CONCERNING n-MUTUAL APOSYNDESIS IN HYPERSPACES

Alejandro Illanes
Universidad Nacional Autónoma de México, Mexico

Abstract

Given a metric continuum X, let 2^{X} denote the hyperspace of nonempty closed subsets of X. We prove that 2^{X} is n-mutually aposyndetic for each $n \geq 1$. That is, given n distinct elements of 2^{X}, there are n disjoint subcontinua of 2^{X}, each containing one of the elements in its interior.

1. Introduction

A continuum is a compact connected metric space with more than one point. A continuum X is said to be mutually aposyndetic provided that for every $p, q \in X$, with $p \neq q$, there exist disjoint subcontinua M and N of X such that $p \in \operatorname{int}_{X}(M)$ and $q \in \operatorname{int}_{X}(N)$; and X is said to be n-mutually aposyndetic provided that given n distinct points, there are n disjoint subcontinua of X, each containing one of the points in its interior. So, mutual aposyndesis means 2-mutual aposyndesis.

For the continuum X, we consider its hyperspaces:
$2^{X}=\{A \subset X: A$ is closed and nonemtpy $\}$,
$C_{m}(X)=\left\{A \in 2^{X}: A\right.$ has at most m components $\}$,
$C(X)=C_{1}(X)$, and
$F_{m}(X)=\left\{A \in 2^{X}: A\right.$ has at most m points $\}$.
The hyperspace 2^{X} is endowed with the Hausdorff metric H.
The concept of n-mutual aposyndesis was introduced by L. E. Rogers in [9] where he proved that the topological product of three continua is always n-mutually aposyndetic, for each n. Aposyndesis in hyperspaces has been studied by several authors; for recent results see $[1-3,7,8]$. Answering a

[^0]question by H. Hosokawa ([2, p. 136]), J. M. Martínez-Montejano ([8, Theorem 3.1]) has recently proved that the hyperspace 2^{X} is mutally aposyndetic. In this paper we improve this result by proving the following theorem.

Theorem. For each continuum X and each positive integer n, the hyperspace 2^{X} is n-mutually aposyndetic.

Generalizing the main result of [6], recently, A. Illanes and J. M. MartínezMontejano ([4]) have shown that for each $n \geq 2$ and $m \geq 3, F_{m}(X)$ is n mutually aposyndetic. H. Hosokawa ([2, Theorem 2.4]) has proved that, for each $m \geq 2$, the hyperspace $C_{m}(X)$ is mutually aposyndetic, the following question arises naturally:

Question 1.1. Let X be a continuum $n \geq 3$ and $m \geq 2$, is the hyperspace $C_{m}(X)$-mutually aposyndetic?

2. Main result

Given a continuum X, with metric $d, \varepsilon>0, p \in X$ and $A \subset X$, let $B(\varepsilon, p)$ be the ε-ball around p in $X, N(\varepsilon, A)=\bigcup\{B(\varepsilon, a): a \in A\}$ and $V(\varepsilon, A)=\{x \in X:$ there exists $a \in A$ such that $d(x, a) \leq \varepsilon\}$. Given $A, B \in 2^{X}$ such that $A \subsetneq B$, an order arc from A to B is a continuous function $\alpha:[0,1] \rightarrow 2^{X}$ such that $\alpha(0)=A, \alpha(1)=B$ and, if $0 \leq s<t \leq 1$, then $\alpha(s) \subsetneq \alpha(t)$. It is well known (see [5, Theorem 15.3]) that, if $A, B \in 2^{X}$ and $A \subsetneq B$, then there exists an order arc from A to B if and only if each component of B intersects A.

Theorem 2.1. For each continuum X and each positive integer n, the hyperspace 2^{X} is n-mutually aposyndetic.

