ON THE FAMILY OF ELLIPTIC CURVES $Y^{2}=X^{3}-T^{2} X+1$

Petra Tadić
University of Zagreb, Croatia

Abstract. Let E be the elliptic curve over $\mathbb{Q}(T)$ given by the equation

$$
E: Y^{2}=X^{3}-T^{2} X+1
$$

We prove that the torsion subgroup of the group $E(\mathbb{C}(T))$ is trivial, $\operatorname{rank}_{\mathbb{Q}(T)}(E)=3$ and $\operatorname{rank}_{\mathbb{C}(T)}(E)=4$. We find a parametrization of E of rank at least four over the function field $\mathbb{Q}(a, i, s, n, k)$ where $s^{2}=i^{3}-a^{2} i$. From this we get a family of rank ≥ 5 over the field of rational functions in two variables and a family of rank ≥ 6 over an elliptic curve of positive rank. We also found particular elliptic curves with rank ≥ 11.

1. Introduction

Let E be the elliptic curve over $\mathbb{Q}(T)$ given by the equation

$$
Y^{2}=X^{3}-T^{2} X+1
$$

In [1, Theorem 3.11] it is proven that if $t \geq 2$ is an integer, the elliptic curve $E_{t}: Y^{2}=X^{3}-t^{2} X+1$ has rank at least 2 over \mathbb{Q}, with independent points $(0,1)$ and $(-1, t)$. It is proven that the rank of E_{t} is at least 3 , for integers $t \equiv 0(\bmod 4)$ and $t=7$. Here the third independent point is $(-t, 1)$. Additionally, the torsion subgroup of $E_{t}(\mathbb{Q})$ is trivial, for all integer values $t \geq 1$.

In this paper we prove that the rank of the elliptic curve E over $\mathbb{Q}(T)$ is equal 3 . We find the generators $(0,1),(-1, T),(-T, 1)$ of the finitely generated Abelian group $E(\mathbb{Q}(T))$ and prove that its torsion subgroup is trivial. Since the rank of $E(\mathbb{Q}(T))$ is equal three, by the Silverman's specialization theorem [12, p. 271, Theorem 11.4] we obtain that $\operatorname{rank} E_{t}(\mathbb{Q}) \geq 3$, for all but finitely many rational values t. We also compute the rank of E over $\mathbb{C}(T)$ and find the

[^0]generators. In addition we find parametrisations of E for which the generic rank is $\geq 4, \geq 5$ and ≥ 6. We also search for particular high rank curves in the family E_{t}. We find several curves with rank ≥ 9 for integer values of the parameter t, and several curves with rank ≥ 11 for rational values of the parameter t.

2. The rational elliptic surface $Y^{2}=X^{3}-T^{2} X+1$

In this section we give results regarding the elliptic curve $Y^{2}=X^{3}-$ $T^{2} X+1$ over $\mathbb{Q}(T)$. We will find the torsion subgroup, calculate the rank over $\mathbb{Q}(T)$ and $\mathbb{C}(T)$, find the generators and find parametrizations of generic rank ≥ 4 and ≥ 5.

Proposition 2.1. Let E be the elliptic curve over $\mathbb{Q}(T)$ given by the equation

$$
E: Y^{2}=X^{3}-T^{2} X+1
$$

(i) The associated elliptic surface (denoted \mathcal{E}) is rational.
(ii) $\operatorname{rank}_{\mathbb{C}(T)} E=4$,
(iii) The generators of the group $E(\mathbb{C}(T))$ are the points

$$
(0,1),(-1, T),(-T, 1),\left(\frac{1+\sqrt{-3}}{2}, \frac{1-\sqrt{-3}}{2} T\right)
$$

and the torsion subgroup of $E(\mathbb{C}(T))$ is trivial.
(iv) $\operatorname{rank}_{\mathbb{Q}(T)} E=3$, the generators over $\mathbb{Q}(T)$ are

$$
(0,1),(-1, T),(-T, 1)
$$

and the torsion subgroup of $E(\mathbb{Q}(T))$ is trivial.
(v) For

$$
T(a, i, s, n, k)=a n^{2}+\left(2 a k+\frac{s}{i}\right) n+a k^{2}+\frac{s}{i} \cdot k+\frac{a^{3}-2 a i^{2}}{i^{3}-a^{2} i}
$$

the elliptic curve $Y^{2}=X^{3}-T(a, i, s, n, k)^{2} X+1$ over the function field $\mathbb{Q}(a, i, s, n, k)$ where $s^{2}=i^{3}-a^{2} i$, has rank ≥ 4, with an extra independent point with the first coordinate

$$
X_{C}(a, i, s, n, k)=i(n+k)^{2}+\frac{i^{2}}{a^{2}-i^{2}}
$$

Proof of Proposition 2.1. The elliptic curve E over $\mathbb{Q}(T)$ is written in short Weierstrass form

$$
E: Y^{2}=X^{3}+A(T) X+B(T)
$$

where we have

$$
\begin{aligned}
& A(T)=-T^{2} \\
& B(T)=1 \\
& \Delta(T)=16\left(4 T^{6}-27\right)
\end{aligned}
$$

