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Abstract. In this paper functional equations related to derivations
on semiprime rings and standard operator algebras are investigated. We
prove, for example, the following result, which is related to a classical

result of Chernoff. Let X be a real or complex Banach space, let L(X)
be the algebra of all bounded linear operators of X into itself and let
A(X) ⊂ L(X) be a standard operator algebra. Suppose there exist
linear mappings D,G : A(X) → L(X) satisfying the relations D(A3) =
D(A2)A+A2G(A), G(A3) = G(A2)A+A2D(A) for all A ∈ A(X). In this
case there exists B ∈ L(X) such that D(A) = G(A) = [A,B] holds for all
A ∈ A(X).

Throughout, R will represent an associative ring with center Z(R). As
usual we write [x, y] for xy − yx. Given an integer n ≥ 2, a ring R is said
to be n−torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a
ring R is prime, if for a, b ∈ R, aRb = (0) implies a = 0 or b = 0, and is
semiprime in case aRa = (0) implies a = 0. We denote by Qs the symmetric
Martindale ring of quotients. For the explanation of Qs we refer the reader
to [2]. Let A be an algebra over the real or complex field and let B be a
subalgebra of A. A linear mapping D : B → A is called a linear derivation
in case D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R. In case we
have a ring R, an additive mapping D : R → R is called a derivation, if
D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R and is called a Jordan
derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all x ∈ R. A
derivation D is inner in case there exists a ∈ R such that D(x) = [x, a] holds
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for all x ∈ R. Every derivation is a Jordan derivation. The converse is in
general not true. A classical result of Herstein ([9]) asserts that any Jordan
derivation on a 2−torsion free prime ring is a derivation. A brief proof of
Herstein’s result can be found in [5]. Cusack ([8]) generalized Herstein’s result
to 2−torsion free semiprime rings (see also [3] for an alternative proof). For
results in the spirit of Herstein’s theorem we refer to [1,6,10,11]. An additive
mapping D : R → R, where R is an arbitrary ring, is called a Jordan triple
derivation in case D(xyx) = D(x)yx + xD(y)x + xyD(x) holds for all pairs
x, y ∈ R. One can easily prove that any Jordan derivation D on an arbitrary
2−torsion free ring R is a Jordan triple derivation (see, for example, [5]).
Let X be a real or complex Banach space and let L(X) and F (X) denote
the algebra of all bounded linear operators on X and the ideal of all finite
rank operators in L(X), respectively. An algebra A(X) ⊂ L(X) is said to be
standard in case F (X) ⊂ A(X). Let us point out that any standard operator
algebra is prime, which is a consequence of Hahn-Banach theorem.

Brešar ([4]) has proved the following result.

Theorem 1. Let R be a 2−torsion free semiprime ring and let D : R → R

be a Jordan triple derivation. In this case D is a derivation.

Motivated by Theorem 1, Vukman, Kosi-Ulbl and Eremita ([16]) have
proved the following result.

Theorem 2. Let R be a 2-torsion free semiprime ring. Suppose there

exists an additive mapping T : R → R such that

T (xyx) = T (x)yx− xT (y)x+ xyT (x)

for all x, y ∈ R. Then there exists q ∈ Qs such that 2T (x) = qx + xq for all

x ∈ R.

In the same article, Vukman, Kosi-Ulbl and Eremita proved the result
below, which is an immediate consequence of Theorem 1 and Theorem 2.

Corollary 3. Let R be a 2−torsion free semiprime ring. If D,G : R →

R are additive mappings such that

D(xyx) = D(x)yx− xG(y)x + xyD(x),

G(xyx) = G(x)yx − xD(y)x+ xyG(x)

for all x ∈ R, then there exists a derivation S : R → R and q ∈ Qs such that

4D(x) = qx+ xq + S(x),

4G(x) = qx+ xq − S(x)

for all x ∈ R.

Theorem 1 also motivated Vukman ([20]), who has recently proved the
following result.
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Theorem 4. Let R be a 2−torsion free semiprime ring and let D : R → R

be an additive mapping. Suppose that either

D(xyx) = D(xy)x + xyD(x)

or

D(xyx) = D(x)yx + xD(yx)

holds for all pairs x, y ∈ R. In both cases D is a derivation.

It is our aim in this paper to generalize Theorem 4, but first we will prove
the following theorem, which is conceptually linked with Theorem 2.

Theorem 5. Let R be a 2−torsion free semiprime ring and let T : R → R

be an additive mapping. Suppose that either

(1) T (xyx) = T (xy)x− xyT (x)

or

(2) T (xyx) = T (x)yx− xT (yx)

holds for all pairs x, y ∈ R. In both cases T = 0.