Proof. Let d be the metric for X. Let A_{1}, \ldots, A_{n} be n different elements of 2^{X}, where $n>1$. Let $\delta: 2^{X} \rightarrow[0, \infty)$ be the diameter map. We suppose that $\delta(X)=1$. For each $t \in[0,1]$, let $\mathcal{N}(t)=\delta^{-1}(t) \cap C(X)$. By [5, Exercise 19.18], $\mathcal{N}(t)$ is a subcontinuum of 2^{X}. Let $\varepsilon>0$ be such that $H\left(A_{i}, A_{j}\right) \geq 4 \varepsilon$ for all $i \neq j$.

For each $A \in 2^{X}$ and $t \in[0,1]$, let $D(A, t)=\bigcup\{B \in \mathcal{N}(t): A \cap B \neq \emptyset\}$. Clearly, $D(A, t) \in 2^{X}, A \subset D(A, t)$ and each component of $D(A, t)$ intersects A. Thus, in the case that $A \neq D(A, t)$, there exist order arcs from A to $D(A, t)$. Let $\mathcal{E}(A, t)=\bigcup\left\{\operatorname{Im} \alpha \subset 2^{X}: \alpha\right.$ is an order arc in 2^{X} from A to $D(A, t)\}$, if $A \neq D(A, t)$, and $\mathcal{E}(A, t)=\{A\}$, if $A=D(A, t)$. By [4, 11.5 p. 91], $\mathcal{E}(A, t)$ is a subcontinuum of 2^{X} containing A and $D(A, t)$. Since $D(A, t) \subset N(t+\eta, A)$ for each $\eta>0, H(A, B) \leq t$ for each element $B \in$ $\mathcal{E}(A, t)$.

Given $i, j \in\{1, \ldots, n\}$, with $i \neq j$, we define a positive number $s(i, j)$ in the following way:
(a) if $A_{j}-A_{i}$ has at least two points, let $s(i, j)>0$ be such that $A_{j}-N\left(4 s(i, j), A_{i}\right)$ has at least two points and $4 s(i, j)<\delta\left(A_{j}-\right.$ $\left.N\left(4 s(i, j), A_{i}\right)\right)$.
(b) if $A_{j}-A_{i}$ is a one-point set, let $s(i, j)>0$ be such that $N\left(2 s(i, j), A_{j}-\right.$ $\left.A_{i}\right) \cap N\left(2 s(i, j), A_{i}\right)=\emptyset$.
(c) if $A_{j} \subset A_{i}$, by (a) and (b) the number $s(j, i)$ has been defined. Thus, we can define $s(i, j)=s(j, i)$.
Fix $r>0$ such that $r<\min (\{s(i, j): i, j \in\{1, \ldots, n\}$ and $i \neq j\} \cup\{\varepsilon\})$. For each $i \in\{1, \ldots, n\}$, let $m_{i}=\max \{k \in\{1, \ldots, n\}$: there exist elements i_{1}, \ldots, i_{k} in $\{1, \ldots, n\}$ such that $\left.A_{i} \subset A_{i_{1}} \subsetneq A_{i_{2}} \subsetneq \ldots \subsetneq A_{i_{k}}\right\}$. Note that m_{i} is well defined. Note also that if $A_{i} \subsetneq A_{j}$, then $m_{i}>m_{j}$. For each positive integer k, let $M_{k}=\left\{i \in\{1, \ldots, n\}: m_{i}=k\right\}$. Then $i \in M_{1}$ if and only if A_{i} is a maximal element of $\left\{A_{1}, \ldots, A_{n}\right\}$, with respect to the inclusion; $i \in M_{2}$ if and only if A_{i} is a maximal element of the set $\left\{A_{j}\right.$: $\left.j \in\{1, \ldots, n\}-M_{1}\right\} ; i \in M_{3}$ if and only if A_{i} is a maximal element of the set $\left\{A_{j}: j \in\{1, \ldots, n\}-\left(M_{1} \cup M_{2}\right)\right\}$; and so on. Notice also that $\emptyset=M_{n+1}=M_{n+2}=\ldots$