here Δ is the discriminant.
(i) Since $\operatorname{deg}(A)=2$ and $\operatorname{deg}(B)=0$, from [11, Equation 10.14] we find that the associated elliptic surface \mathcal{E} is rational.
(ii) For the proof we will use Shioda's formula. Since from (i) we know that the associated elliptic surface \mathcal{E} is rational, by [11, Lemma 10.1] we find that the rank of the Néron-Severi group (denoted $N S(\mathcal{E}, \mathbb{C})$) of \mathcal{E} over \mathbb{C} is equal 10. From the discriminant $\Delta(T)$, we see that the singular fibres are at $\varphi_{1}, \ldots, \varphi_{6}$ and ∞, where the φ_{i} are the roots of the equation $4 T^{6}-27=0$. We determine the numbers m_{s} (of irreducible components of the fibre over s) from Kodaira types of singular fibres [7, Section 4]:

	coefficients				
S	$\operatorname{ord}_{T=s}(A)$	$\operatorname{ord} d_{T=s}(B)$	$\operatorname{or} d_{T=s}(\Delta)$	Kodaira type	$m_{s}-1$
φ_{i}	0	0	1	I_{1}	0
∞	2	6	6	I_{0}^{*}	4

Now we compute $\operatorname{rank}_{\mathbb{C}(T)}(E)$ using Shioda's formula [11, Corollary 5.3]

$$
\operatorname{rank}_{\mathbb{C}(T)} \mathcal{E}=\operatorname{rank} N S(\mathcal{E}, \mathbb{C})-2-\sum_{s}\left(m_{s}-1\right)=10-2-6 \cdot 0-4=4
$$

(iii) The group $E(\mathbb{C}(T))$ is generated, by [11, Theorem 10.10], with the points of the form $\left(a_{2} T^{2}+a_{1} T+a_{0}, b_{3} T^{3}+b_{2} T^{2}+b_{1} T+b_{0}\right), a_{i}, b_{i} \in \mathbb{C}$. We list all such points

$$
\begin{aligned}
& (0, \pm 1)=: \pm P \\
& (-1, \pm T)=: \pm Q \\
& (-T, \pm 1)=: \pm R \\
& (T, \pm 1)=\mp P \mp R \\
& (T+2, \pm 2 T \pm 3)=\mp Q \mp R \\
& (-T+2, \pm 2 T \mp 3)=\mp P \mp Q \mp R \\
& \left(T^{2}-1, \pm T^{3} \mp 2 T\right)= \pm P \pm Q \pm 2 R \\
& \left(T^{2}+2 T+2, \pm T^{3} \pm 3 T^{2} \pm 4 T \pm 3\right)=\mp P \pm Q \\
& \left(T^{2}-2 T+2, \pm T^{3} \mp 3 T^{2} \pm 4 T \mp 3\right)= \pm P \pm Q \\
& \left(\frac{1+\sqrt{-3}}{2}, \pm \frac{1-\sqrt{-3}}{2} T\right)=: \pm S
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1-\sqrt{-3}}{2}, \pm \frac{1+\sqrt{-3}}{2} T\right)= \pm P \pm Q \pm 2 R \mp S, \\
& (T-1-\sqrt{-3}, \pm(1-\sqrt{-3}) T \mp 3)= \pm R \mp S, \\
& (T-1+\sqrt{-3}, \pm(1+\sqrt{-3}) T \mp 3)=\mp P \mp Q \mp R \pm S, \\
& (-T-1-\sqrt{-3}, \pm(1-\sqrt{-3}) T \pm 3)= \pm P \pm R \mp S, \\
& (-T-1+\sqrt{-3}, \pm(1+\sqrt{-3}) T \pm 3)=\mp Q \mp R \pm S, \\
& \left(-\frac{1}{3} T^{2}-1, \pm \frac{\sqrt{-3}}{9} T^{3}\right)= \pm P \pm Q \pm 2 R \mp 2 S, \\
& \left(\frac{1}{6}(1+\sqrt{-3}) T^{2}+\frac{1}{2}(1-\sqrt{-3}), \pm \frac{\sqrt{-3}}{9} T^{3}\right)= \pm Q \pm S, \\
& \left(\frac{1}{6}(1-\sqrt{-3}) T^{2}+\frac{1}{2}(1+\sqrt{-3}), \pm \frac{\sqrt{-3}}{9} T^{3}\right)= \pm P \pm 2 Q \pm 2 R \mp S, \\
& \left(-\frac{1}{2}(1-\sqrt{-3}) T^{2}+\frac{1}{2}(1+\sqrt{-3}), \pm T^{3} \pm(1-\sqrt{-3}) T\right)= \pm P \pm 2 R \mp S, \\
& \left(-\frac{1}{2}(1+\sqrt{-3}) T^{2}+\frac{1}{2}(1-\sqrt{-3}), \pm T^{3} \pm(1+\sqrt{-3}) T\right)=\mp Q \pm S, \\
& \left(-\frac{1}{2}(1-\sqrt{-3}) T^{2}+2 T-(1+\sqrt{-3}), \pm T^{3} \mp \frac{3}{2}(1+\sqrt{-3}) T^{2} \mp 2(1-\sqrt{-3}) T \pm 3\right) \\
& =\mp P \mp S, \\
& \left(-\frac{1}{2}(1-\sqrt{-3}) T^{2}-2 T-(1+\sqrt{-3}), \pm T^{3} \pm \frac{3}{2}(1+\sqrt{-3}) T^{2} \mp 2(1-\sqrt{-3}) T \mp 3\right) \\
& = \pm P \mp S, \\
& \left(-\frac{1}{2}(1+\sqrt{-3}) T^{2}+2 T-(1-\sqrt{-3}), \pm\left(T^{3}-\frac{3}{2}(1-\sqrt{-3}) T^{2}-2(1+\sqrt{-3}) T+3\right)\right) \\
& =\mp 2 P \mp Q \mp 2 R \pm S, \\
& \left(-\frac{1}{2}(1+\sqrt{-3}) T^{2}-2 T-(1-\sqrt{-3}), \pm T^{3} \pm \frac{3}{2}(1-\sqrt{-3}) T^{2} \mp 2(1+\sqrt{-3}) T \mp 3\right) \\
& =\mp Q \mp 2 R \pm S .
\end{aligned}
$$

