RELATIONSHIP BETWEEN EDGE SZEGED AND EDGE WIENER INDICES OF GRAPHS

Mohammad Javad Nadjafi-Arani, Hasan Khodashenas and Ali Reza Ashrafi

University of Kashan and Institute for Research in Fundamental Sciences, I. R. Iran

ABSTRACT. Let G be a connected graph and $\xi(G) = Sz_e(G) - W_e(G)$, where $W_e(G)$ denotes the edge Wiener index and $Sz_e(G)$ denotes the edge Szeged index of G. In an earlier paper, it is proved that if T is a tree then $Sz_e(T) = W_e(T)$. In this paper, we continue our work to prove that for every connected graph G, $Sz_e(G) \ge W_e(G)$ with equality if and only if G is a tree. We also classify all graphs with $\xi(G) \le 5$. Finally, for each non-negative integer $n \ne 1$ there exists a graph G such that $\xi(G) = n$.

1. INTRODUCTION

Throughout this paper we consider only simple connected graphs. For a graph G, V(G) and E(G) denote the set of all vertices and edges, respectively. As usual, the distance between the vertices u and v of G is denoted by $d_G(u, v)(d(u, v) \text{ for short})$ and it is defined as the number of edges in a minimal path connecting them. The Wiener index W(G) is defined as the sum of all distances between vertices of G ([21]). The Wiener index has noteworthy applications in chemistry and interested readers can be referred to papers [4, 5] and references therein for details. We denote by K_n , $K_{m,n}$, P_n and C_n the complete n-vertex graph, (m, n)-complete bipartite graph, path and cycle on n vertices, respectively.

We now describe some notations which will be kept throughout. A biconnected graph is a connected graph in which two vertices must be removed to disconnect the graph. A maximal biconnected subgraph is called a block. Suppose G is a graph, $w \in V(G)$ and $e = uv, f = ab \in E(G)$. Then $N_u(e)$ denotes the set of all vertices closer to u than v and $M_u(e)$ is the set of all

²⁰¹⁰ Mathematics Subject Classification. 05C12, 05A15, 05A20, 05C05.

Key words and phrases. Edge Szeged index, edge Wiener index.

²¹

edges closer to u than v. The sets $N_v(e)$ and $M_v(e)$ are defined analogously. Set $n_u(e) = |N_u(e)|, m_u(e) = |M_u(e)|$ and define:

$$d'(w, e) = \min\{d(w, u), d(w, v)\},\$$

$$D(e, f) = \min\{d'(u, f), d'(v, f)\}$$

see [8,9] for details. The edge Wiener index ([3,11]) and the edge Szeged index ([8]) of G are defined as follows:

$$W_e(G) = \sum_{\{e,f\}\subseteq E(G)} D(e,f),$$

$$Sz_e(G) = \sum_{e=uv\in E(G)} m_u(e)m_v(e).$$

Notice that in computing edge Szeged index of G, edges equidistant from both ends of the edge e = uv are not counted.

The line graph L(G) of a graph G is a graph such that each vertex of L(G) represents an edge of G and any two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. Therefore,

(1.1)
$$d_{L(G)}(e,f) = D_G(e,f) + 1$$

(1.2)
$$W(L(G)) - W_e(G) = \binom{|E(G)|}{2}$$

Lukovits ([16]) introduced an all-path version of the Wiener index. To explain, we assume that G is a connected graph with $V(G) = \{1, 2, ..., n\}$. Then $P(G) = \sum_{i < j} \sum_{P \in \pi_{i,j}} |P|$ is called the "all-path" version of the Wiener index. Here, $\pi_{i,j}$ denotes the set of all path connecting vertices i, j and the summations have to be performed between all pairs of vertices i and j and for all paths between i and j. In the mentioned paper some mathematical properties of P(G) together with its extremal values are investigated.

In the next section, we consider a graph G and present a "path-vertex" matrix in the line graph of G to study the relationship between edge Wiener and edge Szeged indices of G. This matrix is defined in a similar way as "all-path" index of Lukovits.