For each $i \in\{1, \ldots, n\}$, we choose a positive number t_{i} as follows. For each $i \in M_{1}$, choose a number $v_{i} \in(0,1)$ in such a way that all the elements of $\left\{v_{i}: i \in M_{1}\right\}$ are different. If $M_{2} \neq \emptyset$, for each $i \in M_{2}$, choose a number $v_{i} \in(5,6)$ in such a way that all the elements of $\left\{v_{i}: i \in M_{2}\right\}$ are different. In general, if $k \geq 1$ and $M_{k+1} \neq \emptyset$, for each $i \in M_{k+1}$ choose a number $v_{i} \in\left(5^{k}+\ldots+5,5^{k}+\ldots+5+1\right)$ in such a way that all the elements of $\left\{v_{i}: i \in M_{k+1}\right\}$ are different. Notice that, if $A_{i} \subsetneq A_{j}$, since $m_{j}<m_{i}$, $5 v_{j}<v_{i}$. Notice also that $v_{i}<5^{n}$ for each $i \in\{1, \ldots, n\}$, and all the numbers $\left\{v_{1}, \ldots, v_{n}\right\}$ are different. For each $i \in\{1, \ldots, n\}$, define $t_{i}=r \frac{v_{i}}{5^{n}}<r$.

For each $i \in\{1, \ldots, n\}$, let $\mathcal{B}_{i}=\left\{A \in 2^{X}: H\left(A, A_{i}\right) \leq t_{i}\right\}$. For each $A \in \mathcal{B}_{i}$, let $\mathcal{F}(A)=\left\{D\left(A, t_{i}\right) \cup B: B \in \mathcal{N}\left(t_{i}\right)\right\}$. Note that $\mathcal{F}(A)$ is the image of $\mathcal{N}\left(t_{i}\right)$ under the map $B \rightarrow D\left(A, t_{i}\right) \cup B$, so, $\mathcal{F}(A)$ is a subcontinuum of 2^{X}. Fix a point $p \in A$, let $B \in \mathcal{N}\left(t_{i}\right)$ be such that $p \in B$. Then $B \subset D\left(A, t_{i}\right)$. Thus, $D\left(A, t_{i}\right)=D\left(A, t_{i}\right) \cup B \in \mathcal{F}(A)$. Define also $\mathcal{R}_{i}\left(t_{i}\right)=\bigcup\left\{\mathcal{E}\left(A, t_{i}\right)\right.$: $\left.A \in \mathcal{B}_{i}\right\}$. Then $\mathcal{R}_{i}\left(t_{i}\right)$ is a closed subset of 2^{X} such that $A_{i} \in \operatorname{int}_{2 x}\left(\mathcal{B}_{i}\right) \subset$ $\operatorname{int}_{2^{X}}\left(\mathcal{R}_{i}\left(t_{i}\right)\right) \subset \mathcal{R}_{i}\left(t_{i}\right)$.

Define

$$
\mathcal{M}_{i}=\mathcal{R}_{i}\left(t_{i}\right) \cup\left(\bigcup\left\{\mathcal{F}(A): A \in \mathcal{B}_{i}\right\}\right)
$$

Notice that $A_{i} \in \operatorname{int}_{2^{x}}\left(\mathcal{M}_{i}\right)$
Claim 1. \mathcal{M}_{i} is a subcontinuum of 2^{X}.
In order to prove Claim 1, we check that \mathcal{M}_{i} is connected. Let $A \in \mathcal{M}_{i}$ and let \mathcal{C} be the component of \mathcal{M}_{i} containing A. Let $E_{0}=\bigcup\left\{E: E \in \mathcal{B}_{i}\right\}$. It is easy to see that $E_{0} \in \mathcal{B}_{i}$. Let $D_{0}=D\left(E_{0}, t_{i}\right)$. We show that $D_{0} \in \operatorname{cl}_{2 x}(\mathcal{C})=$ \mathcal{C}. Take $\eta>0$. Fix points $x_{1}, \ldots, x_{k} \in D_{0}$ such that $H\left(\left\{x_{1}, \ldots, x_{k}\right\}, D_{0}\right)<\eta$.