We see that all of the listed points which generate $E(\mathbb{C}(T))$ can be written as a combination of the four points P, Q, R, S, so the points P, Q, R, S generate the group $E(\mathbb{C}(T))$. From (ii) we conclude that P, Q, R, S are independent points of infinite order that generate the group $E(\mathbb{C}(T))$, and the torsion subgroup $E(\mathbb{C}(T))_{\text {Tors }}$ is trivial.
(iv) Since the torsion subgroup of $E(\mathbb{C}(T))$ is trivial, we conclude that the torsion subgroup of $E(\mathbb{Q}(T))$ is trivial.

We have to prove that the generators of the group $E(\mathbb{Q}(T))$ are the three independent points $P, Q, R \in E(\mathbb{Q}(T))$ in (iii). So we have to prove that these
three points generate the subgroup $E(\mathbb{Q}(T))$ of the group $E(\mathbb{C}(T))$, where the later is generated by the four points P, Q, R, S in (iii). It is obvious that the point $S \in E(\mathbb{C}(T)) \backslash E(\mathbb{Q}(T))$ will not give a point of the group $E(\mathbb{Q}(T))$, by the action of the Galois group $\operatorname{Gal}(\mathbb{Q}(\sqrt{-3}) / \mathbb{Q})$ and using that the torsion subgroup of $E(\mathbb{C}(T))$ is trivial. Precisely, since $a P+b Q+c R+d S \in$ $E(\mathbb{Q}(T))(a, b, c, d \in \mathbb{Z})$, would mean $0=(a P+b Q+c R+d S)^{\sigma}-(a P+b Q+$ $c R+d S)=d S^{\sigma}-d S=d\left(S^{\sigma}-S\right)$ for all $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{-3}, T) / \mathbb{Q}(T))$. Since the torsion subgroup is trivial and $S=\left(\frac{1+\sqrt{-3}}{2}, \frac{1-\sqrt{-3}}{2} T\right)$, this would give $d=0$. Thus, it would mean that if $d \in \mathbb{Z} \backslash\{0\}$, then $a P+b Q+c R+d S \notin E(\mathbb{Q}(T))$. So we conclude that the points P, Q, R generate the $\operatorname{subgroup} E(\mathbb{Q}(T))$ of the group $E(\mathbb{C}(T))$.
(v) We look for parameters T of the form $a n^{2}+b n+c(a, b, c \in \mathbb{Q})$ for which the curve

$$
Y^{2}=X^{3}-T^{2} X+1
$$

has a point of the form $\left(i_{2} n^{2}+i_{1} n+i_{0}, j_{3} n^{3}+j_{2} n^{2}+j_{1} n+j_{0}\right)$, for i_{0}, i_{1}, i_{2}, $j_{0}, j_{1}, j_{2}, j_{3} \in \mathbb{Q}$. In other words we search for $a, b, c, i_{0}, i_{1}, i_{2}$ for which the polynomial

$$
\left(i_{2} n^{2}+i_{1} n+i_{0}\right)^{3}-\left(a n^{2}+b n+c\right)^{2}\left(i_{2} n^{2}+i_{1} n+i_{0}\right)+1
$$

is a square in the field $\mathbb{Q}(n)$. Such an observation leads to the listed subfamily.
We have

$$
\begin{aligned}
Y_{C}(a, i, s, n, k)= & s n^{3}+(3 s k-a) n^{2} \\
& +\frac{3 i k^{2} s^{2}-a^{2} i-2 a i s k-2 s^{2}}{i s} n \\
& +\frac{a i^{2}+a^{2} s k-2 i^{2} s k-a s^{2} k^{2}+s^{3} k^{3}}{i\left(i^{2}-a^{2}\right)}
\end{aligned}
$$

And we have

$$
\begin{aligned}
& X_{C}(a, i, s, n, k)^{3}-T(a, i, s, n, k)^{2} X_{C}(a, i, s, n, k)+1-Y_{C}(a, i, s, n, k)^{2} \\
& \quad=\left(-s^{2}-a^{2} i+i^{3}\right) q(a, i, s, n, k)=0
\end{aligned}
$$

where $q \in \mathbb{Q}(a, i, s, n, k)$. This proves that the listed point is on the elliptic curve $Y^{2}=X^{3}-T(a, i, s, n, k)^{2}+1$ over $\mathbb{Q}(a, i, s, n, k)$ where $s^{2}=i^{3}-a^{2} i$.

