CONCERNING *n*-MUTUAL APOSYNDESIS IN HYPERSPACES

Alejandro Illanes

Universidad Nacional Autónoma de México, Mexico

ABSTRACT. Given a metric continuum X, let 2^X denote the hyperspace of nonempty closed subsets of X. We prove that 2^X is *n*-mutually aposyndetic for each $n \ge 1$. That is, given n distinct elements of 2^X , there are n disjoint subcontinua of 2^X , each containing one of the elements in its interior.

1. INTRODUCTION

A continuum is a compact connected metric space with more than one point. A continuum X is said to be *mutually aposyndetic* provided that for every $p, q \in X$, with $p \neq q$, there exist disjoint subcontinua M and N of X such that $p \in \text{int}_X(M)$ and $q \in \text{int}_X(N)$; and X is said to be *n*-mutually aposyndetic provided that given n distinct points, there are n disjoint subcontinua of X, each containing one of the points in its interior. So, mutual aposyndesis means 2-mutual aposyndesis.

For the continuum X, we consider its hyperspaces:

 $2^{X} = \{A \subset X : A \text{ is closed and nonemtpy}\},\$ $C_{m}(X) = \{A \in 2^{X} : A \text{ has at most } m \text{ components}\},\$ $C(X) = C_{1}(X), \text{ and}\$ $F_{m}(X) = \{A \in 2^{X} : A \text{ has at most } m \text{ points}\}.$

The hyperspace 2^X is endowed with the Hausdorff metric H.

The concept of *n*-mutual aposyndesis was introduced by L. E. Rogers in [9] where he proved that the topological product of three continua is always *n*-mutually aposyndetic, for each *n*. Aposyndesis in hyperspaces has been studied by several authors; for recent results see [1-3, 7, 8]. Answering a

²⁰¹⁰ Mathematics Subject Classification. 54B20, 54F15.

Key words and phrases. Continuum, hyperspace, n-mutual aposyndesis.

¹⁸⁷

question by H. Hosokawa ([2, p. 136]), J. M. Martínez-Montejano ([8, Theorem 3.1]) has recently proved that the hyperspace 2^X is mutally aposyndetic. In this paper we improve this result by proving the following theorem.

THEOREM. For each continuum X and each positive integer n, the hyperspace 2^X is n-mutually aposyndetic.

Generalizing the main result of [6], recently, A. Illanes and J. M. Martínez-Montejano ([4]) have shown that for each $n \ge 2$ and $m \ge 3$, $F_m(X)$ is *n*mutually aposyndetic. H. Hosokawa ([2, Theorem 2.4]) has proved that, for each $m \ge 2$, the hyperspace $C_m(X)$ is mutually aposyndetic, the following question arises naturally:

QUESTION 1.1. Let X be a continuum $n \ge 3$ and $m \ge 2$, is the hyperspace $C_m(X)$ n-mutually aposyndetic?

2. Main result

Given a continuum X, with metric $d, \varepsilon > 0, p \in X$ and $A \subset X$, let $B(\varepsilon, p)$ be the ε -ball around p in X, $N(\varepsilon, A) = \bigcup \{B(\varepsilon, a) : a \in A\}$ and $V(\varepsilon, A) = \{x \in X : \text{there exists } a \in A \text{ such that } d(x, a) \le \varepsilon\}$. Given $A, B \in 2^X$ such that $A \subsetneq B$, an order arc from A to B is a continuous function $\alpha : [0, 1] \to 2^X$ such that $\alpha(0) = A, \alpha(1) = B$ and, if $0 \le s < t \le 1$, then $\alpha(s) \subsetneq \alpha(t)$. It is well known (see [5, Theorem 15.3]) that, if $A, B \in 2^X$ and $A \subsetneq B$, then there exists an order arc from A to B if and only if each component of B intersects A.

THEOREM 2.1. For each continuum X and each positive integer n, the hyperspace 2^X is n-mutually aposyndetic.

PROOF. Let d be the metric for X. Let A_1, \ldots, A_n be n different elements of 2^X , where n > 1. Let $\delta : 2^X \to [0, \infty)$ be the diameter map. We suppose that $\delta(X) = 1$. For each $t \in [0, 1]$, let $\mathcal{N}(t) = \delta^{-1}(t) \cap C(X)$. By [5, Exercise 19.18], $\mathcal{N}(t)$ is a subcontinuum of 2^X . Let $\varepsilon > 0$ be such that $H(A_i, A_j) \ge 4\varepsilon$ for all $i \neq j$.