Then there exist points $e_{1}, \ldots, e_{k} \in E_{0}$ and elements $B_{1}, \ldots, B_{k} \in \mathcal{N}\left(t_{i}\right)$ such that $x_{1}, e_{1} \in B_{1}, \ldots, x_{k}, e_{k} \in B_{k}$.

In the case that $A \in \mathcal{R}_{i}\left(t_{i}\right)$, there exists $E \in \mathcal{B}_{i}$ such that $A \in \mathcal{E}\left(E, t_{i}\right)$. Since $\mathcal{E}\left(E, t_{i}\right)$ is connected and $D\left(E, t_{i}\right) \in \mathcal{E}\left(E, t_{i}\right)$, we may assume that $A=$ $D\left(E, t_{i}\right)$. In the case that $A \in \mathcal{F}(E)$ for some $E \in \mathcal{B}_{i}$, since $\mathcal{F}(E)$ is connected and $D\left(E, t_{i}\right) \in \mathcal{F}(E)$, we may assume that $A=D\left(E, t_{i}\right)$. Therefore, in any case, we may assume that $A=D\left(E, t_{i}\right)$ for some $E \in \mathcal{B}_{i}$.

Note that the sets $E \cup\left\{e_{1}\right\}, E \cup\left\{e_{1}, e_{2}\right\}, \ldots, E \cup\left\{e_{1}, \ldots, e_{k}\right\}$ belong to \mathcal{B}_{i}. Since $A \cup B_{1}=D\left(E, t_{i}\right) \cup B_{1} \in \mathcal{F}(E) \subset \mathcal{M}_{i}$ and $\mathcal{F}(E)$ is connected, we have that $A \cup B_{1} \in \mathcal{C}$. Since $E \cup\left\{e_{1}\right\} \subset A \cup B_{1} \subset D\left(E \cup\left\{e_{1}\right\}, t_{i}\right)$ and each component of $A \cup B_{1}$ intersects $E \cup\left\{e_{1}\right\}$ and each component of $D\left(E \cup\left\{e_{1}\right\}, t_{i}\right)$ intersects $A \cup B_{1}$, in the case that $E \cup\left\{e_{1}\right\} \neq D\left(E \cup\left\{e_{1}\right\}, t_{i}\right)$, we have that there exists an order arc α from $E \cup\left\{e_{1}\right\}$ to $D\left(E \cup\left\{e_{1}\right\}, t_{i}\right)$ such that $A \cup B_{1} \in \operatorname{Im} \alpha \subset$ $\mathcal{E}\left(E \cup\left\{e_{1}\right\}, t_{i}\right) \subset \mathcal{R}_{i}\left(t_{i}\right) \subset \mathcal{M}_{i}$. Thus, $\operatorname{Im} \alpha \subset \mathcal{C}$. Hence, $D\left(E \cup\left\{e_{1}\right\}, t_{i}\right) \in \mathcal{C}$. In the case that $E \cup\left\{e_{1}\right\}=D\left(E \cup\left\{e_{1}\right\}, t_{i}\right), D\left(E \cup\left\{e_{1}\right\}, t_{i}\right)=A \cup B_{1}$, thus, $D\left(E \cup\left\{e_{1}\right\}, t_{i}\right) \in \mathcal{C}$. In both cases, $D\left(E \cup\left\{e_{1}\right\}, t_{i}\right) \in \mathcal{C}$. Since $D\left(E \cup\left\{e_{1}\right\}, t_{i}\right) \cup$ $B_{2} \in \mathcal{F}\left(E \cup\left\{e_{1}\right\}\right) \subset \mathcal{M}_{i}$, we have $D\left(E \cup\left\{e_{1}\right\}, t_{i}\right) \cup B_{2} \in \mathcal{C}$. Proceeding as before, we can conclude that $D\left(E \cup\left\{e_{1}, e_{2}\right\}, t_{i}\right) \in \mathcal{C}$. Repeating this procedure, we obtain that $D\left(E \cup\left\{e_{1}, \ldots, e_{k}\right\}, t_{i}\right) \in \mathcal{C}$.