For the specialization $(a, i, s, n, k) \mapsto(6,-3,9,1,1)$ we have that on the curve $E_{T(6,-3,9,1,1)}: Y^{2}=X^{3}-\left(\frac{58}{3}\right)^{2} X+1$ over \mathbb{Q} the four corresponding points $(0,1),\left(-1, \frac{58}{3}\right),\left(-\frac{58}{3}, 1\right),\left(-\frac{35}{3}, \frac{158}{3}\right)$ are independent, this shows that the points from the claim of the proposition are independent since the specialization map is a homomorphism.

Remark 2.2. - Most of the technical claims in (i)-(iv) from the above proposition can be extracted from [5], but for the sake of completeness we have given proofs here.

- From Proposition 2.1 (iv) and the Silverman's specialization theorem [12, p. 271,Theorem 11.4] the rank of $E_{t}(\mathbb{Q}) \geq 3$, for all but finitely many rational values t.
From the subfamily in Proposition 2.1 (v) we get subfamilies of rank ≥ 5. We write the family in Proposition 2.1 (v) as

$$
T(a, i, s, n, k)=a\left(n+k+\frac{s}{2 a i}\right)^{2}+\frac{8 a^{2} i^{3}-4 a^{4} i-a^{2} s^{2}+i^{2} s^{2}}{4 a i^{2}\left(a^{2}-i^{2}\right)}
$$

Now we look at the solution of

$$
T(a, i, s, n, k)=T\left(a, i_{2}, s_{2}, n_{2}, k_{2}\right)
$$

where

$$
i_{2}=\frac{a(i+a)}{i-a}, s_{2}=2 \frac{a^{2} s}{(i-a)^{2}}
$$

Actually, $\left(i_{2}, s_{2}\right)=(i,-s)+(a, 0)$ on the curve $Y^{2}=X^{3}-a^{2} X$ over $\mathbb{Q}(a)$.
So we look for solutions of

$$
\begin{aligned}
& a\left(n+k+\frac{s}{2 a i}\right)^{2}+\frac{8 a^{2} i^{3}-4 a^{4} i-a^{2} s^{2}+i^{2} s^{2}}{4 a i^{2}\left(a^{2}-i^{2}\right)} \\
& \quad=a\left(n_{2}+k_{2}+\frac{s_{2}}{2 a i_{2}}\right)^{2}+\frac{8 a^{2} i_{2}^{3}-4 a^{4} i_{2}-a^{2} s_{2}^{2}+i_{2}^{2} s_{2}^{2}}{4 a i_{2}^{2}\left(a^{2}-i_{2}^{2}\right)}
\end{aligned}
$$

more precisely

$$
\begin{aligned}
(n+ & \left.k+\frac{s}{2 a i}\right)^{2}-\left(n_{2}+k_{2}+\frac{s_{2}}{2 a i_{2}}\right)^{2} \\
& =\frac{1}{a}\left(\frac{8 a^{2} i_{2}^{3}-4 a^{4} i_{2}-a^{2} s_{2}^{2}+i_{2}^{2} s_{2}^{2}}{4 a i_{2}^{2}\left(a^{2}-i_{2}^{2}\right)}-\frac{8 a^{2} i^{3}-4 a^{4} i-a^{2} s^{2}+i^{2} s^{2}}{4 a i^{2}\left(a^{2}-i^{2}\right)}\right)
\end{aligned}
$$

This leads to the solution of the equation $A^{2}-B^{2}=p$, which is $(A, B)=\left(\frac{1}{2} \frac{u^{2} p-2 u p+2 u+u^{2}+p+1}{u^{2}-1},-\frac{1}{2} \frac{u^{2} p-u^{2}-2 u p-2 u+p-1}{\left(u^{2}-1\right)}\right)$,
where on the other hand $A=n+k+\frac{s}{2 a i}$ and $B=n_{2}+k_{2}+\frac{s_{2}}{2 a i_{2}}$ (coming from the squares in $T(a, i, s, n, k)$ and $T\left(a, i_{2}, s_{2}, n_{2}, k_{2}\right)$ respectively), and p is as below.

Proposition 2.3. Let

$$
\begin{aligned}
T(a, i, s, u)= & a\left(\frac{1}{2} \frac{u^{2} p-2 u p+2 u+u^{2}+p+1}{u^{2}-1}\right)^{2} \\
& +\frac{8 a^{2} i^{3}-4 a^{4} i-a^{2} s^{2}+i^{2} s^{2}}{4 a i^{2}\left(a^{2}-i^{2}\right)}
\end{aligned}
$$

where

$$
i_{2}(a, i)=\frac{a(i+a)}{i-a}, \quad s_{2}(a, i, s)=2 \frac{a^{2} s}{(i-a)^{2}}
$$

$$
\begin{aligned}
& p(a, i, s, u)= \\
& \frac{1}{4 a}\left(\frac{8 a^{2} i_{2}^{3}-4 a^{4} i_{2}-a^{2} s_{2}^{2}+i_{2}^{2} s_{2}^{2}}{a i_{2}^{2}\left(a^{2}-i_{2}^{2}\right)}-\frac{8 a^{2} i^{3}-4 a^{4} i-a^{2} s^{2}+i^{2} s^{2}}{a i^{2}\left(a^{2}-i^{2}\right)}\right) \\
& =\frac{1}{4} \frac{\left(a^{2}+2 a i-i^{2}\right)\left(i^{5}+6 a i^{4}-6 a^{2} i^{3}-i^{2} s^{2}-6 i^{2} a^{3}+5 a^{4} i-2 i a s^{2}+a^{2} s^{2}\right)}{a^{2} i^{2}\left(a^{2}-i^{2}\right)^{2}} .
\end{aligned}
$$