Proof. We will restrict our attention on the relation (1), the proof in
case we have the relation (2) is similar and will therefore be omitted.

Linearization of the relation (1) gives

T (xyz + zyx) = T (xy)z + T (zy)x− xyT (z)− zyT (x), x, y, z ∈ R

and in particular for z = x2

(3) T (xyx2 + x2yx) = T (xy)x2 + T (x2y)x− xyT (x2)− x2yT (x), x, y ∈ R.

Putting xy + yx for y in (1) and applying the relation (1) we obtain

T (xyx2 + x2yx) = T (x2y + xyx)x − x2yT (x)− xyxT (x)

= T (x2y)x+ T (xy)x2
− xyT (x)x− x2yT (x)− xyxT (x), x, y ∈ R.

We have therefore
(4)
T (xyx2+x2yx) = T (x2y)x+T (xy)x2

−xyT (x)x−x2yT (x)−xyxT (x), x, y ∈ R.

By comparing (3) and (4) we obtain

(5) xyA(x) = 0, x, y ∈ R,

where A(x) = T (x2) − T (x)x − xT (x). Right multiplication of the above
relation by x and left multiplication by A(x) gives A(x)xyA(x)x = 0 for all
pairs x, y ∈ R, whence it follows

(6) A(x)x = 0, x ∈ R

by semiprimeness of R. The substitution A(x)yx for y in the relation (5) gives
xA(x)yxA(x) = 0 for all pairs x, y ∈ R, which gives

(7) xA(x) = 0, x ∈ R.
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The linearization of the relation (6) gives

B(x, y)x +A(x)y +B(y, x)y +A(y)x = 0

for all pairs x, y ∈ R, where B(x, y) denotes T (xy + yx) − T (x)y − xT (y) −
T (y)x − yT (x). Putting in the above relation −x for x and comparing the
relation so obtained with the above relation, one obtains

B(x, y)x+A(x)y = 0.

Right multiplication of the above relation by A(x) gives, because of the
relation (7), A(x)yA(x) = 0 for all pairs x, y ∈ R, whence it follows A(x) = 0
for all x ∈ R. In other words, T is a Jordan derivation. By Cusack’s
generalization of Herstein’s theorem T is a derivation. From the relation
(1) we obtain T (x)yx+xT (y)x+xyT (x) = T (x)yx+xT (y)x−xyT (x), which
reduces to

(8) xyT (x) = 0, x, y ∈ R.

From the relation (8) one obtains

(9) T (x)x = 0, x ∈ R

and

(10) xT (x) = 0, x ∈ R,

(see how the relations (6) and (7) were obtained from the relation (5)). The
linearization of the relation (9) gives

T (y)x+ T (x)y = 0, x, y ∈ R.

Right multiplication of the above relation by T (x) gives because of the relation
(10) T (x)yT (x) = 0 for all pairs x, y ∈ R, which gives T = 0.

We proceed with the following corollary, which is a generalization of
Theorem 4.

Corollary 6. Let R be a 2−torsion free semiprime ring and let D;G :
R → R be additive mappings satisfying either the relations

(11)
D(xyx) = D(xy)x + xyG(x),

G(xyx) = G(xy)x + xyD(x)

or the relations

(12)
D(xyx) = D(x)yx + xG(yx),

G(xyx) = G(x)yx + xD(yx)

for all pairs x, y ∈ R. In both cases D and G are derivations and D = G.
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Proof. We will restrict our attention on the relations (11), the proof in
case we have the relations (12) is similar and will therefore be omitted. We
have therefore the relations

D(xyx) = D(xy)x+ xyG(x), x, y ∈ R,(13)

G(xyx) = G(xy)x+ xyD(x), x, y ∈ R.(14)

Subtracting the relation (14) from the relation (13) one obtains

(15) T (xyx) = T (xy)x− xyT (x), x, y ∈ R,

where T (x) denotes D(x) −G(x). Applying Theorem 5 gives D = G, which
reduces the relation (13) to

D(xyx) = D(xy)x+ xyD(x), x, y ∈ R.

Now, it follows from Theorem 4 that D is a derivation, which completes the
proof.

We proceed with the following conjecture.

Conjecture 7. Let R be a semiprime ring with suitable torsion restricti-

ons and let D,G : R → R be additive mappings satisfying either the relations

D(x3) = D(x2)x+ x2G(x),

G(x3) = G(x2)x + x2D(x)

or the relations

D(x3) = D(x)x2 + xG(x2),

G(x3) = G(x)x2 + xD(x2)

for all x ∈ R. In both cases D an G are derivations and D = G.

Our next result is related to the conjecture above.

