A NOTE ON THE SIMULTANEOUS PELL EQUATIONS $x^{2}-a y^{2}=1$ AND $z^{2}-b y^{2}=1$

Maohua Le
Zhanjiang Normal College, P.R. China

Abstract

Let m, n be positive integers with $1<m<n$. Let δ be a positive number with $\frac{1}{2}<\delta<1$. In this paper we prove that if $\operatorname{gcd}(m, n)>n^{\delta}$ and $n>\left(8 \times 10^{16}\left(\log \left(10^{16} / \theta^{3}\right)\right)^{3} / \theta^{3}\right)^{1 / \theta}$, where $\theta=$ $\min (1-\delta, 2 \delta-1)$, then the simultaneous Pell equations $x^{2}-\left(m^{2}-1\right) y^{2}=1$ and $z^{2}-\left(n^{2}-1\right) y^{2}=1$ have only one positive integer solution $(x, y, z)=$ $(m, 1, n)$.

1. Introduction

Let \mathbb{N} be the set of all positive integers. Let a, b be distinct positive integers. The simultaneous Pell equations

$$
\begin{equation*}
x^{2}-a y^{2}=1, z^{2}-b y^{2}=1, x, y, z \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

arise in connection with a variety of classical problems on number theory and arithmetic algebraic geometry (see [7]). Let $N(a, b)$ denote the number of solutions (x, y, z) of (1.1). As early as the 1920 s, using the diophantine approximation method of A. Thue ([12]), C. L. Siegel ([11]) proved that $N(a, b)$ is always finite. However, his result is ineffective. An effective upper bound for $N(a, b)$ was given by H. P. Schlickewei ([9]). Using the Subspaces Theorem of W. M. Schmidt ([10]), he proved that $N(a, b)<4 \times 8^{2^{78}}$. In 1996, using the Padé approximation method (see [8]), D.W. Masser and J.H. Rickert ([6]) improved considerably the above mentioned upper bound; they proved that $N(a, b) \leq 16$. One year later, M.A. Bennett ([2]) further proved that $N(a, b) \leq 3$. Simultaneously, since there is no known pair (a, b) which makes $N(a, b)=3$, he proposed the following conjecture:

[^0]Conjecture A. $N(a, b) \leq 2$.
In 2001, P.-Z. Yuan ([13]) and the author ([4]) independently proved that if $\max (a, b)>C$, where C is an effectively computable constant, then $N(a, b) \leq 2$. Recently, M. A. Bennett, M. Cipu, M. Mignotte and R. Okazaki ([3]) completely verified Conjecture A, namely, they unconditionally proved that $N(a, b) \leq 2$.

By [2], if (1.1) has solutions and $\left(x_{1}, y_{1}, z_{1}\right)$ is the solution of (1.1) with $y_{1} \leq y$, where y through over all solutions (x, y, z) of (1.1), then $y_{1} \mid y$. Therefore, if (1.1) has solutions, then it is equivalent to the equations

$$
\begin{equation*}
X^{2}-\left(m^{2}-1\right) Y^{2}=1, Z^{2}-\left(n^{2}-1\right) Y^{2}=1, X, Y, Z \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

where m and n are distinct positive integers with $\min (m, n)>1$. Obviously, (1.2) has a solution $(X, Y, Z)=(m, 1, n)$. In this respect, M. A. Bennett ([1]) showed that if

$$
\begin{equation*}
n=\frac{\alpha^{2 l}-\bar{\alpha}^{2 l}}{4 \sqrt{m^{2}-1}}, l \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=m+\sqrt{m^{2}-1}, \bar{\alpha}=m-\sqrt{m^{2}-1}, \tag{1.4}
\end{equation*}
$$

then (1.2) has an other solution $(X, Y, Z)=\left(\left(\alpha^{2 l}+\bar{\alpha}^{2 l}\right) / 2,2 n, 2 n^{2}-1\right)$. Thus, P.-Z. Yuan ([14]) proposed a stronger conjecture as follows:

Conjecture B. If $N\left(m^{2}-1, n^{2}-1\right) \geq 2$, then n must satisfy (1.3).
The above mentioned conjecture has not been solved yet. In this paper, we verify Conjecture B for m and n are sufficiently large and they have sufficiently large common divisor, namely, we prove the following result:

Theorem 1.1. Let δ be a positive number with $\frac{1}{2}<\delta<1$. If $\operatorname{gcd}(m, n)>$ $\max \left(m^{\delta}, n^{\delta}\right)$ and

$$
\begin{equation*}
\max (m, n)>\left(\frac{8 \times 10^{16}}{\theta^{3}}\left(\log \frac{10^{16}}{\theta^{3}}\right)^{3}\right)^{1 / \theta}, \theta=\min (1-\delta, 2 \delta-1) \tag{1.5}
\end{equation*}
$$

then (1.2) has only one solution $(X, Y, Z)=(m, 1, n)$.

