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ON THE FAMILY OF ELLIPTIC CURVES Y 2 = X3 − T 2X + 1

Petra Tadić

University of Zagreb, Croatia

Abstract. Let E be the elliptic curve over Q(T ) given by the equation

E : Y 2 = X3
− T 2X + 1.

We prove that the torsion subgroup of the group E(C(T )) is trivial,
rankQ(T )(E) = 3 and rankC(T )(E) = 4. We find a parametrization of E of

rank at least four over the function field Q(a, i, s, n, k) where s2 = i3 −a2i.
From this we get a family of rank ≥ 5 over the field of rational functions
in two variables and a family of rank ≥ 6 over an elliptic curve of positive
rank. We also found particular elliptic curves with rank ≥ 11.

1. Introduction

Let E be the elliptic curve over Q(T ) given by the equation

Y 2 = X3 − T 2X + 1.

In [1, Theorem 3.11] it is proven that if t ≥ 2 is an integer, the elliptic
curve Et : Y

2 = X3 − t2X + 1 has rank at least 2 over Q, with independent
points (0, 1) and (−1, t). It is proven that the rank of Et is at least 3, for
integers t ≡ 0 (mod 4) and t = 7. Here the third independent point is (−t, 1).
Additionally, the torsion subgroup of Et(Q) is trivial, for all integer values
t ≥ 1.

In this paper we prove that the rank of the elliptic curve E over Q(T ) is
equal 3. We find the generators (0, 1), (−1, T ), (−T, 1) of the finitely generated
Abelian group E(Q(T )) and prove that its torsion subgroup is trivial. Since
the rank of E(Q(T )) is equal three, by the Silverman’s specialization theorem
[12, p. 271, Theorem 11.4] we obtain that rank Et(Q) ≥ 3, for all but finitely
many rational values t. We also compute the rank of E over C(T ) and find the
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generators. In addition we find parametrisations of E for which the generic
rank is ≥ 4, ≥ 5 and ≥ 6. We also search for particular high rank curves
in the family Et. We find several curves with rank ≥ 9 for integer values of
the parameter t, and several curves with rank ≥ 11 for rational values of the
parameter t.

2. The rational elliptic surface Y 2 = X3 − T 2X + 1

In this section we give results regarding the elliptic curve Y 2 = X3 −
T 2X + 1 over Q(T ). We will find the torsion subgroup, calculate the rank
over Q(T ) and C(T ), find the generators and find parametrizations of generic
rank ≥ 4 and ≥ 5.

Proposition 2.1. Let E be the elliptic curve over Q(T ) given by the
equation

E : Y 2 = X3 − T 2X + 1.

(i) The associated elliptic surface (denoted E) is rational.
(ii) rankC(T )E = 4,
(iii) The generators of the group E(C(T )) are the points

(0, 1), (−1, T ), (−T, 1),

(

1 +
√
−3

2
,
1−

√
−3

2
T

)

,

and the torsion subgroup of E(C(T )) is trivial.
(iv) rankQ(T )E = 3, the generators over Q(T ) are

(0, 1), (−1, T ), (−T, 1),

and the torsion subgroup of E(Q(T )) is trivial.
(v) For

T (a, i, s, n, k) = an2 +
(

2ak +
s

i

)

n+ ak2 +
s

i
· k +

a3 − 2ai2

i3 − a2i

the elliptic curve Y 2 = X3 − T (a, i, s, n, k)2X + 1 over the function
field Q(a, i, s, n, k) where s2 = i3 − a2i, has rank ≥ 4, with an extra
independent point with the first coordinate

XC(a, i, s, n, k) = i(n+ k)2 +
i2

a2 − i2
.