The elliptic curve $Y^{2}=X^{3}-T(a, i, s, u)^{2} X+1$ over the function field $\mathbb{Q}(a, i, s, u)$ where $s^{2}=i^{3}-a^{2} i$ has rank ≥ 5 with five independent points: the three generators $(0,1),(-1, T),(-T, 1)$ provided in Proposition 2.1 (iv) and two additional points $C(a, i, s, u)$ and $D(a, i, s, u)$ (notion from Proposition $2.1(v))$ where the first coordinates are

$$
\begin{aligned}
X_{C}(a, i, s, u)= & \frac{i}{4}\left(\frac{u^{2} p-2 u p+2 u+u^{2}+p+1}{u^{2}-1}-\frac{s}{i a}\right)^{2}+\frac{i^{2}}{a^{2}-i^{2}} \\
X_{D}(a, i, s, u)= & \frac{a(i+a)}{i-a}\left(\frac{1}{2} \frac{u^{2} p-u^{2}-2 u p-2 u+p-1}{u^{2}-1}+\frac{s}{i^{2}-a^{2}}\right)^{2} \\
& -\frac{(i+a)^{2}}{4 a i}
\end{aligned}
$$

Proof of Proposition 2.3. For the second coordinate of C and D we can take the second coordinate from the proof of Proposition 2.1 (v), specifically $Y\left(a, i, s, 0, A-\frac{s}{2 a i}\right)$ and $Y\left(a, i_{2}, s_{2}, 0, B-\frac{s}{i^{2}-a^{2}}\right)$, respectively. With the specialisation $(a, i, s, u) \mapsto(6,-2,8,3)$ we prove that the above listed five points on the elliptic curve (over $\mathbb{Q}(a, i, s, u)$ where $\left.s^{2}=i^{3}-a^{2} i\right)$ are independent, since the specialization gives the elliptic curve

$$
E_{T(6,-2,8,3)}: Y^{2}=X^{3}-\left(\frac{239}{32}\right)^{2} X+1
$$

with the corresponding five independent points $(0,1),\left(-1, \frac{239}{32}\right),\left(-\frac{239}{32}, 1\right)$, $\left(-\frac{925}{288}, \frac{20953}{1728}\right),\left(-\frac{299}{64}, \frac{6469}{512}\right)$.

Remark 2.4. The variety

$$
s^{2}=i^{3}-a^{2} i
$$

from Proposition 2.1 (v) can be considered as an elliptic curve over the field $\mathbb{Q}(a)$. In fact, it is the well-known "congruent number" elliptic curve. The torsion subgroup of this elliptic curve is equal $\{O,(0,0),(a, 0),(-a, 0)\}$. Nontrivial points on this variety $s^{2}=i^{3}-a^{2} i$ can easily be obtained, for example $(a, i, s)=(6,-2,8)$ is a point on the variety. We also have
parametrisations of this variety (see e.g. [3]), for example:

$$
\left\{\begin{array}{l}
a(t)=t\left(t^{2}-1\right) \\
i(t)=-t^{2}+1 \\
s(t)=\left(t^{2}-1\right)^{2}
\end{array}\right.
$$

For this parametrization we get that Proposition 2.1 (v) and Proposition 2.3 transform into:

Corollary 2.5. (i) Let
$T(t, n, k)=\left(t^{3}-t\right) n^{2}+\left(t^{2}-1\right)(2 t k-1) n+\left(t^{3}-t\right) k^{2}-\left(t^{2}-1\right) k+\frac{\left(t^{3}-2 t\right)}{\left(t^{2}-1\right)}$,
and
$X_{C}(t, n, k)=-\left(t^{2}-1\right) n^{2}-2\left(t^{2}-1\right) k n-\left(t^{2}-1\right) k^{2}+\frac{1}{t^{2}-1}$.
The elliptic curve