Theorem 8. Let X be a real or complex Banach space and let A(X)
be a standard operator algebra on X. Suppose there exist linear mappings

D,G : A(X) → L(X) satisfying either the relations

(16)
D(A3) = D(A2)A+A2G(A),

G(A3) = G(A2)A+A2D(A)

or the relations

(17)
D(A3) = D(A)A2 +AG(A2),

G(A3) = G(A)A2 +AD(A2)

for all A ∈ A(X). In both cases there exists some fixed B ∈ L(X), such that

D(A) = G(A) = [A,B] holds for all A ∈ A(X), which means that D and G

are linear derivations.



100 N. ŠIROVNIK

Theorem 8 is related to the result below first proved by Chernoff ([7]) (see
also [12–14,17–19]).

Theorem 9. Let X be a real or complex Banach space, let A(X) be

a standard operator algebra on X and let D : A(X) → L(X) be a linear

derivation. In this case D is of the form D(A) = [A,B] for all A ∈ A(X) and
some fixed B ∈ L(X).

In the proof of Theorem 8 we use Herstein’s theorem, Theorem 9, Lemma
10 and methods which are similar to those used in [17 - 20].

Lemma 10. Let R be a semiprime ring and let f : R → R be an additive

mapping. If either

f(x)x = 0

or

xf(x) = 0

holds for all x ∈ R, then f = 0.

For the proof of Lemma 10 we refer to [15].

Proof of Theorem 8. We will focus our attention to the relations (16).
The proof in case we have the relations (17) is similar and will therefore be
omitted. We have therefore the relations

D(A3) = D(A2)A+A2G(A),(18)

G(A3) = G(A2)A+A2D(A)(19)

for all A ∈ A(X). Subtracting the relation (19) from the relation (18), we
obtain

(20) T (A3) = T (A2)A−A2T (A)

for all A ∈ A(X), where T (A) denotes D(A) − G(A). It is our aim to show
that T (A) = 0 for all A ∈ A(X). Let us first consider the restriction of T on
F (X). Let A be from F (X) and P ∈ F (X) a projection with AP = PA = A.
Putting P for A in relation (20), we obtain

(21) T (P ) = T (P )P − PT (P ).

Right multiplication of the relation (21) by P gives

(22) PT (P )P = 0.

Left multiplication of the relation (21) by P gives because of (22)

(23) PT (P ) = 0.

Putting A+ P for A in the relation (20), we obtain after some calculations

3T (A2) + 3T (A) = T (A2)P + 2T (A)A+ 2T (A)P + T (P )A

−A2T (P )− 2AT (A)− 2AT (P )− PT (A).
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Putting −A for A in the above relation and comparing the relation so obtained
with the above relation, we obtain

3T (A) = 2T (A)P + T (P )A− 2AT (P )− PT (A).

Left multiplication of the relation (23) by A and considering A = AP gives
AT (P ) = APT (P ) = 0, which reduces the relation above to

(24) 3T (A) = 2T (A)P + T (P )A− PT (A).

Multiplying the relation (24) from both sides by P and considering (23), we
obtain

(25) PT (A)P = 0.

Left multiplication of the relation (24) by P and considering both (23) and
(25) leads us to

(26) PT (A) = 0.

Left multiplication of the relation (26) by A gives

(27) AT (A) = 0.

Applying (26) in the relation (24) leads us to

(28) 3T (A) = 2T (A)P + T (P )A.

Right multiplication of the relation (28) by P gives T (A)P = T (P )A, which
reduces the relation (28) to

(29) T (A) = T (A)P.

From the relation (29) one can conclude that T maps F (X) into itself. We
have therefore a linear mapping T , which maps F (X) into itself, satisfying
the relation (27). Applying Lemma 10 we can conclude that T (A) = 0 for
all A ∈ F (X). It remains to prove that T (A) = 0 holds for all A ∈ A(X) as
well. The mapping T on A(X) is linear, satisfies the relation (20) and, as we
already showed, vanishes on F (X). Let A ∈ A(X), let P be a one-dimensional
projection and let us introduce S ∈ A(X) by S = A+PAP − (AP +PA). We
have SP = PS = 0. It is easy to see that T (S) = T (A) and T (S2) = T (A2).
By the equation (20) we now have

T (S2)S − S2T (S) = T (S3) = T (S3 + P )

= T ((S + P )3) = T ((S2)(S + P )− (S + P )2T (S)

= T (S2)S + T (S2)P − S2T (S)− PT (S).

We have therefore T (S2)P −PT (S) = 0 and since T (S) = T (A) and T (S2) =
T (A2), we obtain

(30) T (A2)P − PT (A) = 0.



102 N. ŠIROVNIK

Putting −A for A in the relation (30) and comparing the relation so obtained
with (30), we get

(31) PT (A) = 0.