By [19] a Krausz decomposition of a simple graph H is a partition of E(H) into cliques such that each vertex of H appears in at most two of the cliques. The following two results are important in our main results:

PROPOSITION 1.1 (See [19, 7.1.39] and [20]). There is not a graph except from K_3 containing two distinct Krausz decompositions. In particular, $(K_{1,3}, K_3)$ is the only pair of non isomorphic connected graphs with isomorphic line graphs.

PROPOSITION 1.2 (See [19, Theorem 7.1.16] and [10, 14]). For a simple graph G, there is a solution to L(H) = G if and only if G decomposes into complete subgraphs, with each vertex of G appearing in at most two in the list.

A triangle T in a graph G is said to be odd if $|N(v) \cap V(T)|$ is odd for some $v \in V(G)$, where N(v) denotes the neighborhood of the vertex v. It is called even if $|N(v) \cap V(T)|$ is even for every $v \in V(G)$.

PROPOSITION 1.3 (See [19, Theorem 7.1.17]). For a simple graph G, there is a solution to L(H) = G if and only if G does not have an induced subgraph isomorphic to $K_{1,3}$ or an induced subgraph isomorphic to $K_4 - e$ such that its triangles are not simultaneously odd.

The following lemma is crucial throughout the paper:

LEMMA 1.4. Let G be a connected graph. Then the following are holds:

- a) The blocks of L(G) are complete if and only if G is isomorphic to the complete graph K_3 or a tree.
- b) If G has an incomplete block then G has an induced subgraph isomorphic to $K_4 e$ or a cycle $C_n, n \ge 4$.

PROOF. See [19, Theorem 7.1.16] and [2, Proposition 1] for details.

Throughout this paper our notation is standard and taken mainly from [17–19]. The set of all shortest paths connecting vertices a and b of G is denoted by $P_G(a, b)$ and for a shortest path P, l(P) denotes the length of P.

Suppose G is a graph and H is a subgraph of G. H is called an isometric subgraph of G, written $H \ll G$, if for each pair x, y of vertices in H, $d_H(x,y) = d_G(x,y)$. We encourage the reader to consult [1,22] for computational techniques and [13,15] for the algebraic point of view of the Wiener and Szeged indices of graphs.

2. Main results

In [6], Dobrynin and Gutman conjectured that Sz(G) = W(G) if and only if every block of G is complete. They proved in [7] their conjecture. In [12] a new simpler proof of this conjecture is presented. In this section, we extend this result to the case of edge version. In an exact phrase, we prove that $Sz_e(G) = W_e(G)$ if and only if G is a tree.

Suppose $Y = \{P_1, P_2, \dots, P_{\binom{m}{2}}\}$ is a set of shortest paths in L(G) such that for every edges $\alpha, \beta \in E(G), \alpha \neq \beta$, there exists a unique path $P \in Y$ connecting vertices α and β in L(G). The set Y is called a complete set of shortest paths of L(G) (CSSP for short) and CSSP(L(G)) denotes the set of all CSSP of L(G). Define the matrix $B_Y = [b_{ij}]$ as follows:

$$b_{ij} = \begin{cases} 1 & e_j \in V(P_i - \{p_{i1}, p_{i(l(P_i)+1)}\}) \\ 0 & \text{otherwise} \end{cases}$$

where $V(P_i) = \{p_{i1}, \dots, p_{i(l(P_i)+1)}\}$. To clarify our definition we compute below this matrix for a graph G isomorphic to a triangle with a pendant. Clearly, L(G) is isomorphic to $K_4 - e$ and we have:

where Y is the set of shortest paths e_1e_2 , $e_1e_2e_3$, e_1e_4 , e_2e_3 , e_2e_4 , e_3e_4 in L(G).

FIGURE 1. The graphs G and L(G).

Obviously, if P_i is a path connecting vertices α and β in L(G) then $d_{L(G)}(\alpha, \beta) - 1$ is the number of non-zero entries in the i^{th} row of B_Y . Thus by Eq. (1), the summation of all entries in B_Y is equal to the edge Wiener index of G.

LEMMA 2.1. Let $P = u_1, u_2, \dots, u_n$ be a shortest path of a graph G where $e_i = u_i u_{i+1}, i = 1, 2, \dots, n-1$. Then for all $i = 2, \dots, n-2$

$$e_1 \in M_{u_i}(e_i)$$
 and $e_n \in M_{u_{i+1}}(e_i)$.