Proof of Proposition 2.1. The elliptic curve E over Q(T ) is written
in short Weierstrass form

E : Y 2 = X3 +A(T )X +B(T ),
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where we have

A(T ) = −T 2,

B(T ) = 1,

∆(T ) = 16(4T 6 − 27),

here ∆ is the discriminant.
(i) Since deg(A) = 2 and deg(B) = 0, from [11, Equation 10.14] we find

that the associated elliptic surface E is rational.
(ii) For the proof we will use Shioda’s formula. Since from (i) we know

that the associated elliptic surface E is rational, by [11, Lemma 10.1] we find
that the rank of the Néron-Severi group (denoted NS(E ,C)) of E over C is
equal 10. From the discriminant ∆(T ), we see that the singular fibres are at
ϕ1, . . . , ϕ6 and ∞, where the ϕi are the roots of the equation 4T 6 − 27 = 0.
We determine the numbers ms (of irreducible components of the fibre over s)
from Kodaira types of singular fibres [7, Section 4]:

coefficients
s ordT=s(A) ordT=s(B) ordT=s(∆) Kodaira type ms − 1

ϕi 0 0 1 I1 0
∞ 2 6 6 I∗0 4

Now we compute rankC(T )(E) using Shioda’s formula [11, Corollary 5.3]

rankC(T )E = rankNS(E ,C)− 2−
∑

s

(ms − 1) = 10− 2− 6 · 0− 4 = 4.

(iii) The group E(C(T )) is generated, by [11, Theorem 10.10], with the
points of the form (a2T

2 + a1T + a0, b3T
3 + b2T

2 + b1T + b0), ai, bi ∈ C. We
list all such points

(0,±1) =: ±P,

(−1,±T ) =: ±Q,

(−T,±1) =: ±R,

(T,±1) = ∓P ∓R,

(T + 2,±2T ± 3) = ∓Q∓R,

(−T + 2,±2T ∓ 3) = ∓P ∓Q∓R,

(T 2 − 1,±T 3 ∓ 2T ) = ±P ±Q ± 2R,

(T 2 + 2T + 2,±T 3 ± 3T 2 ± 4T ± 3) = ∓P ±Q,

(T 2 − 2T + 2,±T 3 ∓ 3T 2 ± 4T ∓ 3) = ±P ±Q,
(

1 +
√
−3

2
,±1−

√
−3

2
T

)

=: ±S,
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(

1−
√
−3

2
,±1 +

√
−3

2
T

)

= ±P ±Q± 2R∓ S,

(

T − 1−
√
−3,±(1−

√
−3)T ∓ 3

)

= ±R∓ S,
(

T − 1 +
√
−3,±(1 +

√
−3)T ∓ 3

)

= ∓P ∓Q∓R± S,
(

−T − 1−
√
−3,±(1−

√
−3)T ± 3

)

= ±P ±R ∓ S,
(

−T − 1 +
√
−3,±(1 +

√
−3)T ± 3

)

= ∓Q∓R± S,
(

−1

3
T 2 − 1,±

√
−3

9
T 3

)

= ±P ±Q± 2R∓ 2S,

(

1

6
(1 +

√
−3)T 2 +

1

2
(1−

√
−3),±

√
−3

9
T 3

)

= ±Q± S,

(

1

6
(1−

√
−3)T 2 +

1

2
(1 +

√
−3),±

√
−3

9
T 3

)

= ±P ± 2Q± 2R∓ S,

(

−1

2
(1−

√
−3)T 2 +

1

2
(1 +

√
−3),±T 3 ± (1−

√
−3)T

)

= ±P ± 2R∓ S,

(

−1

2
(1 +

√
−3)T 2 +

1

2
(1−

√
−3),±T 3 ± (1 +

√
−3)T

)

= ∓Q± S,

(

-
1

2
(1-

√
-3)T 2+2T -(1+

√
-3),±T 3 ∓ 3

2
(1+

√
-3)T 2 ∓ 2(1-

√
−3)T ± 3

)

= ∓P ∓ S,
(

-
1

2
(1-

√
-3)T 2-2T -(1+

√
-3),±T 3 ± 3

2
(1+

√
-3)T 2 ∓ 2(1-

√
-3)T ∓ 3

)

= ±P ∓ S,
(

-
1

2
(1+

√
-3)T 2+2T -(1-

√
-3),±(T 3-

3

2
(1-

√
-3)T 2-2(1+

√
-3)T+3)

)

= ∓2P ∓Q∓ 2R± S,
(

-
1

2
(1+

√
-3)T 2-2T -(1-

√
-3),±T 3 ± 3

2
(1-

√
-3)T 2 ∓ 2(1+

√
-3)T ∓ 3

)

= ∓Q∓ 2R± S.