2. Preliminaries

Lemma 2.1 ([5, Formula 1.76]). For any positive integer k and any complex numbers α and $\bar{\alpha}$, we have

$$
\alpha^{k}+\bar{\alpha}^{k}=\sum_{i=0}^{[k / 2]}(-1)^{i}\left[\begin{array}{c}
k \\
i
\end{array}\right](\alpha+\bar{\alpha})^{k-2 i}(\alpha \bar{\alpha})^{i}
$$

where $[k / 2]$ is the integral part of $k / 2$,

$$
\left[\begin{array}{c}
k \\
i
\end{array}\right]=\frac{(k-i-1)!k}{(k-2 i)!i!} \in \mathbb{N}, i=0,1, \ldots,\left[\frac{k}{2}\right] .
$$

Let m, n be positive integers with $1<m<n$. Let $\alpha, \bar{\alpha}, \beta, \bar{\beta}$ be defined as in (1.4) and

$$
\begin{equation*}
\beta=n+\sqrt{n^{2}-1}, \bar{\beta}=n-\sqrt{n^{2}-1} \tag{2.1}
\end{equation*}
$$

respectively. For any positive integer k, let

$$
\begin{equation*}
u_{k}+v_{k} \sqrt{m^{2}-1}=\alpha^{k}, u_{k}^{\prime}+v_{k}^{\prime} \sqrt{n^{2}-1}=\beta^{k} \tag{2.2}
\end{equation*}
$$

It is a well known fact that $(u, v)=\left(u_{k}, v_{k}\right)(k=1,2, \ldots)$ and $\left(u^{\prime}, v^{\prime}\right)=$ $\left(u_{k}^{\prime}, v_{k}^{\prime}\right)(k=1,2, \ldots)$ are all solutions of Pell equations

$$
\begin{equation*}
u^{2}-\left(m^{2}-1\right) v^{2}=1, u, v \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime 2}-\left(n^{2}-1\right) v^{\prime 2}=1, u^{\prime}, v^{\prime} \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

respectively.
Lemma 2.2. For any positive integer k with $k>1$, we have $v_{k}<v_{k}^{\prime}$.
Proof of Lemma 2.2. By (1.4), (2.1) and (2.2), $\left\{v_{k}\right\}_{k=1}^{\infty}$ and $\left\{v_{k}^{\prime}\right\}_{k=1}^{\infty}$ are increasing sequences satisfying $v_{1}=v_{1}^{\prime}=1$ and

$$
\begin{equation*}
v_{k+1}=2 m v_{k}-v_{k-1}, v_{k+1}^{\prime}=2 n v_{k}^{\prime}-v_{k-1}^{\prime}, k \in \mathbb{N}, \tag{2.5}
\end{equation*}
$$

where $v_{0}=v_{0}^{\prime}=0$. We now assume that l is the least positive integer such that $v_{l} \geq v_{l}^{\prime}$. Since $1<m<n$, we get from (2.5) that $l>1, v_{l-1}<v_{l-1}^{\prime}$ and $(2 n-2) v_{l-1}^{\prime} \geq 2 m v_{l-1}^{\prime}>2 m v_{l-1} \geq 2 m v_{l-1}-v_{l-2}=v_{l} \geq v_{l}^{\prime}=2 n v_{l-1}^{\prime}-v_{l-2}^{\prime}>$ $(2 n-1) v_{l-1}^{\prime}$, a contradiction. Thus, the lemma is proved.

Lemma 2.3. Let r and s be positive integers with $\min (r, s)>1$. If

$$
\begin{equation*}
v_{r}=v_{s}^{\prime} \tag{2.6}
\end{equation*}
$$

then we have:
(i) $r>s$.
(ii) $r \equiv s(\bmod 2)$.
(iii) If $2 \nmid r$, then $r \equiv s(\bmod 4)$.