PROOF. To traverse the path P from the source vertex u_1 to the destination vertex u_n , we traverse the vertex u_i before u_{i+1} and so

$$d'(e_1, u_{i+1}) = d'(e_1, u_i) + d(u_i, u_{i+1}).$$

$$\in M_{u_i}(e_i) \text{ and } e_n \in M_{u_{i+1}}(e_i).$$

This implies that $e_1 \in M_{u_i}(e_i)$ and $e_n \in M_{u_{i+1}}(e_i)$.

Suppose G is an m-edge graph and Y is a CSSP of L(G). It is clear that $|Y| = \binom{m}{2}$. If $e_j = uv$ is an edge of G then we define $\xi_Y(e_j) = m_u(e_j)m_v(e_j) - \sum_i b_{ij}$ and $\xi_Y(G) = \sum_{e \in G} \xi_Y(e)$. It is easy to see that $\xi_Y(G) = Sz_e(G) - W_e(G)$ and so the value of $\xi_Y(G)$ is independent from Y. From now on for

simplifying our notation we write $\xi(G)$ instead of $\xi_Y(G)$. If H is an isometric subgraph of G then we define $\xi_Y(H) = \sum_{e \in E(H)} \xi_Y(e)$. Notice that $\xi_Y(H)$ is not independent from Y. Moreover, it is easily seen that $\xi_Y(H) \leq \xi(G)$.

THEOREM 2.2. Let G be a connected graph. Then $W_e(G) \ge Sz_e(G)$ with equality if and only if G is a tree. Moreover,

- a) If L(G) contains an induced subgraph $H \cong K_4 e$, then $\xi(G) \ge 3$.
- b) Suppose $C_n, n \ge 4$ is a minimal induced cycle of L(G). Then $\xi(G) \ge n$, for every $n \ge 5$. If n = 4, then $\xi(G) \ge 2$.

PROOF. Suppose G is an arbitrary connected graph,

$$E(G) = \{e_1 = \alpha_1 \beta_1, \cdots, e_m = \alpha_m \beta_m\}$$

$$Y \in CSSP(L(G)), B_Y = [b_{ij}] \text{ and for each } P_i \in Y,$$

$$V(P_i) = \{e_{i_1} = \alpha_{i_1}\alpha_{i_2}, \cdots, e_{i_{l(P_i)+1}} = \alpha_{i_{l(P_i)+1}}\alpha_{i_{l(P_i)+2}}\}$$

By Lemma 2.1, $b_{ii_r} = 1$ if and only if $e_{i_1} \in M_{\alpha_{i_r}}(e_{i_r})$ and $e_{i_{l(P_i)+1}} \in M_{\alpha_{i_{r+1}}(e_{i_r})}$, where $2 \leq r \leq l(P_i)$. Therefore, the summation of entries of the j^{th} column of B_Y is at most $m_{\alpha_j}(e_j)m_{\beta_j}(e_j)$ with equality if and only if for every $e_i \in M_{\alpha_r}(e_r)$ and $e_j \in M_{\beta_r}(e_r)$ the shortest path connecting e_i and e_j containing e_r is an element of Y. In other words, for each vertex e_i, e_j in L(G) there exists a unique shortest path P connecting them through e_r , where $e_i \in M_{\alpha_r}(e_r), e_j \in M_{\beta_r}(e_r)$ and $1 \leq r \leq m$. Then the summation of all entries in a given column is $m_{\alpha_r}(e_r)m_{\beta_r}(e_r)$ and the summation of numbers in these column is equal to the edge Szeged index of G. Therefore, $Sz_e(G) \geq W_e(G)$. If G is a tree then each block of L(G) is complete and so between every two vertices $e_i, e_j \in V(L(G))$ there exists a unique shortest path through vertex $e_k, e_i \in M_{\alpha_k}(e_k)$ and $e_j \in M_{\beta_k}(e_k)$. So, $Sz_e(G) = W_e(G)$, as desired.

