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ALTERNATE PROOF OF THE REINHOLD BAER
THEOREM ON 2-GROUPS WITH NONABELIAN NORM

YAKOV BERKOVICH
University of Haifa, Israel

ABSTRACT. We present a new easy proof of the classical theorem
due to Reinhold Baer asserting that the nonabelian norm of a 2-group G
coincides with G, i.e., G is Dedekindian. Our proof is independent of all
papers devoted to this theme.

According to R. Baer ([Bael]), the norm N(G) of a group G is the
intersection of normalizers of all subgroups of G. Clearly, the subgroup NV (G)
is characteristic in G and Dedekindian, i.e., N'(G) is either abelian or N'(G) =
Q x E x A, where Qg is the ordinary quaternion group, exp(E) < 2 and all
elements of the abelian subgroup A have odd order ([H, Theorem 12.5.4]) (it is
possible that A (G) has subgroups that are not normal in G). Some additional
information on the norm is contained in [Bael, Bae2,Bae3, BHN, Sch, W] and
in a number of other papers. For example, it is proved in [Sch] that, for an
arbitrary group G, G/Cg(N(G)) is abelian and N (G) < Z2(G), where Za(G)
is the second member of the upper central series of G; this was obtained as a
result of intricate computations (for finite groups, see [BJ, Theorem 140.9]).
It follows ([Bae3]) that if Z(G) = {1}, then N (G) = {1} (for finite groups
this is easily to prove using the same argument as in the proof of Theorem 3,
below).

We use the same standard notation as in [Ber].

We offer a new proof of the following remarkable result due to R. Baer.

THEOREM 1 ([Bae2]). If the norm N(G) of a 2-group G is nonabelian,
then N'(G) = G.

We do not assume, in Theorem 1, that G is finite.
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All prerequisites are collected in the following

LEMMA 2. Let G be a finite nonabelian 2-group.

(a) (Dedekind; see [Ber, Theorem 1.20] and [H, Theorem 12.5.4]) If all
subgroups of G are normal, then G = Q x E, where Q € {{1},Qs},
exp(E) < 2 (this is also true if G is an infinite 2-group).

(b) (Burnside; see [Ber, Theorem 1.2]) If G has a cyclic subgroup of
index 2, then G is one of the following groups: dihedral, semidihedral,
generalized quaternion or minimal nonabelian of order > 2% with cyclic
center of index 4 (in the last case, N(G) < ®(Q)).

(c) (see [Ber, Propositions 10.17 and 1.6]) If B < G 1is nonabelian of order
8 and Cg(B) < B, then G is of mazimal class. If G is of maximal
class, then it has a cyclic subgroup of index 2 (see (b)).

(d) (see [Ber, Appendiz 16]) If G = B * C (central product) has order 16,
where B is nonabelian of order 8, C is cyclic of order 4, then G has
exactly 7 subgroups of order 2 and only one of them is normal in G.

(e) If G is of maximal class and order > 8 then N'(G) is of order 2 unless
G is generalized quaternion group with cyclic N'(G) of order 4.

(f) [Ber, Theorem 10.28] G is generated by minimal nonabelian subgroups.

If M < N(G) and M is normal in G, then N'(G)/M < N(G/M).

PROOF OF THEOREM 1. Assume, to the contrary, that N (G) < G.

By Lemma 2(a), there is in N (G) a subgroup @ = Qg. By assumption,
Q < G so that |G| > 16. Let A = (a) and B = (b) be distinct cyclic subgroups
of Q of order 4.

(i) f @ < H < G, then Q < N(H). This is obvious.

(i) f Q < H<Gand |H:Q| =2, then H= Q x C is Dedekindian.
Assume that this is false. Then H has a nonnormal cyclic subgroup L of order
< 4 such that L £ Q. Since QL = H, it follows that ) does not normalize L,
contrary to the hypothesis. Thus, H is Dedekindian, and our claim follows in
view of Lemma 2(a).

(iii) Cx(Q) has no cyclic subgroup of order 4. Assume, on the contrary,
that L = (z) < Cg(Q) is cyclic of order 4. Set H = Q= L; then 16 < |H| < 32.
However, |H| # 16, by (ii). Now let |H| = 32; then H = Q x L and (az) is
not b-invariant, a contradiction.

(iv) By (i), |G : Q| > 2.

(v) It follows from hypothesis and (iii) that if D = (d) < G is cyclic of
order 4, then QND > {1}. Assume, on the contrary, that QND = {1}. Then,
by (iii), @ is not normal in F = @D (otherwise, F'= @ x D) so F/Qr = Ds.
But the norm of Dg coincides with its center, and this is a contradiction since
Q/Qr < N(F/Qr) and Q/Qr £ Z(G/Qr).