Notice that $\left\{e_{1}, \ldots, e_{k}\right\} \subset D\left(E \cup\left\{e_{1}, \ldots, e_{k}\right\}, t_{i}\right) \subset D\left(E_{0}, t_{i}\right)=D_{0}$. This implies that $H\left(D\left(E \cup\left\{e_{1}, \ldots, e_{k}\right\}, t_{i}\right), D_{0}\right)<\eta$. This completes the proof that $D_{0} \in \operatorname{cl}_{2 x}(\mathcal{C})=\mathcal{C}$. Therefore, \mathcal{M}_{i} is connected and Claim 1 is proved.

Claim 2. The sets $\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}$ are pairwise disjoint.
We prove Claim 2. Let $i, j \in\{1, \ldots, n\}$ be such that $i \neq j$. Suppose that there exists an element $A \in \mathcal{M}_{i} \cap \mathcal{M}_{j}$. We consider four cases.

Case 1. $A \in \mathcal{R}_{i}\left(t_{i}\right) \cap \mathcal{R}_{j}\left(t_{j}\right)$.
In this case, there exist $E_{i} \in \mathcal{B}_{i}$ and $E_{j} \in \mathcal{B}_{j}$ such that $A \in \mathcal{E}\left(E_{i}, t_{i}\right) \cap$ $\mathcal{E}\left(E_{j}, t_{j}\right)$. Thus, $H\left(A, E_{i}\right) \leq t_{i}<r<\varepsilon$ and $H\left(A, E_{j}\right)<\varepsilon$. Since $H\left(E_{i}, A_{i}\right) \leq$ ε and $H\left(E_{j}, A_{j}\right) \leq \varepsilon$, we have $H\left(A_{i}, A_{j}\right)<4 \varepsilon$. Contrary to the choice of ε. Hence, Case 1 is impossible.

Case 2. $A_{j}-A_{i}$ has at least two points.
Notice that $A \in \mathcal{M}_{j}$ implies that there exists an element $E_{j} \in \mathcal{B}_{j}$ such that $E_{j} \subset A$. By definition $s(i, j)>0$ is such that $A_{j}-N\left(4 s(i, j), A_{i}\right)$ is nondegenerate and $4 s(i, j)<\delta\left(A_{j}-N\left(4 s(i, j), A_{i}\right)\right)$. Fix points $p, q \in A_{j}-$ $N\left(4 s(i, j), A_{i}\right)$ such that $d(p, q)>4 s(i, j)>\max \left\{4 t_{i}, 4 t_{j}\right\}$. Since $H\left(E_{j}, A_{j}\right) \leq$ t_{j}, there exist points $u, v \in E_{j}$ such that $d(u, p) \leq t_{j}<r<s(i, j)$ and $d(v, q) \leq t_{j}<s(i, j)$. Thus, $u, v \notin N\left(3 s(i, j), A_{i}\right)$. Since $A \in \mathcal{M}_{i}$, there exists $E_{i} \in \mathcal{B}_{i}$ such that either $E_{i} \subset A \subset D\left(E_{i}, t_{i}\right)$ or $A=D\left(E_{i}, t_{i}\right) \cup B$ for some $B \in \mathcal{N}\left(t_{i}\right)$. Since $t_{i}<r<s(i, j)$ and $H\left(D\left(E_{i}, t_{i}\right), A_{i}\right) \leq H\left(D\left(E_{i}, t_{i}\right), E_{i}\right)+$ $H\left(E_{i}, A_{i}\right) \leq 2 t_{i}$, we have $D\left(E_{i}, t_{i}\right) \subset N\left(2 s(i, j), A_{i}\right)$ and $u, v \notin D\left(E_{i}, t_{i}\right)$. Since $u, v \in A$, we conclude that $A \nsubseteq D\left(E_{i}, t_{i}\right)$, so $A=D\left(E_{i}, t_{i}\right) \cup B$ for some
$B \in \mathcal{N}\left(t_{i}\right)$. Thus, $u, v \in B$. Hence, $d(u, v) \leq \delta(B)=t_{i}$. This implies that $d(p, q) \leq d(p, u)+d(u, v)+d(v, q)<3 s(i, j)$, which is a contradiction with the choice of p and q. We have proved that this case is impossible.