Proof of Lemma 2.3. By Lemma 2.2, we have $v_{s}<v_{s}^{\prime}$. Therefore, if (2.6) holds, then $r>s$. We see from (1.4), (2.1) and (2.2) that $v_{k} \equiv k$ (mod $2)$ and $v_{k}^{\prime} \equiv k(\bmod 2)$. It implies that $r \equiv s(\bmod 2)$ by (2.6).

Since $\alpha-\bar{\alpha}=2 \sqrt{m^{2}-1}$ and $\alpha \bar{\alpha}=1$, by Lemma 2.1, if $2 \nmid r$, then

$$
\begin{gather*}
v_{r}=\frac{\alpha^{r}-\bar{\alpha}^{r}}{2 \sqrt{m^{2}-1}}=\frac{\alpha^{r}-\bar{\alpha}^{r}}{\alpha-\bar{\alpha}}=\sum_{i=0}^{(r-1) / 2}\left[\begin{array}{c}
r \\
i
\end{array}\right](\alpha-\bar{\alpha})^{r-2 i-1}(\alpha \bar{\alpha})^{i} \\
=\sum_{i=0}^{(r-1) / 2}\left[\begin{array}{c}
r \\
i
\end{array}\right]\left(4\left(m^{2}-1\right)\right)^{(r-1) / 2-i}, \tag{2.7}
\end{gather*}
$$

whence we get

$$
\begin{equation*}
v_{r} \equiv r \quad(\bmod 4) \tag{2.8}
\end{equation*}
$$

Similarly, since $r \equiv s(\bmod 2)$, we have

$$
\begin{equation*}
v_{s}^{\prime} \equiv s \quad(\bmod 4) \tag{2.9}
\end{equation*}
$$

Therefore, if (2.6) holds, then from (2.8) and (2.9) we get $r \equiv s(\bmod 4)$. Thus, the lemma is proved.

Let $d=\operatorname{gcd}(m, n)$. Then we have
(2.10) $\quad m=d m_{1}, n=d n_{1}, m_{1}, n_{1} \in \mathbb{N}, \operatorname{gcd}\left(m_{1}, n_{1}\right)=1$.

Lemma 2.4. If $d>n^{\delta}$ and (2.6) holds, where δ is a positive number with $\frac{1}{2}<\delta<1$, then $r>n^{\theta}$, where

$$
\begin{equation*}
\theta=\min (1-\delta, 2 \delta-1) \tag{2.11}
\end{equation*}
$$

Proof of Lemma 2.4. For $2 \mid r$, we have

$$
\begin{equation*}
v_{r}=\frac{\alpha^{r}-\bar{\alpha}^{r}}{2 \sqrt{m^{2}-1}}=m \sum_{i=0}^{r / 2-1}\binom{r}{2 i+1} m^{r-2 i-1}\left(m^{2}-1\right)^{i} \tag{2.12}
\end{equation*}
$$

whence we get

$$
\begin{equation*}
v_{r} \equiv r m\left(m^{2}-1\right)^{r / 2-1} \equiv(-1)^{r / 2-1} r m \quad\left(\bmod m^{3}\right) \tag{2.13}
\end{equation*}
$$

Similarly, since $2 \mid s$, we have

$$
\begin{equation*}
v_{s}^{\prime} \equiv(-1)^{s / 2-1} \text { sn } \quad\left(\bmod n^{3}\right) \tag{2.14}
\end{equation*}
$$

Therefore, by (2.6), (2.13) and (2.14), we obtain

$$
\begin{equation*}
r m_{1} \equiv \lambda s n_{1} \quad\left(\bmod d^{2}\right), \lambda \in\{ \pm 1\} . \tag{2.15}
\end{equation*}
$$

We find from (2.15) that either

$$
\begin{equation*}
r m_{1}=s n_{1} \tag{2.16}
\end{equation*}
$$

or

$$
\begin{equation*}
r m_{1}+s n_{1} \geq d^{2} \tag{2.17}
\end{equation*}
$$

When (2.16) holds, since $\operatorname{gcd}\left(m_{1}, n_{1}\right)=1$, we get

$$
\begin{equation*}
r=n_{1} t, s=m_{1} t, t \in \mathbb{N} \tag{2.18}
\end{equation*}
$$

It implies that $r \geq n_{1}=n / d>n^{1-\delta} \geq n^{\theta}$ by (2.11). When (2.17) holds, since $n_{1}>m_{1}$, we have $r>\left(r m_{1}+s n_{1}\right) / 2 n_{1} \geq d^{2} / 2 n_{1}>n^{3 \delta-1} / 2=n^{2 \delta-1} \cdot n^{\delta} / 2 \geq$ n^{θ}. Thus, the lemma holds for $2 \mid r$.