(vi) We claim that exp(G) = 4. Assume, on the contrary, that T' < G is
cyclic of order 8. Since ) normalizes T', we get H = QT < G. Taking in mind
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our aim, one may assume that G = QT. By (v), one has QNT > {1} so that
16 < |G| < 32. By (iv), |G| > 16. Let |G| = 32; then Q N T = Z(Q). Write
H, = AT and Hy = BT. Since, by (i), A < N(H), it follows that H; is not
of maximal class in view of A £ ®(H;) (Lemma 2(b)). Similarly, Hs is not
of maximal class. Then, by Lemma 2(b), U,(T) = ®(H;) < Z(H;), i = 1,2.
Thus, U1(T), a cyclic subgroup of order 4, centralizes (A, B) = @, contrary
to ().

Now we are ready to complete the proof.

By (v) and (vi), U1(G) = U1(Q) so that G/U1(G), being of exponent
2, is abelian, and we conclude that G’ = U;(G) has order 2 since G is
nonabelian. The quotient group G/Cq(Q) is isomorphic to a subgroup of
Dg € Syly(Aut(Q)), and G/Cq(Q) contains a four-subgroup = Q/Z(Q). Since
G'=01(Q) < Cq(Q), we get G/Cq(Q) = Q/Z(Q) since QN Cq(Q) = Z(Q),
and we conclude that G = QCq(Q). Since exp(Cq(Q)) = 2, by (iii), we
get Cq(Q) = Z(Q) x E, where E < Cg(Q). In that case, G = QCq(Q) =
Q(Z(Q) x E) = QE, where QN E = {1}. It follows that G = @ x E hence G
is Dedekindian since exp(E) = 2. O

The following theorem is a partial case of Schenkman’s result [Sch]
mentioned above.

THEOREM 3. Let G be an arbitrary finite group such that N(G) is
nonabelian. Then P € Syly(N(G)) centralizes all elements of G of odd order
and P < Z3(QG).

PROOF. Let Qg = Q < N(G), let @ € Q# and let z € G be of order
p¥, where a prime p > 2. Set H = (a,x). Let y € (z) be of order p and
F = {a,y). Assume that F is nonabelian. If o(a) = 2, then F is a nonabelian
group of order 2p so its norm equals {1}, a contradiction since a € N (G). If
o(a) = 4, then F is minimal nonabelian with norm of order 2, a contradiction
again. Thus, F' is abelian. Thus, @ centralizes all subgroups of G' of odd
order. Since, by Lemma 2(f), P € Syl,(M(G)) is generated by its minimal
nonabelian subgroups all of which are = Qg, it follows that P centralizes all
subgroups of G of odd order. Note that P is normal in G.

Now let P < P, € Syl,(G). By Theorem 1, the subgroup P; is
Dedekindian since P < N(P;). Therefore, Z(P) < Z(P;) (Lemma 2(a)).
Since, by the above, Z(P) centralizes all elements of G of odd order, we get
Z(P) < Z(G). Since P/Z(P) < P,/Z(P), P/Z(P) is abelian and P/Z(P)
centralizes all elements of G/Z(P) of odd order, we get P/Z(P) < Z(G/Z(P))
so that P < Zy(@G), proving the last assertion. |

Let @ = Qg be a subgroup of a 2-group G not necessarily finite. If @
normalizes all cyclic subgroups of G of order < 8, then G is Dedekindian, as
follows immediately from the proof of Theorem 1.
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PROBLEMS

. Classify the p-groups G satisfying N (H) < N(G) for all nonabelian

H < @G. In particular, classify the p-groups G such that N(H) =
H N N(G) for all nonabelian H < G.

. Classify the finite groups H such that N'(Qs x H) is nonabelian (if H is

a 2-group of exponent > 2, then N (Qg x H) is abelian, by Theorem 1).

. Classify the p-groups G such that N (G) is maximal in G (if G = (a, b |

a?" =b” =1, a® = a'*P), where n > 1 and n > 2 provided p = 2, then
N(G) = {aP,b) is maximal in G).

. Classify the p-groups G satisfying N (H) = Z(H) for all nonabelian

H<G.

. Study the finite groups G such that, whenever H < G is either minimal

nonabelian or minimal nonnilpotent, then H NN (G) = {1}.

. Describe N (A x B) and N (AxB) in the terms of A and B (if A =& Qg =

B and G = A B, the central product of order 32, then N(G) = Z(G)
is of order 2 and A = N (A) = Qs 2 N(B) = B).

. Study the pairs of p-groups H < G such that H normalizes all C' < G

with C' £ H (for each H this is a separate problem. Note that H %
Dg).
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