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A NOTE ON THE SIMULTANEOUS PELL EQUATIONS

x2 − ay2 = 1 AND z2 − by2 = 1

Maohua Le

Zhanjiang Normal College, P.R. China

Abstract. Let m,n be positive integers with 1 < m < n. Let
δ be a positive number with 1

2
< δ < 1. In this paper we prove that

if gcd(m,n) > nδ and n > (8 × 1016(log(1016/θ3))3/θ3)1/θ , where θ =
min(1−δ, 2δ−1), then the simultaneous Pell equations x2

−(m2
−1)y2 = 1

and z2 − (n2
− 1)y2 = 1 have only one positive integer solution (x, y, z) =

(m, 1, n).

1. Introduction

Let N be the set of all positive integers. Let a, b be distinct positive
integers. The simultaneous Pell equations

(1.1) x2 − ay2 = 1, z2 − by2 = 1, x, y, z ∈ N

arise in connection with a variety of classical problems on number theory
and arithmetic algebraic geometry (see [7]). Let N(a, b) denote the number
of solutions (x, y, z) of (1.1). As early as the 1920s, using the diophantine
approximation method of A. Thue ([12]), C. L. Siegel ([11]) proved that
N(a, b) is always finite. However, his result is ineffective. An effective upper
bound for N(a, b) was given by H. P. Schlickewei ([9]). Using the Subspaces

Theorem of W. M. Schmidt ([10]), he proved that N(a, b) < 4 × 82
78

. In
1996, using the Padé approximation method (see [8]), D.W. Masser and J.H.
Rickert ([6]) improved considerably the above mentioned upper bound; they
proved that N(a, b) ≤ 16. One year later, M.A. Bennett ([2]) further proved
that N(a, b) ≤ 3. Simultaneously, since there is no known pair (a, b) which
makes N(a, b) = 3, he proposed the following conjecture:

2010 Mathematics Subject Classification. 11D09.
Key words and phrases. Simultaneous Pell equations; number of solutions.
Supported by the National Natural Science Foundation of China (No.10971184).

53



54 M. LE

Conjecture A. N(a, b) ≤ 2.

In 2001, P.-Z. Yuan ([13]) and the author ([4]) independently proved
that if max(a, b) > C, where C is an effectively computable constant, then
N(a, b) ≤ 2. Recently, M. A. Bennett, M. Cipu, M. Mignotte and R. Okazaki
([3]) completely verified Conjecture A, namely, they unconditionally proved
that N(a, b) ≤ 2.

By [2], if (1.1) has solutions and (x1, y1, z1) is the solution of (1.1) with
y1 ≤ y, where y through over all solutions (x, y, z) of (1.1), then y1 | y.
Therefore, if (1.1) has solutions, then it is equivalent to the equations

(1.2) X2 − (m2 − 1)Y 2 = 1, Z2 − (n2 − 1)Y 2 = 1, X, Y, Z ∈ N,

where m and n are distinct positive integers with min(m,n) > 1. Obviously,
(1.2) has a solution (X,Y, Z) = (m, 1, n). In this respect, M. A. Bennett ([1])
showed that if

(1.3) n =
α2l − ᾱ2l

4
√
m2 − 1

, l ∈ N,

where

(1.4) α = m+
√

m2 − 1 , ᾱ = m−
√

m2 − 1 ,

then (1.2) has an other solution (X,Y, Z) = ((α2l+ ᾱ2l)/2, 2n, 2n2−1). Thus,
P.-Z. Yuan ([14]) proposed a stronger conjecture as follows:

Conjecture B. If N(m2 − 1, n2 − 1) ≥ 2, then n must satisfy (1.3).

The above mentioned conjecture has not been solved yet. In this paper, we
verify Conjecture B form and n are sufficiently large and they have sufficiently
large common divisor, namely, we prove the following result:

Theorem 1.1. Let δ be a positive number with 1
2 < δ < 1. If gcd(m,n) >

max(mδ, nδ) and

(1.5) max(m,n) > (
8× 1016

θ3
(log

1016

θ3
)3)1/θ, θ = min(1 − δ, 2δ − 1),

then (1.2) has only one solution (X,Y, Z) = (m, 1, n).

