is a tree then each block of L(G) is complete and so between every two
vertices ei, ej ∈ V (L(G)) there exists a unique shortest path through vertex
ek, ei ∈ Mαk

(ek) and ej ∈ Mβk
(ek). So, Sze(G) = We(G), as desired.

Suppose We(G) = Sze(G). Then for every edge ek = αkβk ∈ E(G),
the summation of all entries in the column corresponding to the edge ek is
equal to mαk

(ek)mβk
(ek). In other words, if ek is chosen, ei ∈ Mαk

(ek) and
ej ∈ Mβk

(ek) then every shortest path in L(G) connecting ei and ej has to
contain the edge ek. Therefore, L(G) cannot have an induced cycle of length
n ≥ 4 or a subgraph isomorphic to K4 − e. To prove, suppose L(G) has an
induced subgraph H isomorphic to K4 − e. Apply Krausz decomposition to
prove that G has a cycle T of length three. Choose an edge e = uv of T . Then
the edge f1 adjacent to u in T is belong to Mu(e) and the edge f2 adjacent
to v in T is belong to Mv(e). But, the shortest path connecting f1 and f2 in
L(G) doesn’t pass the vertex e of L(G) and so ξ(e) ≥ 1. By considering each
edge of T and a similar argument, one can prove ξ(G) ≥ 3. Now, suppose
that L(G) has at least an induced cycle of length n ≥ 4. Let Cn ≥ 4, be a
minimal induced cycle of L(G). We first assume that n is even. Clearly, for
every antipodal vertices x and y of Cn, there are two shortest paths in L(G)
connecting x and y. Thus ξ(G) ≥ (n2 )(

n−2
2 ).
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Next suppose that n is odd. We use Cn to construct an n−cycle D in
G. By Krausz decomposition and Proposition 1.2, edges of Cn are in distinct
cliques of Krausz decomposition. We prove that D is an isometric cycle in G.
Put D = v1v2...vnv1. If D is not isometric then without lose of generality we
can choose vertices vi and vj from D such that there exists a shortest path
P : (vi =)u1u2 · · ·uk(= vj) in G such that V (P ) ∩ V (D) = {vi, vj}. Consider
the cycles C1 : u1u2 · · ·ukvj+1 · · · vi and C2 : u1u2 · · ·ukvj−1 · · · vi. Then
these cycles induce two cycles C′

1 and C′
2 in L(G), see Figure 2. Obviously,

ut 6= vs, 2 ≤ t ≤ k − 1 and 1 ≤ s ≤ n. So, C′
1 and C′

2 are induced cycles
in L(G). Since Cn, n ≥ 4, is the minimal induced cycle of L(G), C′

1 and C′
2

have length three. Thus, n = 4 which is impossible. Therefore, if n ≥ 5 then
D is isometric.

For every edge ei = vivi+1, there are edges er = en+1
2 +i = vn+1

2 +ivn+1
2 +i+1

and es = en−1
2 +i = vn−1

2 +ivn+1
2 +i such that er ∈ Mvi(ei) and es ∈ Mvi+1(ei).

On the other hand, there is no a shortest path in L(G) connecting er and es
through the vertex ei of Cn. Therefore, for each vertex ei of Cn, ξ(ei) ≥ 1
and so ξ(G) ≥ n. Thus, by Lemma 1.4(b) and the fact that We(K3) = 0 =
Sze(K3) − 3, the blocks of L(G) are complete. Finally, by Lemma 1.4(a), G
is a tree which completes the proof.

vi

vj vj+1

vj-1

u2

uk-1

D

P

C'1

C'2

Figure 2. An isometric subgraph of G and its image in L(G).

Corollary 2.3. Let G be a connected graph containing k isometric cycles
isomorphic to C4 and r isometric cycles Cn1 , · · · , Cnr

such that ni 6= 5,
1 ≤ i ≤ r. Then ξ(G) ≥ n1 + n2 + · · ·nr + 2k.

Theorem 2.4. Let G be a connected graph. Then ξ(G) 6= 1.

Proof. Suppose ξ(G) = 1. So, by Theorem 2.2 and Lemma 1.4(a), L(G)
has an incomplete block B. By Lemma 1.4(b), B has an induced n−cycle
Cn, n ≥ 4, or an induced subgraph H isomorphic to K4−e. Apply the second
part of Theorem 2.2 to complete the proof.