$$
Y^{2}=X^{3}-T(t, n, k)^{2} X+1
$$

over $\mathbb{Q}(t, n, k)$ has rank ≥ 4 with four independent points with first coordinates $0,-1,-T(t, n, k), X_{C}(t, n, k)$.
(ii) Let
$T(t, u)=\left(\left(t^{8}-2 t^{7}+4 t^{5}-3 t^{4}-2 t^{3}-2 t^{2}+8 t\right) u^{4}+\left(4 t^{8}-8 t^{7}-4 t^{6}+\right.\right.$ $\left.16 t^{5}-8 t^{4}+8 t^{3}-4 t^{2}-16 t-4\right) u^{3}+\left(6 t^{8}-12 t^{7}-8 t^{6}+24 t^{5}+6 t^{4}-44 t^{3}+\right.$ $\left.28 t^{2}+16 t+8\right) u^{2}+\left(4 t^{8}-8 t^{7}-4 t^{6}+16 t^{5}-8 t^{4}+8 t^{3}-4 t^{2}-16 t-4\right) u$ $\left.+t^{8}-2 t^{7}+4 t^{5}-3 t^{4}-2 t^{3}-2 t^{2}+8 t\right) /\left(4 t\left(u^{2}-1\right)^{2}(t+1)(t-1)^{3}\right)$,
and
$X_{C}(t, u)=-\left(\left(t^{4}-5 t^{2}+4 t+2\right) u^{2}+\left(2 t^{4}-2 t^{3}-2 t-2\right) u+t^{4}-2 t^{3}+t^{2}+\right.$ $2 t)\left(\left(t^{4}-t^{2}+2\right) u^{2}+\left(2 t^{4}-2 t^{3}-2 t-2\right) u+t^{4}-2 t^{3}-3 t^{2}+6 t\right) /\left(4 t^{2}\left(u^{2}-\right.\right.$ $\left.1)^{2}(t+1)(t-1)^{3}\right)$,
$X_{D}(t, u)=-\left(\left(t^{4}-2 t^{3}+3 t^{2}-2 t-2\right) u^{2}+\left(2 t^{4}-2 t^{3}-4 t^{2}+6 t+2\right) u+\right.$ $\left.t^{4}-3 t^{2}\right)\left(\left(t^{4}+t^{2}-4 t\right) u^{2}+\left(2 t^{4}-2 t^{3}-4 t^{2}+6 t+2\right) u+t^{4}-2 t^{3}-t^{2}+\right.$ $2 t-2) /\left(4 t\left(u^{2}-1\right)^{2}\left(t^{2}-1\right)^{2}\right)$.
The elliptic curve

$$
Y^{2}=X^{3}-T(t, u)^{2} X+1
$$

over $\mathbb{Q}(t, u)$ has rank ≥ 5 with five independent points with first coordinates $0,-1,-T(t, u), X_{C}(t, u), X_{D}(t, u)$.

Proof of Corollary 2.5. (i) For the specialization $(t, n, k) \mapsto(2,1,1)$ the elliptic curve $E_{T(2,1,1)}: Y^{2}=X^{3}-\left(\frac{58}{3}\right)^{2} X+1$ is a curve over \mathbb{Q} for which the four listed points are $(0,1),\left(-1, \frac{58}{3}\right),\left(-\frac{58}{3}, 1\right),\left(-\frac{35}{3}, \frac{158}{3}\right)$ and are independent. This proves that for the elliptic curve $Y^{2}=X^{3}-T(t, n, k)^{2} X+1$ over $\mathbb{Q}(t, n, k)$ the four points from the claim of the corollary are independent.
(ii) The specialization $(t, u) \mapsto(2,2)$ gives the elliptic curve $E_{T(2,2)}: Y^{2}=$ $X^{3}-\left(\frac{404}{27}\right)^{2} X+1$ over \mathbb{Q} for which the five listed points $(0,1),\left(-1, \frac{404}{27}\right)$, $\left(-\frac{404}{27}, 1\right),\left(-\frac{247}{27}, \frac{2902}{81}\right),\left(-\frac{518}{81}, \frac{24949}{729}\right)$ are independent. This proves that for the elliptic curve $Y^{2}=X^{3}-T(t, u)^{2} X+1$ over $\mathbb{Q}(t, u)$ the five points from the claim of the corollary are independent.

3. A subfamily of higher rank

- In [5], rational functions

$$
\begin{gathered}
M_{1}(m)=\frac{2}{75} m^{2}+m+8 \\
M_{2}(m)=\frac{1830 m^{4}-64641 m^{3}+907768 m^{2}-5882331 m+15154230}{30\left(m^{2}-91\right)^{2}}
\end{gathered}
$$

are given such that the rank of $E_{M(m)}$ over $\mathbb{Q}(m)$ is ≥ 4 and ≥ 5, respectively.

- The first rational function $M_{1}(m)$ is equal $T\left(6,18,72, m,-\frac{16}{15} m-\frac{19}{12}\right)$ from Proposition 2.1 (v) and the fourth listed point $\left(\frac{4}{75} m^{2}+\frac{8}{5} m+\right.$ 12, $\frac{4}{375} m^{3}+\frac{34}{75} m^{2}+\frac{32}{5} m+31$) from [5, Propositon 5.2.1.] is equal $-(0,1)-(-T, 1)-\left(\frac{2}{25} m^{2}+\frac{19}{5} m+44, \frac{1}{375}\left(8 m^{3}+580 m^{2}+13800 m+\right.\right.$ 107625)), where the last point is the fourth independent point from Proposition 2.1 (v).
- The second rational function $M_{2}(m)$ is equal

$$
T\left(120,180,1800, \frac{1}{60} \frac{16 m^{2}-743 m+6461}{m^{2}-91}, \frac{5}{12}\right)
$$

and it has two extra points R_{4} with first coordinate

$$
\frac{1}{2} \frac{130 m^{4}-4785 m^{3}+70188 m^{2}-469539 m+1222158}{\left(m^{2}-91\right)^{2}}
$$

and R_{5} with first coordinate

$$
-\frac{1}{150} \frac{\left(57 m^{2}-743 m+2730\right)\left(42 m^{2}-743 m+4095\right)}{\left(m^{2}-91\right)^{2}} .
$$

The fifth point R_{5} in [5] is equal $(0,1)+(-1, T)+(-T, 1)-C$, where C is the fourth independent point from Proposition 2.1 (v).