We see that all of the listed points which generate E(C(T )) can be written
as a combination of the four points P , Q, R, S, so the points P , Q, R, S
generate the group E(C(T )). From (ii) we conclude that P , Q, R, S are
independent points of infinite order that generate the group E(C(T )), and
the torsion subgroup E(C(T ))Tors is trivial.

(iv) Since the torsion subgroup of E(C(T )) is trivial, we conclude that
the torsion subgroup of E(Q(T )) is trivial.

We have to prove that the generators of the group E(Q(T )) are the three
independent points P , Q, R ∈ E(Q(T )) in (iii). So we have to prove that these
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three points generate the subgroup E(Q(T )) of the group E(C(T )), where
the later is generated by the four points P , Q, R, S in (iii). It is obvious
that the point S ∈ E(C(T ))\E(Q(T )) will not give a point of the group
E(Q(T )), by the action of the Galois group Gal(Q(

√
−3)/Q) and using that

the torsion subgroup of E(C(T )) is trivial. Precisely, since aP+bQ+cR+dS ∈
E(Q(T )) (a, b, c, d ∈ Z), would mean 0 = (aP + bQ+ cR+ dS)σ − (aP + bQ+
cR+dS) = dSσ−dS = d(Sσ−S) for all σ ∈ Gal(Q(

√
−3, T )/Q(T )). Since the

torsion subgroup is trivial and S =
(

1+
√
−3

2 , 1−
√
−3

2 T
)

, this would give d = 0.

Thus, it would mean that if d ∈ Z\{0}, then aP + bQ+ cR+ dS 6∈ E(Q(T )).
So we conclude that the points P,Q,R generate the subgroup E(Q(T )) of the
group E(C(T )).

(v) We look for parameters T of the form an2 + bn + c (a, b, c ∈ Q) for
which the curve

Y 2 = X3 − T 2X + 1

has a point of the form (i2n
2 + i1n+ i0, j3n

3 + j2n
2 + j1n+ j0), for i0, i1, i2,

j0, j1, j2, j3 ∈ Q. In other words we search for a, b, c, i0, i1, i2 for which the
polynomial

(i2n
2 + i1n+ i0)

3 − (an2 + bn+ c)2(i2n
2 + i1n+ i0) + 1

is a square in the field Q(n). Such an observation leads to the listed subfamily.
We have

YC(a, i, s, n, k) = sn3 + (3sk − a)n2

+
3ik2s2 − a2i− 2aisk − 2s2

is
n

+
ai2+a2sk − 2i2sk − as2k2+s3k3

i(i2 − a2)
.

And we have

XC(a, i, s, n, k)
3 − T (a, i, s, n, k)2XC(a, i, s, n, k) + 1− YC(a, i, s, n, k)

2

= (−s2 − a2i+ i3)q(a, i, s, n, k) = 0,

where q ∈ Q(a, i, s, n, k). This proves that the listed point is on the elliptic
curve Y 2 = X3 − T (a, i, s, n, k)2 + 1 over Q(a, i, s, n, k) where s2 = i3 − a2i.

For the specialization (a, i, s, n, k) 7→ (6,−3, 9, 1, 1) we have that on the
curve ET (6,−3,9,1,1) : Y 2 = X3 − (583 )2X + 1 over Q the four corresponding

points (0, 1), (−1, 583 ), (− 58
3 , 1), (− 35

3 ,
158
3 ) are independent, this shows that

the points from the claim of the proposition are independent since the
specialization map is a homomorphism.

Remark 2.2. • Most of the technical claims in (i)-(iv) from the
above proposition can be extracted from [5], but for the sake of
completeness we have given proofs here.
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• From Proposition 2.1 (iv) and the Silverman’s specialization theorem
[12, p. 271,Theorem 11.4] the rank of Et(Q) ≥ 3, for all but finitely
many rational values t.