For each $A \in 2^X$ and $t \in [0,1]$, let $D(A,t) = \bigcup \{B \in \mathcal{N}(t) : A \cap B \neq \emptyset\}$. Clearly, $D(A,t) \in 2^X$, $A \subset D(A,t)$ and each component of D(A,t) intersects A. Thus, in the case that $A \neq D(A,t)$, there exist order arcs from A to D(A,t). Let $\mathcal{E}(A,t) = \bigcup \{\operatorname{Im} \alpha \subset 2^X : \alpha \text{ is an order arc in } 2^X \text{ from } A$ to $D(A,t)\}$, if $A \neq D(A,t)$, and $\mathcal{E}(A,t) = \{A\}$, if A = D(A,t). By [4, 11.5 p. 91], $\mathcal{E}(A,t)$ is a subcontinuum of 2^X containing A and D(A,t). Since $D(A,t) \subset N(t+\eta,A)$ for each $\eta > 0$, $H(A,B) \leq t$ for each element $B \in \mathcal{E}(A,t)$.

Given $i, j \in \{1, ..., n\}$, with $i \neq j$, we define a positive number s(i, j) in the following way:

- (a) if $A_j A_i$ has at least two points, let s(i, j) > 0 be such that $A_j N(4s(i, j), A_i)$ has at least two points and $4s(i, j) < \delta(A_j N(4s(i, j), A_i))$.
- (b) if $A_j A_i$ is a one-point set, let s(i, j) > 0 be such that $N(2s(i, j), A_j A_i) \cap N(2s(i, j), A_i) = \emptyset$.
- (c) if $A_j \subset A_i$, by (a) and (b) the number s(j, i) has been defined. Thus, we can define s(i, j) = s(j, i).

Fix r > 0 such that $r < \min(\{s(i, j) : i, j \in \{1, ..., n\} \text{ and } i \neq j\} \cup \{\varepsilon\})$. For each $i \in \{1, ..., n\}$, let $m_i = \max\{k \in \{1, ..., n\} :$ there exist elements $i_1, ..., i_k$ in $\{1, ..., n\}$ such that $A_i \subset A_{i_1} \subsetneq A_{i_2} \subsetneq ... \subsetneq A_{i_k}\}$. Note that m_i is well defined. Note also that if $A_i \subsetneq A_j$, then $m_i > m_j$. For each positive integer k, let $M_k = \{i \in \{1, ..., n\} : m_i = k\}$. Then $i \in M_1$ if and only if A_i is a maximal element of $\{A_1, ..., A_n\}$, with respect to the inclusion; $i \in M_2$ if and only if A_i is a maximal element of the set $\{A_j : j \in \{1, ..., n\} - M_1\}$; $i \in M_3$ if and only if A_i is a maximal element of the set $\{A_j : j \in \{1, ..., n\} - (M_1 \cup M_2)\}$; and so on. Notice also that $\emptyset = M_{n+1} = M_{n+2} = ...$

For each $i \in \{1, \ldots, n\}$, we choose a positive number t_i as follows. For each $i \in M_1$, choose a number $v_i \in (0, 1)$ in such a way that all the elements of $\{v_i : i \in M_1\}$ are different. If $M_2 \neq \emptyset$, for each $i \in M_2$, choose a number $v_i \in (5, 6)$ in such a way that all the elements of $\{v_i : i \in M_2\}$ are different. In general, if $k \geq 1$ and $M_{k+1} \neq \emptyset$, for each $i \in M_{k+1}$ choose a number $v_i \in (5^k + \ldots + 5, 5^k + \ldots + 5 + 1)$ in such a way that all the elements of $\{v_i : i \in M_{k+1}\}$ are different. Notice that, if $A_i \subsetneq A_j$, since $m_j < m_i$, $5v_j < v_i$. Notice also that $v_i < 5^n$ for each $i \in \{1, \ldots, n\}$, and all the numbers $\{v_1, \ldots, v_n\}$ are different. For each $i \in \{1, \ldots, n\}$, define $t_i = r \frac{v_i}{5^n} < r$.