2. Preliminaries

Lemma 2.1 ([5, Formula 1.76]). For any positive integer k and any
complex numbers α and ᾱ, we have

αk + ᾱk =

[k/2]
∑

i=0

(−1)i
[

k

i

]

(α + ᾱ)k−2i(αᾱ)i ,

where [k/2] is the integral part of k/2,
[

k

i

]

=
(k − i− 1) ! k

(k − 2i) ! i !
∈ N, i = 0, 1, . . . ,

[

k

2

]

.
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Let m,n be positive integers with 1 < m < n. Let α, ᾱ, β, β̄ be defined
as in (1.4) and

(2.1) β = n+
√

n2 − 1 , β̄ = n−
√

n2 − 1 ,

respectively. For any positive integer k, let

(2.2) uk + vk
√

m2 − 1 = αk, u′

k + v′k
√

n2 − 1 = βk.

It is a well known fact that (u, v) = (uk, vk) (k = 1, 2, . . .) and (u′, v′) =
(u′

k, v
′

k) (k = 1, 2, . . .) are all solutions of Pell equations

(2.3) u2 − (m2 − 1)v2 = 1, u, v ∈ N

and

(2.4) u′2 − (n2 − 1)v′
2
= 1, u′, v′ ∈ N,

respectively.

Lemma 2.2. For any positive integer k with k > 1, we have vk < v′k.

Proof of Lemma 2.2. By (1.4), (2.1) and (2.2), {vk}∞k=1 and {v′k}
∞

k=1

are increasing sequences satisfying v1 = v′1 = 1 and

(2.5) vk+1 = 2mvk − vk−1, v′k+1 = 2nv′k − v′k−1, k ∈ N,

where v0 = v′0 = 0. We now assume that l is the least positive integer such
that vl ≥ v′l. Since 1 < m < n, we get from (2.5) that l > 1, vl−1 < v′l−1 and
(2n−2)v′l−1 ≥ 2mv′l−1 > 2mvl−1 ≥ 2mvl−1−vl−2 = vl ≥ v′l = 2nv′l−1−v′l−2 >
(2n− 1)v′l−1, a contradiction. Thus, the lemma is proved.

Lemma 2.3. Let r and s be positive integers with min(r, s) > 1. If

(2.6) vr = v′s,

then we have:

(i) r > s.
(ii) r ≡ s (mod 2).
(iii) If 2 ∤ r, then r ≡ s (mod 4).

Proof of Lemma 2.3. By Lemma 2.2, we have vs < v′s. Therefore, if
(2.6) holds, then r > s. We see from (1.4), (2.1) and (2.2) that vk ≡ k (mod
2) and v′k ≡ k (mod 2). It implies that r ≡ s (mod 2) by (2.6).

Since α− ᾱ = 2
√
m2 − 1 and αᾱ = 1, by Lemma 2.1, if 2 ∤ r, then

vr =
αr − ᾱr

2
√
m2 − 1

=
αr − ᾱr

α− ᾱ
=

(r−1)/2
∑

i=0

[r

i

]

(α− ᾱ)r−2i−1(αᾱ)i

(2.7) =

(r−1)/2
∑

i=0

[r

i

]

(4(m2 − 1))(r−1)/2−i,
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whence we get

(2.8) vr ≡ r (mod 4).

Similarly, since r ≡ s (mod 2), we have

(2.9) v′s ≡ s (mod 4).

Therefore, if (2.6) holds, then from (2.8) and (2.9) we get r ≡ s (mod 4).
Thus, the lemma is proved.

Let d = gcd(m,n). Then we have

(2.10) m = dm1 , n = dn1, m1, n1 ∈ N, gcd(m1, n1) = 1.

Lemma 2.4. If d > nδ and (2.6) holds, where δ is a positive number with
1
2 < δ < 1, then r > nθ, where

(2.11) θ = min(1 − δ, 2δ − 1).

Proof of Lemma 2.4. For 2 | r, we have

(2.12) vr =
αr − ᾱr

2
√
m2 − 1

= m

r/2−1
∑

i=0

(

r

2i+ 1

)

mr−2i−1(m2 − 1)i,

whence we get

(2.13) vr ≡ rm(m2 − 1)r/2−1 ≡ (−1)r/2−1 rm (mod m3).

Similarly, since 2 | s, we have

(2.14) v′s ≡ (−1)s/2−1 sn (mod n3).

Therefore, by (2.6), (2.13) and (2.14), we obtain

(2.15) rm1 ≡ λsn1 (mod d2), λ ∈ {±1}.
We find from (2.15) that either

(2.16) rm1 = sn1

or

(2.17) rm1 + sn1 ≥ d2.

When (2.16) holds, since gcd(m1, n1) = 1, we get

(2.18) r = n1t, s = m1t, t ∈ N.