As P is an arbitrary one-dimensional projection, we have T (A) = 0 for all
A ∈ A(X), which was our intention to prove. We have therefore proved that
D = G. This ascertainment enables us to combine (18) and (19) into one
relation

(32) D(A3) = D(A2)A+A2D(A).

Let us first consider the restriction of D on F (X). Let A be from F (X) and
let P ∈ F (X) be a projection with AP = PA = A. Putting P for A in the
relation (32), we obtain D(P ) = D(P )P +PD(P ). Any multiplication of the
last relation by P leads us to

(33) PD(P )P = 0.

The substitution A+ P for A in the relation (32) gives

(34)

3D(A2) + 3D(A) +D(P )

= D(A2)P + 2D(A)P + 2D(A)A+D(P )A+D(P )P

+A2D(P ) + 2AD(A) + 2AD(P ) + PD(A) + PD(P ).

Previously mentioned relation D(P ) = D(P )P +PD(P ) reduces the equation
(34) to

3D(A2) + 3D(A) = D(A2)P + 2D(A)P + 2D(A)A+D(P )A

+A2D(P ) + 2AD(A) + 2AD(P ) + PD(A).

Putting −A for A in the above relation and comparing the relation so obtained
with the above relation, we obtain

(35) 3D(A2) = D(A2)P + 2D(A)A+A2D(P ) + 2AD(A)

and

(36) 3D(A) = 2D(A)P +D(P )A+ 2AD(P ) + PD(A).

Right multiplication of the relation (35) by P gives

(37) 3D(A2)P = D(A2)P + 2D(A)A+A2D(P )P + 2AD(A)P,

which is, after considering (33) and dividing by 2, reduced to

(38) D(A2)P = D(A)A+AD(A)P.

The relation (35) gives because of (38)

(39) 3D(A2) = 3D(A)A+AD(A)P +A2D(P ) + 2AD(A).
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Left multiplication of the relation (36) by A, considering (33) and dividing by
2 leads us to

(40) AD(A) = AD(A)P +A2D(P ).

The relation (39) gives because of (40)

3D(A2) = 3D(A)A + 3AD(A),

which reduces to

(41) D(A2) = D(A)A +AD(A).

From the relation (36) one can conclude that D is a linear mapping, which
maps F (X) into itself. By the relation (41) D is a Jordan derivation on F (X).
Since F (X) is prime, it follows that D is a derivation by Herstein’s theorem.
Applying Theorem 9 one can conclude that D is of the form

(42) D(A) = [A,B]

for all A ∈ F (X) and some fixed B ∈ L(X). It remains to prove that the
relation (42) holds for all A ∈ A(X) as well. For this purpose we introduce
D1 : A(X) −→ L(X) by D1(A) = [A,B] and consider D0 = D − D1. The
mapping D0 is linear, satisfies the relation (32) and it vanishes on F (X).
Our aim is to prove that D0 vanishes on A(X) as well. Let A ∈ A(X),
let P be a one-dimensional projection and let us introduce S ∈ A(X) by
S = A + PAP − (AP + PA). We have SP = PS = 0. It is easy to see that
D0(S) = D0(A) and D0(S

2) = D0(A
2). The relation (32) now leads us to

D0(S
2)S + S2D0(S) = D0(S

3) = D0(S
3 + P ) = D0((S + P )3)

= D0(S
2)S +D0(S

2)P + S2D0(S) + PD0(S).

We have therefore D0(S
2)P + PD0(S) = 0 and since D0(S) = D0(A) and

D0(S
2) = D0(A

2), we arrive at

(43) D0(A
2)P + PD0(A) = 0.

Putting −A for A in the relation (43) and subtracting the relation so obtained
from the relation (43), we get

(44) PD0(A) = 0.

Since P is an arbitrary one-dimensional projection, it follows that D0(A) = 0
for all A ∈ A(X), which concludes the proof of the theorem.
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[6] M. Brešar and J. Vukman, Jordan (θ,φ)-derivations, Glas. Mat. Ser. III 28(48)

(1991), 83–88.
[7] P. R. Chernoff, Representations, automorphisms and derivations of some Operator

Algebras, J. Functional Analysis 12 (1973), 275–289.
[8] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321–324.
[9] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957),

1104–1119.
[10] I. Kosi-Ulbl and J. Vukman, A note on derivations in semiprime rings, Int. J. Math.

Math. Sci. 20 (2005), 3347–3350.
[11] I. Kosi-Ulbl and J. Vukman, On derivations in rings with involution, Int. Math. J. 6

(2005), 81–91.
[12] I. Kosi-Ulbl and J. Vukman, An identity related to derivations of standard operator

algebras and semisimple H∗-algebras, Cubo 12 (2010), 95–102.
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