Similarly, it can be proven that the following case is also impossible.
CASE 3. $A_{i}-A_{j}$ has at least two points.
Case 4. $A_{j}-A_{i}$ is a one-point set.
Let $p \in A_{j}-A i$, by definition $s(i, j)>0$ is such that $N(2 s(i, j),\{p\}) \cap$ $N\left(2 s(i, j), A_{i}\right)=\emptyset$. Since $A \in \mathcal{M}_{i}$, there exists $E_{i} \in \mathcal{B}_{i}$ such that either $E_{i} \subset A \subset D\left(E_{i}, t_{i}\right)$ or $A=D\left(E_{i}, t_{i}\right) \cup B_{i}$ for some $B_{i} \in \mathcal{N}\left(t_{i}\right)$. Since $t_{i}<r<s(i, j)$ and $H\left(D\left(E_{i}, t_{i}\right), A_{i}\right) \leq 2 t_{i}$, we have $D\left(E_{i}, t_{i}\right) \subset N\left(2 s(i, j), A_{i}\right)$ and $N(2 s(i, j),\{p\}) \cap D\left(E_{i}, t_{i}\right)=\emptyset$. Since $A \in \mathcal{M}_{j}$, there exists an element $E_{j} \in \mathcal{B}_{j}$ such that $E_{j} \subset A \subset D\left(E_{j}, t_{j}\right) \cup C_{j}$, for some $C_{j} \in \mathcal{N}\left(t_{j}\right)$ (even in the case that $\left.A \in \mathcal{R}_{j}\left(t_{j}\right)\right)$. Let $u \in E_{j}$ be such that $d(p, u) \leq t_{j}<s(i, j)$. Then $N(s(i, j),\{u\}) \subset N(2 s(i, j),\{p\})$ and $N(s(i, j),\{u\}) \cap D\left(E_{i}, t_{i}\right)=\emptyset$. In particular, $u \in A-D\left(E_{i}, t_{i}\right)$. This implies that $A=D\left(E_{i}, t_{i}\right) \cup B_{i}$ for some $B_{i} \in \mathcal{N}\left(t_{i}\right), u \in B_{i}$ and $D\left(E_{i}, t_{i}\right) \cap B_{i}=\emptyset$. We consider two subcases.

Case 4.1. $A_{i}-A_{j}$ is a one-point set.
Proceeding as above, we have that A is of the form $A=D\left(E_{j}, t_{j}\right) \cup B_{j}$ for some $E_{j} \in \mathcal{B}_{j}, B_{j} \in \mathcal{N}\left(t_{j}\right)$. Notice that u was choosen in E_{j}. Let $R \in \mathcal{N}\left(t_{j}\right)$ be such that $u \in R$. Then $R \subset D\left(E_{j}, t_{j}\right) \subset A=D\left(E_{i}, t_{i}\right) \cup B_{i}$ and $R \subset$ $N(s(i, j),\{u\})$. This implies that $R \subset B_{i}$. Hence, $t_{j}=\delta(R) \leq \delta\left(B_{i}\right)=t_{i}$. Since $t_{j} \neq t_{i}$, we conclude that $t_{j}<t_{i}$. Similarly, $t_{i}<t_{j}$. This contradiction shows that this subcase is impossible.