From the subfamily in Proposition 2.1 (v) we get subfamilies of rank ≥ 5.
We write the family in Proposition 2.1 (v) as

T (a, i, s, n, k) = a
(

n+ k +
s

2ai

)2

+
8a2i3 − 4a4i− a2s2 + i2s2

4ai2(a2 − i2)
.

Now we look at the solution of

T (a, i, s, n, k) = T (a, i2, s2, n2, k2),

where

i2 =
a(i+ a)

i− a
, s2 = 2

a2s

(i− a)2
.

Actually, (i2, s2) = (i,−s) + (a, 0) on the curve Y 2 = X3 − a2X over Q(a).
So we look for solutions of

a
(

n+ k +
s

2ai

)2

+
8a2i3 − 4a4i− a2s2 + i2s2

4ai2(a2 − i2)

= a

(

n2 + k2 +
s2
2ai2

)2

+
8a2i32 − 4a4i2 − a2s22 + i22s

2
2

4ai22(a
2 − i22)

,

more precisely

(

n+ k +
s

2ai

)2

−
(

n2 + k2 +
s2
2ai2

)2

=
1

a

(

8a2i32 − 4a4i2 − a2s22 + i22s
2
2

4ai22(a
2 − i22)

− 8a2i3 − 4a4i− a2s2 + i2s2

4ai2(a2 − i2)

)

.

This leads to the solution of the equation A2 −B2 = p, which is

(A,B) =

(

1

2

u2p− 2up+ 2u+ u2 + p+ 1

u2 − 1
,−1

2

u2p− u2 − 2up− 2u+ p− 1

(u2 − 1)

)

,

where on the other hand A = n + k + s
2ai and B = n2 + k2 +

s2
2ai2

(coming

from the squares in T (a, i, s, n, k) and T (a, i2, s2, n2, k2) respectively), and p
is as below.

Proposition 2.3. Let

T (a, i, s, u) = a

(

1

2

u2p− 2up+ 2u+ u2 + p+ 1

u2 − 1

)2

+
8a2i3 − 4a4i− a2s2 + i2s2

4ai2(a2 − i2)
,

where

i2(a, i) =
a(i+ a)

i− a
, s2(a, i, s) = 2

a2s

(i− a)2
,
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p(a, i, s, u) =

1

4a

(

8a2i32 − 4a4i2 − a2s22 + i22s
2
2

ai22(a
2 − i22)

− 8a2i3 − 4a4i− a2s2 + i2s2

ai2(a2 − i2)

)

=
1

4

(a2 + 2ai− i2)(i5 + 6ai4 − 6a2i3 − i2s2 − 6i2a3 + 5a4i− 2ias2 + a2s2)

a2i2(a2 − i2)2
.

The elliptic curve Y 2 = X3 − T (a, i, s, u)2X + 1 over the function field
Q(a, i, s, u) where s2 = i3−a2i has rank ≥ 5 with five independent points: the
three generators (0, 1), (−1, T ), (−T, 1) provided in Proposition 2.1 (iv) and
two additional points C(a, i, s, u) and D(a, i, s, u) (notion from Proposition
2.1 (v)) where the first coordinates are

XC(a, i, s, u) =
i

4

(

u2p− 2up+ 2u+ u2 + p+ 1

u2 − 1
− s

ia

)2

+
i2

a2 − i2
,

XD(a, i, s, u) =
a(i+ a)

i− a

(

1

2

u2p− u2 − 2up− 2u+ p− 1

u2 − 1
+

s

i2 − a2

)2

− (i + a)2

4ai
.

Proof of Proposition 2.3. For the second coordinate of C and D
we can take the second coordinate from the proof of Proposition 2.1 (v),
specifically Y (a, i, s, 0, A − s

2ai) and Y (a, i2, s2, 0, B − s
i2−a2 ), respectively.

With the specialisation (a, i, s, u) 7→ (6,−2, 8, 3) we prove that the above
listed five points on the elliptic curve (over Q(a, i, s, u) where s2 = i3 − a2i)
are independent, since the specialization gives the elliptic curve

ET (6,−2,8,3) : Y
2 = X3 −

(

239

32

)2

X + 1

with the corresponding five independent points (0, 1), (−1, 239
32 ), (− 239

32 , 1),

(− 925
288 ,

20953
1728 ), (− 299

64 ,
6469
512 ).