For each $i \in \{1, ..., n\}$, let $\mathcal{B}_i = \{A \in 2^X : H(A, A_i) \leq t_i\}$. For each $A \in \mathcal{B}_i$, let $\mathcal{F}(A) = \{D(A, t_i) \cup B : B \in \mathcal{N}(t_i)\}$. Note that $\mathcal{F}(A)$ is the image of $\mathcal{N}(t_i)$ under the map $B \to D(A, t_i) \cup B$, so, $\mathcal{F}(A)$ is a subcontinuum of 2^X . Fix a point $p \in A$, let $B \in \mathcal{N}(t_i)$ be such that $p \in B$. Then $B \subset D(A, t_i)$. Thus, $D(A, t_i) = D(A, t_i) \cup B \in \mathcal{F}(A)$. Define also $\mathcal{R}_i(t_i) = \bigcup \{\mathcal{E}(A, t_i) : A \in \mathcal{B}_i\}$. Then $\mathcal{R}_i(t_i)$ is a closed subset of 2^X such that $A_i \in \operatorname{int}_{2^X}(\mathcal{B}_i) \subset \operatorname{int}_{2^X}(\mathcal{R}_i(t_i)) \subset \mathcal{R}_i(t_i)$.

Define

$$\mathcal{M}_i = \mathcal{R}_i(t_i) \cup (\bigcup \{\mathcal{F}(A) : A \in \mathcal{B}_i\}).$$

Notice that $A_i \in \operatorname{int}_{2^X}(\mathcal{M}_i)$

CLAIM 1. \mathcal{M}_i is a subcontinuum of 2^X .

In order to prove Claim 1, we check that \mathcal{M}_i is connected. Let $A \in \mathcal{M}_i$ and let \mathcal{C} be the component of \mathcal{M}_i containing A. Let $E_0 = \bigcup \{E : E \in \mathcal{B}_i\}$. It is easy to see that $E_0 \in \mathcal{B}_i$. Let $D_0 = D(E_0, t_i)$. We show that $D_0 \in \text{cl}_{2^X}(\mathcal{C}) = \mathcal{C}$. Take $\eta > 0$. Fix points $x_1, \ldots, x_k \in D_0$ such that $H(\{x_1, \ldots, x_k\}, D_0) < \eta$. Then there exist points $e_1, \ldots, e_k \in E_0$ and elements $B_1, \ldots, B_k \in \mathcal{N}(t_i)$ such that $x_1, e_1 \in B_1, \ldots, x_k, e_k \in B_k$.

In the case that $A \in \mathcal{R}_i(t_i)$, there exists $E \in \mathcal{B}_i$ such that $A \in \mathcal{E}(E, t_i)$. Since $\mathcal{E}(E, t_i)$ is connected and $D(E, t_i) \in \mathcal{E}(E, t_i)$, we may assume that $A = D(E, t_i)$. In the case that $A \in \mathcal{F}(E)$ for some $E \in \mathcal{B}_i$, since $\mathcal{F}(E)$ is connected and $D(E, t_i) \in \mathcal{F}(E)$, we may assume that $A = D(E, t_i)$. Therefore, in any case, we may assume that $A = D(E, t_i)$ for some $E \in \mathcal{B}_i$.

Note that the sets $E \cup \{e_1\}, E \cup \{e_1, e_2\}, \ldots, E \cup \{e_1, \ldots, e_k\}$ belong to \mathcal{B}_i . Since $A \cup B_1 = D(E, t_i) \cup B_1 \in \mathcal{F}(E) \subset \mathcal{M}_i$ and $\mathcal{F}(E)$ is connected, we have that $A \cup B_1 \in \mathcal{C}$. Since $E \cup \{e_1\} \subset A \cup B_1 \subset D(E \cup \{e_1\}, t_i)$ and each component of $A \cup B_1$ intersects $E \cup \{e_1\}$ and each component of $D(E \cup \{e_1\}, t_i)$ intersects an order arc α from $E \cup \{e_1\} \neq D(E \cup \{e_1\}, t_i)$ such that $A \cup B_1 \in \operatorname{Im} \alpha \subset \mathcal{E}(E \cup \{e_1\}, t_i) \subset \mathcal{R}_i(t_i) \subset \mathcal{M}_i$. Thus, $\operatorname{Im} \alpha \subset \mathcal{C}$. Hence, $D(E \cup \{e_1\}, t_i) \in \mathcal{C}$. In the case that $E \cup \{e_1\} = D(E \cup \{e_1\}, t_i)$, $D(E \cup \{e_1\}, t_i) = A \cup B_1$, thus, $D(E \cup \{e_1\}, t_i) \in \mathcal{C}$. In both cases, $D(E \cup \{e_1\}, t_i) \in \mathcal{C}$. Since $D(E \cup \{e_1\}, t_i) \cup B_2 \in \mathcal{F}(E \cup \{e_1\}) \subset \mathcal{M}_i$, we have $D(E \cup \{e_1\}, t_i) \cup B_2 \in \mathcal{C}$. Proceeding as before, we can conclude that $D(E \cup \{e_1, e_2\}, t_i) \in \mathcal{C}$.