Suppose $W_e(G) = Sz_e(G)$. Then for every edge $e_k = \alpha_k \beta_k \in E(G)$, the summation of all entries in the column corresponding to the edge e_k is equal to $m_{\alpha_k}(e_k)m_{\beta_k}(e_k)$. In other words, if e_k is chosen, $e_i \in M_{\alpha_k}(e_k)$ and $e_j \in M_{\beta_k}(e_k)$ then every shortest path in L(G) connecting e_i and e_j has to contain the edge e_k . Therefore, L(G) cannot have an induced cycle of length $n \geq 4$ or a subgraph isomorphic to $K_4 - e$. To prove, suppose L(G) has an induced subgraph H isomorphic to $K_4 - e$. Apply Krausz decomposition to prove that G has a cycle T of length three. Choose an edge e = uv of T. Then the edge f_1 adjacent to u in T is belong to $M_u(e)$ and the edge f_2 adjacent to v in T is belong to $M_v(e)$. But, the shortest path connecting f_1 and f_2 in L(G) doesn't pass the vertex e of L(G) and so $\xi(e) \ge 1$. By considering each edge of T and a similar argument, one can prove $\xi(G) \geq 3$. Now, suppose that L(G) has at least an induced cycle of length $n \ge 4$. Let $C_n \ge 4$, be a minimal induced cycle of L(G). We first assume that n is even. Clearly, for every antipodal vertices x and y of C_n , there are two shortest paths in L(G)connecting x and y. Thus $\xi(G) \ge (\frac{n}{2})(\frac{n-2}{2})$.

Next suppose that n is odd. We use C_n to construct an n-cycle D in G. By Krausz decomposition and Proposition 1.2, edges of C_n are in distinct cliques of Krausz decomposition. We prove that D is an isometric cycle in G. Put $D = v_1 v_2 \dots v_n v_1$. If D is not isometric then without lose of generality we can choose vertices v_i and v_j from D such that there exists a shortest path $P: (v_i =)u_1u_2 \cdots u_k(=v_j)$ in G such that $V(P) \cap V(D) = \{v_i, v_j\}$. Consider the cycles $C_1: u_1u_2 \cdots u_kv_{j+1} \cdots v_i$ and $C_2: u_1u_2 \cdots u_kv_{j-1} \cdots v_i$. Then these cycles induce two cycles C'_1 and C'_2 in L(G), see Figure 2. Obviously, $u_t \neq v_s, 2 \leq t \leq k-1$ and $1 \leq s \leq n$. So, C'_1 and C'_2 are induced cycles in L(G). Since $C_n, n \geq 4$, is the minimal induced cycle of $L(G), C'_1$ and C'_2 have length three. Thus, n = 4 which is impossible. Therefore, if $n \geq 5$ then D is isometric.

For every edge $e_i = v_i v_{i+1}$, there are edges $e_r = e_{\frac{n+1}{2}+i} = v_{\frac{n+1}{2}+i} v_{\frac{n+1}{2}+i+1}$ and $e_s = e_{\frac{n-1}{2}+i} = v_{\frac{n-1}{2}+i} v_{\frac{n+1}{2}+i}$ such that $e_r \in M_{v_i}(e_i)$ and $e_s \in M_{v_{i+1}}(e_i)$. On the other hand, there is no a shortest path in L(G) connecting e_r and e_s through the vertex e_i of C_n . Therefore, for each vertex e_i of C_n , $\xi(e_i) \ge 1$ and so $\xi(G) \ge n$. Thus, by Lemma 1.4(b) and the fact that $W_e(K_3) = 0 =$ $Sz_e(K_3) - 3$, the blocks of L(G) are complete. Finally, by Lemma 1.4(a), Gis a tree which completes the proof.

FIGURE 2. An isometric subgraph of G and its image in L(G).

COROLLARY 2.3. Let G be a connected graph containing k isometric cycles isomorphic to C_4 and r isometric cycles C_{n_1}, \dots, C_{n_r} such that $n_i \neq 5$, $1 \leq i \leq r$. Then $\xi(G) \geq n_1 + n_2 + \cdots + n_r + 2k$.

THEOREM 2.4. Let G be a connected graph. Then $\xi(G) \neq 1$.

PROOF. Suppose $\xi(G) = 1$. So, by Theorem 2.2 and Lemma 1.4(a), L(G) has an incomplete block B. By Lemma 1.4(b), B has an induced n-cycle $C_n, n \ge 4$, or an induced subgraph H isomorphic to $K_4 - e$. Apply the second part of Theorem 2.2 to complete the proof.