Remark 2.4. The variety

s2 = i3 − a2i

from Proposition 2.1 (v) can be considered as an elliptic curve over the field
Q(a). In fact, it is the well-known ”congruent number” elliptic curve. The
torsion subgroup of this elliptic curve is equal {O, (0, 0), (a, 0), (−a, 0)}.
Nontrivial points on this variety s2 = i3 − a2i can easily be obtained,
for example (a, i, s) = (6,−2, 8) is a point on the variety. We also have
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parametrisations of this variety (see e.g. [3]), for example:






a(t) = t(t2 − 1),
i(t) = −t2 + 1,
s(t) = (t2 − 1)2,

.

For this parametrization we get that Proposition 2.1 (v) and Proposition 2.3
transform into:

Corollary 2.5. (i) Let

T (t, n, k) = (t3 − t)n2 + (t2 − 1)(2tk− 1)n+(t3 − t)k2 − (t2 − 1)k+
(t3 − 2t)

(t2 − 1)
,

and

XC(t, n, k) = −(t2 − 1)n2 − 2(t2 − 1)kn− (t2 − 1)k2 +
1

t2 − 1
.

The elliptic curve

Y 2 = X3 − T (t, n, k)2X + 1

over Q(t, n, k) has rank ≥ 4 with four independent points with first
coordinates 0,−1,−T (t, n, k), XC(t, n, k).

(ii) Let
T (t, u) = ((t8 − 2t7 + 4t5 − 3t4 − 2t3 − 2t2 + 8t)u4 +(4t8 − 8t7 − 4t6 +
16t5−8t4+8t3−4t2−16t−4)u3 +(6t8−12t7−8t6+24t5+6t4−44t3+
28t2 +16t+8)u2 +(4t8 − 8t7 − 4t6 +16t5 − 8t4 +8t3 − 4t2 − 16t− 4)u
+t8 − 2t7 + 4t5 − 3t4 − 2t3 − 2t2 + 8t)/(4t(u2 − 1)2(t+ 1)(t− 1)3),
and
XC(t, u) = −((t4−5t2+4t+2)u2+(2t4−2t3−2t−2)u+ t4−2t3+ t2+
2t)((t4− t2+2)u2+(2t4−2t3−2t−2)u+ t4−2t3−3t2+6t)/(4t2(u2−
1)2(t+ 1)(t− 1)3),
XD(t, u) = −((t4 − 2t3 +3t2 − 2t− 2)u2 +(2t4 − 2t3 − 4t2 +6t+2)u+
t4 − 3t2)((t4 + t2 − 4t)u2 + (2t4 − 2t3 − 4t2 +6t+ 2)u+ t4 − 2t3 − t2 +
2t− 2)/(4t(u2 − 1)2(t2 − 1)2).
The elliptic curve

Y 2 = X3 − T (t, u)2X + 1

over Q(t, u) has rank ≥ 5 with five independent points with first
coordinates 0, −1, −T (t, u), XC(t, u), XD(t, u).

Proof of Corollary 2.5. (i) For the specialization (t, n, k) 7→ (2, 1, 1)

the elliptic curve ET (2,1,1) : Y 2 = X3 −
(

58
3

)2
X + 1 is a curve over Q for

which the four listed points are (0, 1), (−1, 58
3 ), (− 58

3 , 1), (− 35
3 ,

158
3 ) and are

independent. This proves that for the elliptic curve Y 2 = X3−T (t, n, k)2X+1
over Q(t, n, k) the four points from the claim of the corollary are independent.
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(ii) The specialization (t, u) 7→ (2, 2) gives the elliptic curve ET (2,2) : Y
2 =

X3 −
(

404
27

)2
X + 1 over Q for which the five listed points (0, 1), (−1, 40427 ),

(− 404
27 , 1), (− 247

27 ,
2902
81 ), (− 518

81 ,
24949
729 ) are independent. This proves that for

the elliptic curve Y 2 = X3 − T (t, u)2X + 1 over Q(t, u) the five points from
the claim of the corollary are independent.