- In [5] an elliptic surface over a curve is found for which the MordellWeil group has rank ≥ 6. Here we give a new example of an infinite family of curves with rank ≥ 6.

Corollary 3.1. The elliptic curve given by the equation

$$
Y^{2}=X^{3}-\left(210 n^{2}+187 n+\frac{275}{7}\right)^{2} X+1
$$

over the function field $\mathbb{Q}(m, n)$ where

$$
\begin{gathered}
\left(\left(m^{2}-91\right)(420 n+187)\right)^{2}=53209 m^{4}-1809948 m^{3}+25059146 m^{2} \\
-164705268 m+440623729
\end{gathered}
$$

has rank at least six with six independent points with first coordinates $0,-1$,

$$
-\left(210 n^{2}+187 n+\frac{275}{7}\right)
$$

$$
\begin{gathered}
\frac{1}{2} \frac{130 m^{4}-4785 m^{3}+70188 m^{2}-469539 m+1222158}{\left(m^{2}-91\right)^{2}} \\
-\frac{1}{150} \frac{\left(57 m^{2}-743 m+2730\right)\left(42 m^{2}-743 m+4095\right)}{\left(m^{2}-91\right)^{2}}, 294 n^{2}+245 n+49 .
\end{gathered}
$$

Proof of Corollary 3.1. Here we will intersect $M_{2}(m)$ with $T(210$, $\left.294,3528, n, \frac{5}{12}\right)$ from Proposition 2.1 (v), to get a subfamily of higher rank:

$$
M_{2}(m)=T\left(210,294,3528, n, \frac{5}{12}\right)=210 n^{2}+187 n+\frac{275}{7}
$$

gives

$$
\begin{align*}
\left(\left(m^{2}-91\right)(420 n+187)\right)^{2}= & 53209 m^{4}-1809948 m^{3}+25059146 m^{2} \tag{3.1}\\
& -164705268 m+440623729
\end{align*}
$$

so (m, n) on (3.1) give six points listed in the claim of the corollary (where the fourth and fifth come from [5] and the last is from Proposition 2.1 (v)). The curve

$$
V^{2}=53209 U^{4}-1809948 U^{3}+25059146 U^{2}-164705268 U+440623729
$$

has a rational point $\left(\frac{71}{9}, \frac{346490}{81}\right)$, so it transforms into the elliptic curve

$$
Y^{2}=X^{3}-X^{2}-312055478905 X-66993477540839303 .
$$

of rank 1 generated by the point $\left(\frac{21246300582064}{12649337}, \frac{25760668421579637}{1264933}\right)$, which corresponds to $(m, n)=\left(\frac{819}{71},-\frac{3911}{4893}\right)$.

The specialization $(m, n) \mapsto\left(\frac{819}{71},-\frac{3911}{4893}\right)$ gives the elliptic curve

$$
E_{T\left(210,294,3528,-\frac{3911}{4893}, \frac{5}{12}\right)}=E_{M_{2}\left(\frac{819}{71}\right)}: Y^{2}=X^{3}-\left(\frac{1301974}{54289}\right)^{2} X+1
$$

with corresponding six independent points with first coordinates $0,-1$, $-\frac{1301974}{54289}, \frac{265691040}{9174841},-\frac{397026}{54289}, \frac{2226040}{54289}$. It proves that the six points from the claim of the corollary are independent.

Remark 3.2. Points (m, n) in the above corollary can be obtained by the transformation

$$
m=\frac{1730382402 X+2460079 Y+533615416078542}{50252248 X+311841 Y+13066029905888}
$$

where (X, Y) is a point on the curve

$$
Y^{2}=X^{3}-X^{2}-312055478905 X-66993477540839303
$$

This elliptic curve has rank 1 with generator $\left(\frac{21246300582064}{12649337}, \frac{25760668421579637}{1264933}\right)$ and torsion subgroup of order four generated by $(644929,0)$ and $(-312181,0)$. The value n can be obtained from (3.1).

4. Specializations with high rank

The highest rank found of the elliptic curve $E_{t}: Y^{2}=X^{3}-t^{2} X+1$ over \mathbb{Q} is ≥ 11 and is obtained for $t=\frac{23687}{3465}, \frac{86444}{833}, \frac{72269}{123}$. For example, for $t=\frac{72269}{123}$ we get the elliptic curve

$$
Y^{2}=X^{3}-\left(\frac{72269}{123}\right)^{2} X+1
$$

and eleven independent points

$$
\begin{aligned}
& \left(-1, \frac{72269}{123}\right),\left(-\frac{601}{123}, \frac{159743}{123}\right),\left(-\frac{793}{123}, \frac{61163}{41}\right),\left(-\frac{7025}{123}, \frac{543577}{123}\right), \\
& \left(\frac{72269}{123}, 1\right),\left(\frac{72515}{123}, \frac{144907}{123}\right),\left(\frac{1889}{3}, \frac{698807}{123}\right),\left(\frac{24568}{41}, \frac{354287}{123}\right) \\
& \left(\frac{226895}{369}, \frac{4977013}{1107}\right),\left(-\frac{1133}{5043}, \frac{57582829}{206763}\right),\left(-\frac{328949}{5043}, \frac{975094283}{206763}\right)
\end{aligned}
$$