THEOREM 2.5. The following statements hold:

- a) $\xi(G) = 2$ if and only if G is a cycle of length four.
- b) $\xi(G) = 3$ if and only if G is a cycle of length three.
- c) $\xi(G) = 4$ if and only if G is isomorphic to a triangle with a pendant or a square with a pendant.
- d) $\xi(G) = 5$ if and only if G is isomorphic to a graph G constructed from a triangle and two pendants.

PROOF. a) Suppose $\xi(G) = 2$. By second part of Theorem 2.2 and Lemma 1.4, one can see that there exists an isometric induced cycle C of length 4 in L(G). We claim that |V(L(G))| = 4. To do this, we assume that there is a vertex $y, y \notin V(C)$ and y is adjacent to some vertices of C. If y is adjacent to one vertex of C, three vertices of C or two non-adjacent vertices of C then Proposition 1.3 leads to a contradiction. If y is adjacent to all vertices of C then by Krausz decomposition we must have at least two triangles in the graph G and by the Corollary 2.3, $\xi(G) \geq 6$. This leads to another contradiction. Finally, if y and two adjacent vertices of C constitute a triangle then by Krausz decomposition and Proposition 1.2, G has an induced subgraph H isomorphic to a square with a pendant. Notice that the subgraph H is isometric. Otherwise, G is containing a square and a triangle or two squares with a common edge. In each case by Corollary 2.3, $\xi(G) \geq 6$ which contradicts our assumption. Since $H \ll G$, it can easily see that $\xi(G) > 3$ which is our final contradiction. Therefore, G is a cycle of length 4. The converse is trivial.

b) It is clear that if G is isomorphic to a cycle of length 3 then $\xi(G) = 3$. Suppose $\xi(G) = 3$ and $G \not\cong K_3$. Thus, by Lemma 1.4(b) and Theorem 2.2, there exists an induced subgraph H which is isomorphic to $K_4 - e$ or an n-cycle C_n , $n \ge 4$ in L(G). If H is a shortest induced cycle of length n, $n \ge 4$, then by the second part of Theorem 2.2, n = 4. In this case, by the proof of part (a), $\xi(G) = 2$ or $\xi(G) \ge 4$, which is impossible. We now assume that the subgraph H is isomorphic to $K_4 - e$. By Krausz decomposition, H makes a triangle in G. Since for each edge f of this triangle $\xi(f) \ge 1$, $\xi(G) \ge 3$. On the other hand, consider two vertices of degree 2 in H. Then there are two shortest paths connecting these vertices in L(G). Therefore, for at least one vertex e of degree three in H, $\xi(e)$ is exceed at least one. This implies that $\xi(G) \ge 4$, leads to a contradiction.

c) It is obvious that if G is isomorphic to a triangle with a pendant edge or a square with a pendant then $\xi(G) = 4$. Suppose $\xi(G) = 4$. A similar argument as part (b) show that L(G) has an induced subgraph H isomorphic to $K_4 - e$ or an n-cycle C_n , $n \ge 4$. If H is an minimal n-cycle with $n \ge 4$ then by the second part of Theorem 2.2, n = 4. Apply the argument of part (a) to prove that $\xi(G) \ge 5$ or y and two adjacent vertices of C constitutes a triangle in L(G). Therefore, G is containing a subgraph H isomorphic to a square with a pendant. We claim that $H \ll G$. Otherwise, G contains at least two isometric cycles and by Corollary 2.3, $\xi(G) \ge 5$, a contradiction. If there exists another vertex of G adjacent to a vertex of H then G contains an isometric subgraph L such that one of the following hold:

- 1) L is isomorphic to a square with two pendants,
- 2) L is constructed from a square and a path of length 3 by identifying a vertex of square and a pendant of path,
- 3) L has at least two isometric cycles.

In each case $\xi(G) \geq 5$ leads to a contradiction. Therefore, the graph G is isomorphic to a square with a pendant. If H is isomorphic to $K_4 - e$ then a case by case argument as above show that $L(G) = H = K_4 - e$. Therefore, G is a triangle with a pendant edge.

d) The proof is similar to those given for the cases that $\xi(G) = 2, 3$ or 4.