Case 4.2. $A_{i} \subset A_{j}$.
In this case, $A_{i} \subsetneq A_{j}$, so $m_{j}<m_{i}$ and $5 t_{j}<t_{i}$. Since $E_{j} \in \mathcal{B}_{j}$, and $H\left(E_{j}, D\left(E_{j}, t_{j}\right)\right) \leq t_{j}$, we have $D\left(E_{j}, t_{j}\right) \subset N\left(2 t_{j}, A_{j}\right)=N\left(2 t_{j}, A_{i}\right) \cup$ $N\left(2 t_{j},\{p\}\right)$. We also have $D\left(E_{i}, t_{i}\right) \subset N\left(2 t_{i}, A_{i}\right)$ and $B_{i} \subset N\left(t_{i},\{u\}\right) \subset$ $N\left(t_{i}+t_{j},\{p\}\right)$. Given a point $x \in B_{i} \subset A \subset D\left(E_{j}, t_{j}\right) \cup C_{j}$ such that $x \notin C_{j}$, we have that $x \in D\left(E_{j}, t_{j}\right) \subset N\left(2 t_{j}, A_{i}\right) \cup N\left(2 t_{j},\{p\}\right)$. Since $N\left(2 t_{j}, A_{i}\right) \cap$ $N\left(t_{i}+t_{j},\{p\}\right) \subset N\left(2 s(i, j), A_{i}\right) \cap N(2 s(i, j),\{p\})=\emptyset$ and $B_{i} \subset N\left(t_{i}+t_{j},\{p\}\right)$, we obtain that $x \in N\left(2 t_{j},\{p\}\right)$. We have shown that $B_{i} \subset V\left(2 t_{j},\{p\}\right) \cup C_{j}$. Since B_{i} is connected and the sets $V\left(2 t_{j},\{p\}\right)$ and C_{j} are closed, we obtain that $t_{i}=\delta\left(B_{i}\right) \leq 5 t_{j}$, a contradiction. This completes the proof that this subcase is also impossible.

Since we have considered all the possible cases, the proof of Claim 2 is complete.

References

[1] M. E. Aguilera and A. Illanes, Connectedness properties of the hyperspaces $C_{\varepsilon}(X)$, to appear in Houston J. Math.
[2] H. Hosokawa, Mutual aposyndesis of n-fold hyperspaces, Houston J. Math. 35 (2009), 131-137.
[3] A. Illanes and J. M. Martínez-Montejano, Zero-dimensional closed set aposyndesis and symmetric products, Houston J. Math. 37 (2011), 1333-1346.
[4] A. Illanes and J. M. Martínez-Montejano, Concerning k-mutual aposyndesis in symmetric products, preprint.
[5] A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York and Basel, 1999.
[6] J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Topology Proc. 24 (1999), 203-213.
[7] J. M. Martínez-Montejano, Zero-dimensional closed set aposyndesis and hyperspaces, Houston J. Math. 32 (2006), 1101-1105.
[8] J. M. Martínez-Montejano, Mutual aposyndesis of the hyperspace of compact sets, Questions Answers Gen. Topology 28 (2010), 197-201.
[9] L. E. Rogers, Concerning n-mutual aposyndesis in products of continua, Trans. Amer. Math. Soc. 169 (1971), 239-251.
A. Illanes

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Circuito Exterior, Cd. Universitaria
México, 04510, D.F.
E-mail: illanes@matem.unam.mx
Received: 2.11.2010.
Revised: 31.5.2011.

[^0]: 2010 Mathematics Subject Classification. 54B20, 54F15.
 Key words and phrases. Continuum, hyperspace, n-mutual aposyndesis.