For $2 \nmid r$, we have

$$
\begin{equation*}
v_{r}=\sum_{i=0}^{(r-1) / 2}\binom{r}{2 i+1} m^{r-2 i-1}\left(m^{2}-1\right)^{i} \tag{2.19}
\end{equation*}
$$

whence we get

$$
\begin{equation*}
v_{r} \equiv(-1)^{(r-3) / 2}\left(-1+\left(\left(r^{2}-1\right) / 2\right) m^{2}\right) \quad\left(\bmod m^{4}\right) \tag{2.20}
\end{equation*}
$$

Further, by Lemma 2.3, we have $2 \nmid s$ and $r \equiv s\left(\bmod n^{4}\right)$. Hence, we get

$$
\begin{equation*}
v_{s}^{\prime} \equiv(-1)^{(r-3) / 2}\left(-1+\left(\left(s^{2}-1\right) / 2\right) n^{2}\right) \quad\left(\bmod n^{4}\right) . \tag{2.21}
\end{equation*}
$$

Furthermore, by (2.6), (2.20), and (2.21), we obtain

$$
\begin{equation*}
\left(r^{2}-1\right) m_{1}^{2} \equiv\left(s^{2}-1\right) n_{1}^{2} \quad\left(\bmod 2 d^{2}\right) \tag{2.22}
\end{equation*}
$$

We find from (2.22) that either

$$
\begin{equation*}
\left(r^{2}-1\right) m_{1}^{2}=\left(s^{2}-1\right) n_{1}^{2} \tag{2.23}
\end{equation*}
$$

or

$$
\begin{equation*}
\max \left(\left(r^{2}-1\right) m_{1}^{2},\left(s^{2}-1\right) n_{1}^{2}\right)>2 d^{2} \tag{2.24}
\end{equation*}
$$

When (2.23) holds, we have

$$
\begin{equation*}
\left(r^{2}-1\right)=n_{1}^{2} t,\left(s^{2}-1\right)=m_{1}^{2} t, t \in \mathbb{N} \tag{2.25}
\end{equation*}
$$

whence we get $r>\sqrt{r^{2}-1} \geq n_{1}>n^{1-\delta} \geq n^{\theta}$ by (2.11). When (2.24) holds, since $r>s$ and $n_{1}>m_{1}$, we get $r>\max \left(m_{1} \sqrt{r^{2}-1}, n_{1} \sqrt{s^{2}-1}\right) / n_{1}>$ $2 d^{2} / n_{1}>2 n^{3 \delta-1}>2 n^{\theta}$. To sum up, the lemma is proved.

Lemma 2.5. Let c, c_{1}, c_{2}, c_{3} be positive numbers.
(i) If $c_{2}>2 e^{c_{1} / c_{2}} \log c_{2}$, then $c>c_{1}+c_{2} \log c$ for $c \geq 2 c_{2} \log c_{2}$.
(ii) If $c_{3}>8\left(\log c_{3}\right)^{3}$, then $c>c_{3}(\log c)^{3}$ for $c>8 c_{3}\left(\log c_{3}\right)^{3}$.

Proof of Lemma 2.5. Let

$$
\begin{equation*}
f(c)=c-\left(c_{1}+c_{2} \log c\right) . \tag{2.26}
\end{equation*}
$$

Since $f^{\prime}(c)=1-c_{2} / c$, we have $f^{\prime}(c)>0$ for $c>c_{2}$. It implies that $f(c)$ is an increasing function for $c>c_{2}$. On the other hand, if $f\left(2 c_{2} \log c_{2}\right) \leq 0$, then from (2.26) we get

$$
\begin{equation*}
2 c_{2} \log c_{2} \leq c_{1}+c_{2}\left(\log 2+\log c_{2}+\log \log c_{2}\right) \tag{2.27}
\end{equation*}
$$

whence we obtain $c_{2} \leq 2 \mathrm{e}^{c_{1} / c_{2}} \log c_{2}$, which contradicts the assumption. Therefore, we have $f\left(2 c_{2} \log c_{2}\right)>0$. Thus, by (2.26), the result (i) is proved. Using the same method, we can deduce the result (ii). The lemma is proved.