3. A subfamily of higher rank

• In [5], rational functions

M1(m) =
2

75
m2 +m+ 8,

M2(m) =
1830m4 − 64641m3 + 907768m2 − 5882331m+ 15154230

30(m2 − 91)2
,

are given such that the rank of EM(m) over Q(m) is ≥ 4 and ≥ 5,
respectively.

• The first rational function M1(m) is equal T
(

6, 18, 72,m,− 16
15m− 19

12

)

from Proposition 2.1 (v) and the fourth listed point ( 4
75m

2 + 8
5m +

12, 4
375m

3 + 34
75m

2 + 32
5 m + 31) from [5, Propositon 5.2.1.] is equal

−(0, 1)− (−T, 1)− ( 2
25m

2 + 19
5 m+ 44, 1

375 (8m
3 + 580m2 + 13800m+

107625)), where the last point is the fourth independent point from
Proposition 2.1 (v).

• The second rational function M2(m) is equal

T

(

120, 180, 1800,
1

60

16m2 − 743m+ 6461

m2 − 91
,
5

12

)

and it has two extra points R4 with first coordinate

1

2

130m4 − 4785m3 + 70188m2 − 469539m+ 1222158

(m2 − 91)2

and R5 with first coordinate

− 1

150

(57m2 − 743m+ 2730)(42m2 − 743m+ 4095)

(m2 − 91)2
.

The fifth point R5 in [5] is equal (0, 1) + (−1, T )+ (−T, 1)−C, where
C is the fourth independent point from Proposition 2.1 (v).

• In [5] an elliptic surface over a curve is found for which the Mordell-
Weil group has rank ≥ 6. Here we give a new example of an infinite
family of curves with rank ≥ 6.

Corollary 3.1. The elliptic curve given by the equation

Y 2 = X3 −
(

210n2 + 187n+
275

7

)2

X + 1



90 P. TADIĆ

over the function field Q(m,n) where

(

(m2 − 91)(420n+ 187)
)2

= 53209m4 − 1809948m3 + 25059146m2

−164705268m+ 440623729,

has rank at least six with six independent points with first coordinates 0,−1,

−
(

210n2 + 187n+
275

7

)

,

1

2

130m4 − 4785m3 + 70188m2 − 469539m+ 1222158

(m2 − 91)2
,

− 1

150

(57m2 − 743m+ 2730)(42m2 − 743m+ 4095)

(m2 − 91)2
, 294n2 + 245n+ 49.

Proof of Corollary 3.1. Here we will intersect M2(m) with T (210,
294, 3528, n, 5

12 ) from Proposition 2.1 (v), to get a subfamily of higher rank:

M2(m) = T

(

210, 294, 3528, n,
5

12

)

= 210n2 + 187n+
275

7

gives

(3.1)

(

(m2 − 91)(420n+ 187)
)2

= 53209m4 − 1809948m3 + 25059146m2

− 164705268m+ 440623729,

so (m,n) on (3.1) give six points listed in the claim of the corollary (where
the fourth and fifth come from [5] and the last is from Proposition 2.1 (v)).
The curve

V 2 = 53209U4 − 1809948U3 + 25059146U2 − 164705268U + 440623729

has a rational point (719 , 346490
81 ), so it transforms into the elliptic curve

Y 2 = X3 −X2 − 312055478905X− 66993477540839303.

of rank 1 generated by the point
(

21246300582064
12649337 , 25760668421579637

1264933

)

, which

corresponds to (m,n) = (81971 ,− 3911
4893 ).

The specialization (m,n) 7→
(

819
71 ,− 3911

4893

)

gives the elliptic curve

ET (210,294,3528,− 3911

4893
, 5

12
) = EM2(

819

71
) : Y

2 = X3 −
(

1301974

54289

)2

X + 1

with corresponding six independent points with first coordinates 0, −1,
− 1301974

54289 , 265691040
9174841 , − 397026

54289 , 2226040
54289 . It proves that the six points from the

claim of the corollary are independent.
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Remark 3.2. Points (m,n) in the above corollary can be obtained by the
transformation

m =
1730382402X + 2460079Y + 533615416078542

50252248X + 311841Y + 13066029905888
,

where (X,Y ) is a point on the curve

Y 2 = X3 −X2 − 312055478905X− 66993477540839303.