The rank is actually equal 11 with the assumption of the Birch-Swinnerton-Dyer conjecture and the Generalized Riemann hypothesis. This was proved using the commands Roha which gives that the rank is odd and Mest which gives rank <12.85 (both in Apecs [2]), where the later uses the Birch-Swinnerton-Dyer conjecture and the Generalized Riemann hypothesis. The same holds for $t=\frac{86444}{833}, \frac{23687}{3465}$.

This curve is found using the sieve method ($[4,6,8]$) which states that one may expect that high rank curves have large Mestre-Nagao sum, which is given by the formula

$$
S(N, E)=\sum_{p \leq n, p \text { prime }} \frac{2-a_{p}}{p+1-a_{p}} \log (p),
$$

where $a_{p}=a_{p}(E)=p+1-\sharp E\left(\mathbb{F}_{p}\right)$. This expectation has been experimentally verified, and it is related to the Birch and Swinnerton-Dyer conjecture. Provided N is not too large, $S(N, E)$ can be calculated using Pari ([9]). Here we observed $t=\frac{t_{1}}{t_{2}}\left(1 \leq t_{2} \leq 10000,1 \leq t_{1} \leq 90000\right)$, and elliptic curves E_{t}
with $S\left(523, E_{t}\right)>23$ for which $S\left(1979, E_{t}\right) \geq 47$. The lower bound for the rank was calculated using the command Seek1 in Apecs [2]. We also observed integers $1 \leq t \leq 21819$, and elliptic curves E_{t} with $S\left(523, E_{t}\right)>23$ for which $S\left(1979, E_{t}\right) \geq 34$. Here is a list of values t we obtained for which the rank is ≥ 8 :

rank	t
≥ 8	$\frac{3665}{4374}, \frac{6355}{2809}, \frac{21507}{8125}, \frac{833}{10}, 3778,4972,5476,5846,5901,6569,7324$,
	$7609,8255,8617,8627,8951,9598,10804,12755,13143,14137$,
	$14358,14401,15052,17671,19406,19489,19744,21168$

\& \frac{34859}{2738}, \frac{59973}{3325}, \frac{39725}{1083}, \frac{29049}{224}, \frac{18907}{104}, \frac{48808}{75}, 11416,16228,20529\end{array}\right|\)| ≥ 10 | $\frac{317}{7000}, \frac{5443}{2662}, \frac{24733}{7680}, \frac{4951}{966}, \frac{3581}{416}, \frac{49049}{1632}, \frac{85717}{2625}, \frac{15121}{352}, \frac{56263}{950}, \frac{14179}{138}, \frac{10343}{65}$, |
| :--- | :--- |
| | $\frac{20798}{105}$ |

For the integer values t in the above table the exact value of the rank was calculated using mwrank and it is equal to the lower bound in the table.

In [5] the highest rank is obtained for $t=347,443$ and is equal 7 .
Acknowledgements.
I would especially like to thank professor Andrej Dujella for his guidance, help and discussions on the topic of this paper.

References

[1] A. Antoniewicz, On a family of elliptic curves, Univ. Iagel. Acta Math. 43 (2005), 21-32.
[2] I. Connell, APECS, ftp://ftp.math.mcgill.ca/pub/apecs/.
[3] A. Dujella, A. S. Janfada and S. Salami, A search for high rank congruent number elliptic curves, J. Integer Seq. 12 (2009), Article 09.5.8, 11pp.
[4] A. Dujella, On the Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42 (2007), 3-18.
[5] E. V. Eikenberg, Rational points on some families of elliptic curves, University of Maryland, 2004, PhD thesis.
[6] J.-F. Mestre, Construction d'une courbe elliptique de rang ≥ 12, C. R. Acad. Sci. Paris Sér. Math. I 295 (1982) 643-644.
[7] R. Miranda, An overview of algebraic surfaces, in: Algebraic geometry (Ankara,1995), Lecture Notes in Pure and Appl. Math. 193, Dekker, New York, 1997, 197-217.
[8] K. Nagao, An example of elliptic curve over Q with rank \geq 20, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
[9] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, The computer algebra system PARI - GP, Université Bordeaux I, 1999, http://pari.math.u-bordeaux.fr.
[10] N. F. Rogers, Elliptic curves $x^{3}+y^{3}=k$ with high rank, Harvard University, 2004, PhD thesis.
[11] T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240.
[12] J. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151, Springer-Verlag, New York, 1994.
P. Tadić

Martićeva 23, 10000 Zagreb
Croatia
E-mail: petra.tadic.zg@gmail.com
Received: 31.3.2011.
Revised: 10.5.2011.

[^0]: 2010 Mathematics Subject Classification. 11G05, 14H52.
 Key words and phrases. Elliptic surface, elliptic curve, parametrization, function field, rank, family of elliptic curves, torsion.