Lemma 2.6 ([3, Formula (11)]). If (2.6) holds, then

$$
r<4.26 \times 10^{13}(\log \beta)^{2}(\log (e r))
$$

3. Proof of Theorem 1.1

We may assume that $1<m<n$. If (1.2) has two solutions, then it has a solution (X, Y, Z) with $Y>1$. By (1.3), (2.2), (2.3) and (2.4), we have

$$
\begin{equation*}
Y=v_{r}=v_{s}^{\prime}, r, s \in \mathbb{N}, \min (r, s)>1 \tag{3.1}
\end{equation*}
$$

By Lemma 2.3, we have $r>s$. Since $\beta=n+\sqrt{n^{2}-1}<2 n$, by Lemma 2.6, we get

$$
\begin{equation*}
r<4.26 \times 10^{13}(\log n)^{2}(1+\log r) \tag{3.2}
\end{equation*}
$$

Put $c_{1}=c_{2}=4.26 \times 10^{13}(\log n)^{2}$. Since $c_{1} / c_{2}=1$ and $c_{2}>2 \mathrm{e} \log c_{2}$, by (i) of Lemma 2.5, we see from (3.2) that
(3.3) $r<2 c_{2} \log c_{2}<8.52 \times 10^{13}(\log 2 n)^{2}(31.39+2 \log \log 2 n)<10^{16}(\log n)^{3}$.

On the other hand, by Lemma 2.4, we have $r>n^{\theta}$. Substitute it into (3.3), we get

$$
\begin{equation*}
n^{\theta}<10^{16}(\log n)^{3}=\frac{10^{16}}{\theta^{3}}\left(\log n^{\theta}\right)^{3} \tag{3.4}
\end{equation*}
$$

Put $c_{3}=10^{16} / \theta^{3}$. Since $c_{3}>10^{16}$, we have $c_{3}>8\left(\log c_{3}\right)^{3}$. Therefore, by (ii) of Lemma 5 , we see from (3.4) that

$$
\begin{equation*}
n^{\theta}<8 c_{3}\left(\log c_{3}\right)^{3}<\frac{8 \times 10^{16}}{\theta^{3}}\left(\log \frac{10^{16}}{\theta^{3}}\right)^{3} . \tag{3.5}
\end{equation*}
$$

It implies that if $\operatorname{gcd}(m, n)>n^{\delta}$ and (1.5) holds, then (1.2) has only one solution $(X, Y, Z)=(m, 1, n)$. Thus, the theorem is proved.

Acknowledgements.
The author thanks the referee for his valuable suggestions.

References

[1] M. A. Bennett, Solving families of simultaneous Pell equations, J. Number Theory 67 (1997), 246-251.
[2] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
[3] M. A. Bennett, M. Cipu, M. Mignotte and R. Okazaki, On the number of solutions of simultaneous Pell equations, Acta Arith. 122 (2006), 407-417.
[4] M.-H. Le, On the simultaneous Pell equations $x^{2}-D_{1} y^{2}=\delta$ and $z^{2}-D_{2} y^{2}=\delta$, Adv. Math. China 30 (2001), 87-88.
[5] R. Lidl and H. Niederreiter, Finite fields, Massachusetts, Addison-Wesley, Reading, 1983.
[6] D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), 52-66.
[7] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
[8] J. H. Rickert, Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
[9] H. P. Schlickewei, The number of subspaces occuring in the p-adic subspace theorem in diophantine approximation, J. Reine Angew. Math. 406 (1990)44-108.
[10] W. M. Schmidt, Diophantine approximation, Springer Verlag, New York, 1980.
[11] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. 1 (1929), 1-70.
[12] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.
[13] P.-Z. Yuan, On the number of solutions of simultaneous Pell equations, Acta Arith. 101 (2002), 215-221.
[14] P.-Z. Yuan, Simultaneous Pell equations, Acta Arith. 115 (2004), 119-131.
M. Le

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong 524048
P.R. China

E-mail: lemaohua2008@163.com
Received: 27.4.2010.
Revised: 31.10.2010.

[^0]: 2010 Mathematics Subject Classification. 11D09.
 Key words and phrases. Simultaneous Pell equations; number of solutions.
 Supported by the National Natural Science Foundation of China (No.10971184).