It implies that r ≥ n1 = n/d > n1−δ ≥ nθ by (2.11). When (2.17) holds, since
n1 > m1, we have r > (rm1+sn1)/2n1 ≥ d2/2n1 > n3δ−1/2 = n2δ−1 ·nδ/2 ≥
nθ . Thus, the lemma holds for 2 | r.

For 2 ∤ r, we have

(2.19) vr =

(r−1)/2
∑

i=0

(

r

2i+ 1

)

mr−2i−1(m2 − 1)i,
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whence we get

(2.20) vr ≡ (−1)(r−3)/2(−1 + ((r2 − 1)/2)m2) (mod m4).

Further, by Lemma 2.3, we have 2 ∤ s and r ≡ s (mod n4). Hence, we get

(2.21) v′s ≡ (−1)(r−3)/2(−1 + ((s2 − 1)/2)n2) (mod n4).

Furthermore, by (2.6), (2.20) , and (2.21), we obtain

(2.22) (r2 − 1)m2
1 ≡ (s2 − 1)n2

1 (mod 2d2).

We find from (2.22) that either

(2.23) (r2 − 1)m2
1 = (s2 − 1)n2

1

or

(2.24) max((r2 − 1)m2
1, (s2 − 1)n2

1) > 2d2.

When (2.23) holds, we have

(2.25) (r2 − 1) = n2
1t, (s2 − 1) = m2

1t, t ∈ N,

whence we get r >
√
r2 − 1 ≥ n1 > n1−δ ≥ nθ by (2.11). When (2.24) holds,

since r > s and n1 > m1, we get r > max(m1

√
r2 − 1, n1

√
s2 − 1)/n1 >

2d2/n1 > 2n3δ−1 > 2nθ . To sum up, the lemma is proved.

Lemma 2.5. Let c, c1, c2, c3 be positive numbers.

(i) If c2 > 2ec1/c2 logc2 , then c > c1 + c2 log c for c ≥ 2c2 log c2.
(ii) If c3 > 8(logc3)

3 , then c > c3(log c)
3 for c > 8c3(log c3)

3.

Proof of Lemma 2.5. Let

(2.26) f(c) = c− (c1 + c2 log c).

Since f ′(c) = 1− c2/c, we have f
′(c) > 0 for c > c2. It implies that f(c) is an

increasing function for c > c2. On the other hand, if f(2c2 log c2) ≤ 0, then
from (2.26) we get

(2.27) 2c2 log c2 ≤ c1 + c2(log 2 + log c2 + log log c2),

whence we obtain c2 ≤ 2ec1/c2 log c2, which contradicts the assumption.
Therefore, we have f(2c2 log c2) > 0. Thus, by (2.26), the result (i) is proved.
Using the same method, we can deduce the result (ii). The lemma is proved.

Lemma 2.6 ([3, Formula (11)]). If (2.6) holds, then

r < 4.26× 1013(log β)2 (log(er)).
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3. Proof of Theorem 1.1

We may assume that 1 < m < n. If (1.2) has two solutions,then it has a
solution (X,Y, Z) with Y > 1. By (1.3), (2.2), (2.3) and (2.4), we have

(3.1) Y = vr = v′s, r, s ∈ N, min(r, s) > 1.

By Lemma 2.3, we have r > s. Since β = n+
√
n2 − 1 < 2n, by Lemma 2.6,

we get

(3.2) r < 4.26× 1013(logn)2(1 + log r).

Put c1 = c2 = 4.26× 1013(logn)2. Since c1/c2 = 1 and c2 > 2e log c2, by (i)
of Lemma 2.5, we see from (3.2) that

(3.3) r < 2c2 log c2 < 8.52×1013(log 2n)2(31.39+2 log log 2n) < 1016(logn)3.

On the other hand, by Lemma 2.4, we have r > nθ. Substitute it into (3.3),
we get

(3.4) nθ < 1016(log n)3 =
1016

θ3
(lognθ)3.

Put c3 = 1016/θ3. Since c3 > 1016, we have c3 > 8(log c3)
3. Therefore, by (ii)

of Lemma 5, we see from (3.4) that

(3.5) nθ < 8c3(log c3)
3 <

8× 1016

θ3
(log

1016

θ3
)3.

It implies that if gcd(m,n) > nδ and (1.5) holds, then (1.2) has only one
solution (X,Y, Z) = (m, 1, n). Thus, the theorem is proved.
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