In the end of this paper, we prove that for each non-negative integer $n \neq 1$ there exists a graph G such that $\xi(G) = n$. To do this, we notice that for a tree T, $\xi(T) = 0$ and $\xi(C_4) = 2$. Consider a triangle T with a fixed vertex v. Define a graph H by considering T and add n new vertices to T by connecting them to the vertex v. Then $\xi(H) = n + 3$. Therefore, for each non-negative integer $n \neq 1$, there exists a graph G such that $\xi(G) = n$.

ACKNOWLEDGEMENTS.

The authors are indebted to the referees for their suggestions and helpful remarks which leaded us to rearrange the paper. This work was supported in part by a grant from IPM (No. 89050111).

References

- A. R. Ashrafi and M. Mirzargar, PI, Szeged and edge Szeged indices of nanostar dendrimers, Util. Math. 77 (2008), 249–255.
- H.-J. Bandelt and H. M. Mulder, *Distance-hereditary graphs*, J. Combin. Theory Ser. B 41 (1986), 182–208.
- [3] P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009), 3452–3457.
- [4] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001), 211–249.
- [5] A. A. Dobrynin, I. Gutman, S. Klavzar and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247–294.
- [6] A. Dobrynin and I. Gutman, On a graph invariant related to the sum of all distances in a graph, Publ. Inst. Math. (Beograd) (N.S.) 56(70) (1994), 18–22.
- [7] A. Dobrynin and I. Gutman, Solving a problem connected with distances in graphs, Graph Theory Notes of New York 28 (1995), 21–23.
- [8] I. Gutman and A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta 81 (2008), 263–266.
- [9] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes of New York 27 (1994), 9–15.

- [10] P. Hliněný and J. Kratochvil, Computational complexity of the Krausz dimension of graphs, Graph-theoretic concepts in computer science (Berlin, 1997), 214–228, Lecture Notes in Comput. Sci., 1335, Springer, Berlin, 1997.
- [11] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009), 1149–1163.
- [12] H. Khodashenas, M. J. Nadjafi-Arani, A. R. Ashrafi and I. Gutman, A new proof of the Szeged-Wiener theorem, Kragujevac J. Math. 35 (2011), 165–172.
- [13] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996), 45–49.
- [14] J. Krausz, Démonstration nouvelle d'une théorème de Whitney sur les réseaux, (Hungarian) Mat. Fiz. Lapok 50 (1943), 75–85.
- [15] A. Ilić, S. Klavžar and M. Milanović, On distance-balanced graphs, European J. Combin. 31 (2010), 733–737.
- [16] I. Lukovits, An all-path version of the Wiener index, J. Chem. Inf. Comput. Sci. 38 (1998), 125–129.
- [17] R. Todeschini and V. Consonni, Handbook of molecular descriptors, Wiley, Weinheim, 2000.
- [18] N. Trinajstić, Chemical graph theory, CRC Press, Boca Raton, FL. 1992.
- [19] D. B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
- [20] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150–168.
- [21] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc. 69 (1947), 17–20.
- [22] S. Yousefi, H. Yousefi-Azari, A. R. Ashrafi and M. H. Khalifeh, Computing Wiener and Szeged indices of an achiral polyhex nanotorus, J. Sci. Univ. Tehran 33 (2007), 7–11.

M. J. Nadjafi-Arani Department of Mathematics, Statistics and Computer Science Faculty of Science, University of Kashan Kashan 87317-51167 I. R. Iran *E-mail*: mjnajafiarani@gmail.com

H. Khodashenas

Department of Mathematics, Statistics and Computer Science Faculty of Science, University of Kashan Kashan 87317-51167 I. R. Iran

A. R. Ashrafi
Department of Mathematics, Statistics and Computer Science
Faculty of Science, University of Kashan
Kashan 87317-51167
I. R. Iran
& School of Mathematics
Institute for Research in Fundamental Sciences (IPM),
P.O. Box: 19395-5746, Tehran
I. R. Iran
E-mail: ashrafi@kashanu.ac.ir & alir.ashrafi@gmail.com
Received: 22.7.2010.
Revised: 19.2.2011. & 9.4.2011. & 14.5.2011.