Theorem 2.5. The following statements hold:
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a) ξ(G) = 2 if and only if G is a cycle of length four.
b) ξ(G) = 3 if and only if G is a cycle of length three.
c) ξ(G) = 4 if and only if G is isomorphic to a triangle with a pendant

or a square with a pendant.
d) ξ(G) = 5 if and only if G is isomorphic to a graph G constructed from

a triangle and two pendants.

Proof. a) Suppose ξ(G) = 2. By second part of Theorem 2.2 and
Lemma 1.4, one can see that there exists an isometric induced cycle C of
length 4 in L(G). We claim that |V (L(G))| = 4. To do this, we assume
that there is a vertex y, y 6∈ V (C) and y is adjacent to some vertices of C.
If y is adjacent to one vertex of C, three vertices of C or two non-adjacent
vertices of C then Proposition 1.3 leads to a contradiction. If y is adjacent
to all vertices of C then by Krausz decomposition we must have at least two
triangles in the graph G and by the Corollary 2.3, ξ(G) ≥ 6. This leads to
another contradiction. Finally, if y and two adjacent vertices of C constitute a
triangle then by Krausz decomposition and Proposition 1.2, G has an induced
subgraph H isomorphic to a square with a pendant. Notice that the subgraph
H is isometric. Otherwise, G is containing a square and a triangle or two
squares with a common edge. In each case by Corollary 2.3, ξ(G) ≥ 6 which
contradicts our assumption. Since H ≪ G, it can easily see that ξ(G) > 3
which is our final contradiction. Therefore, G is a cycle of length 4. The
converse is trivial.

b) It is clear that if G is isomorphic to a cycle of length 3 then ξ(G) = 3.
Suppose ξ(G) = 3 and G 6∼= K3. Thus, by Lemma 1.4(b) and Theorem 2.2,
there exists an induced subgraph H which is isomorphic to K4 − e or an
n−cycle Cn, n ≥ 4 in L(G). If H is a shortest induced cycle of length n,

n ≥ 4, then by the second part of Theorem 2.2, n = 4. In this case, by the
proof of part (a), ξ(G) = 2 or ξ(G) ≥ 4, which is impossible. We now assume
that the subgraph H is isomorphic to K4 − e. By Krausz decomposition,
H makes a triangle in G. Since for each edge f of this triangle ξ(f) ≥ 1,
ξ(G) ≥ 3. On the other hand, consider two vertices of degree 2 in H . Then
there are two shortest paths connecting these vertices in L(G). Therefore, for
at least one vertex e of degree three in H , ξ(e) is exceed at least one. This
implies that ξ(G) ≥ 4, leads to a contradiction.

c) It is obvious that if G is isomorphic to a triangle with a pendant edge
or a square with a pendant then ξ(G) = 4. Suppose ξ(G) = 4. A similar
argument as part (b) show that L(G) has an induced subgraph H isomorphic
to K4 − e or an n−cycle Cn, n ≥ 4. If H is an minimal n−cycle with n ≥ 4
then by the second part of Theorem 2.2, n = 4. Apply the argument of part
(a) to prove that ξ(G) ≥ 5 or y and two adjacent vertices of C constitutes
a triangle in L(G). Therefore, G is containing a subgraph H isomorphic to
a square with a pendant. We claim that H ≪ G. Otherwise, G contains at
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least two isometric cycles and by Corollary 2.3, ξ(G) ≥ 5, a contradiction. If
there exists another vertex of G adjacent to a vertex of H then G contains an
isometric subgraph L such that one of the following hold:

1) L is isomorphic to a square with two pendants,
2) L is constructed from a square and a path of length 3 by identifying a

vertex of square and a pendant of path,
3) L has at least two isometric cycles.

In each case ξ(G) ≥ 5 leads to a contradiction. Therefore, the graph G is
isomorphic to a square with a pendant. If H is isomorphic to K4 − e then a
case by case argument as above show that L(G) = H = K4 − e. Therefore, G
is a triangle with a pendant edge.

d) The proof is similar to those given for the cases that ξ(G) = 2, 3 or 4.

In the end of this paper, we prove that for each non-negative integer n 6= 1
there exists a graph G such that ξ(G) = n. To do this, we notice that for a
tree T , ξ(T ) = 0 and ξ(C4) = 2. Consider a triangle T with a fixed vertex v.
Define a graph H by considering T and add n new vertices to T by connecting
them to the vertex v. Then ξ(H) = n+ 3. Therefore, for each non-negative
integer n 6= 1, there exists a graph G such that ξ(G) = n.
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