This elliptic curve has rank 1 with generator
(

21246300582064
12649337 , 25760668421579637

1264933

)

and torsion subgroup of order four generated by (644929, 0) and (−312181, 0).
The value n can be obtained from (3.1).

4. Specializations with high rank

The highest rank found of the elliptic curve Et : Y 2 = X3 − t2X + 1
over Q is ≥ 11 and is obtained for t = 23687

3465 ,
86444
833 , 72269

123 . For example, for

t = 72269
123 we get the elliptic curve

Y 2 = X3 −
(

72269

123

)2

X + 1

and eleven independent points
(

−1,
72269

123

)

,

(

−601

123
,
159743

123

)

,

(

−793

123
,
61163

41

)

,

(

−7025

123
,
543577

123

)

,

(

72269

123
, 1

)

,

(

72515

123
,
144907

123

)

,

(

1889

3
,
698807

123

)

,

(

24568

41
,
354287

123

)

,

(

226895

369
,
4977013

1107

)

,

(

−1133

5043
,
57582829

206763

)

,

(

−328949

5043
,
975094283

206763

)

.

The rank is actually equal 11 with the assumption of the Birch-
Swinnerton-Dyer conjecture and the Generalized Riemann hypothesis. This
was proved using the commands Roha which gives that the rank is odd and
Mest which gives rank < 12.85 (both in Apecs [2]), where the later uses the
Birch-Swinnerton-Dyer conjecture and the Generalized Riemann hypothesis.
The same holds for t = 86444

833 , 23687
3465 .

This curve is found using the sieve method ([4, 6, 8]) which states that
one may expect that high rank curves have large Mestre-Nagao sum, which is
given by the formula

S(N,E) =
∑

p≤n,p prime

2− ap
p+ 1− ap

log(p),

where ap = ap(E) = p+1−♯E(Fp). This expectation has been experimentally
verified, and it is related to the Birch and Swinnerton-Dyer conjecture.
Provided N is not too large, S(N,E) can be calculated using Pari ([9]). Here
we observed t = t1

t2
(1 ≤ t2 ≤ 10000, 1 ≤ t1 ≤ 90000), and elliptic curves Et
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with S(523, Et) > 23 for which S(1979, Et) ≥ 47. The lower bound for the
rank was calculated using the command Seek1 in Apecs [2]. We also observed
integers 1 ≤ t ≤ 21819, and elliptic curves Et with S(523, Et) > 23 for which
S(1979, Et) ≥ 34. Here is a list of values t we obtained for which the rank is
≥ 8:

rank t

≥ 8 3665
4374 ,

6355
2809 ,

21507
8125 , 833

10 , 3778, 4972, 5476, 5846, 5901, 6569, 7324,
7609, 8255, 8617, 8627, 8951, 9598, 10804, 12755, 13143, 14137,
14358, 14401, 15052, 17671, 19406, 19489, 19744, 21168

≥ 9 1663
5547 ,

1187
1800 ,

1609
1330 ,

3317
2523 ,

2647
1920 ,

4639
3362 ,

3104
1445 ,

9127
2625 ,

28793
7920 , 12589

2873 , 33233
7098 ,

34859
2738 , 59973

3325 , 39725
1083 , 29049

224 , 18907
104 , 48808

75 , 11416, 16228, 20529

≥ 10 317
7000 ,

5443
2662 ,

24733
7680 , 4951

966 ,
3581
416 ,

49049
1632 , 85717

2625 , 15121
352 , 56263

950 , 14179
138 , 10343

65 ,
20798
105

≥ 11 23687
3465 , 86444

833 , 72269
123

For the integer values t in the above table the exact value of the rank was
calculated using mwrank and it is equal to the lower bound in the table.

In [5] the highest rank is obtained for t = 347, 443 and is equal 7.
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