Notice that $\{e_1, \ldots, e_k\} \subset D(E \cup \{e_1, \ldots, e_k\}, t_i) \subset D(E_0, t_i) = D_0$. This implies that $H(D(E \cup \{e_1, \ldots, e_k\}, t_i), D_0) < \eta$. This completes the proof that $D_0 \in cl_{2^X}(\mathcal{C}) = \mathcal{C}$. Therefore, \mathcal{M}_i is connected and Claim 1 is proved.

CLAIM 2. The sets $\mathcal{M}_1, \ldots, \mathcal{M}_n$ are pairwise disjoint.

We prove Claim 2. Let $i, j \in \{1, ..., n\}$ be such that $i \neq j$. Suppose that there exists an element $A \in \mathcal{M}_i \cap \mathcal{M}_j$. We consider four cases.

CASE 1. $A \in \mathcal{R}_i(t_i) \cap \mathcal{R}_j(t_j)$.

In this case, there exist $E_i \in \mathcal{B}_i$ and $E_j \in \mathcal{B}_j$ such that $A \in \mathcal{E}(E_i, t_i) \cap \mathcal{E}(E_j, t_j)$. Thus, $H(A, E_i) \leq t_i < r < \varepsilon$ and $H(A, E_j) < \varepsilon$. Since $H(E_i, A_i) \leq \varepsilon$ and $H(E_j, A_j) \leq \varepsilon$, we have $H(A_i, A_j) < 4\varepsilon$. Contrary to the choice of ε . Hence, Case 1 is impossible.

CASE 2. $A_j - A_i$ has at least two points.

Notice that $A \in \mathcal{M}_j$ implies that there exists an element $E_j \in \mathcal{B}_j$ such that $E_j \subset A$. By definition s(i, j) > 0 is such that $A_j - N(4s(i, j), A_i)$ is nondegenerate and $4s(i, j) < \delta(A_j - N(4s(i, j), A_i))$. Fix points $p, q \in A_j - N(4s(i, j), A_i)$ such that $d(p, q) > 4s(i, j) > \max\{4t_i, 4t_j\}$. Since $H(E_j, A_j) \leq t_j$, there exist points $u, v \in E_j$ such that $d(u, p) \leq t_j < r < s(i, j)$ and $d(v, q) \leq t_j < s(i, j)$. Thus, $u, v \notin N(3s(i, j), A_i)$. Since $A \in \mathcal{M}_i$, there exists $E_i \in \mathcal{B}_i$ such that either $E_i \subset A \subset D(E_i, t_i)$ or $A = D(E_i, t_i) \cup B$ for some $B \in \mathcal{N}(t_i)$. Since $t_i < r < s(i, j)$ and $H(D(E_i, t_i), A_i) \leq H(D(E_i, t_i), E_i) + H(E_i, A_i) \leq 2t_i$, we have $D(E_i, t_i) \subset N(2s(i, j), A_i)$ and $u, v \notin D(E_i, t_i)$.

 $B \in \mathcal{N}(t_i)$. Thus, $u, v \in B$. Hence, $d(u, v) \leq \delta(B) = t_i$. This implies that $d(p,q) \leq d(p,u) + d(u,v) + d(v,q) < 3s(i,j)$, which is a contradiction with the choice of p and q. We have proved that this case is impossible.

Similarly, it can be proven that the following case is also impossible.

CASE 3. $A_i - A_j$ has at least two points.

CASE 4. $A_j - A_i$ is a one-point set.

Let $p \in A_j - Ai$, by definition s(i, j) > 0 is such that $N(2s(i, j), \{p\}) \cap N(2s(i, j), A_i) = \emptyset$. Since $A \in \mathcal{M}_i$, there exists $E_i \in \mathcal{B}_i$ such that either $E_i \subset A \subset D(E_i, t_i)$ or $A = D(E_i, t_i) \cup B_i$ for some $B_i \in \mathcal{N}(t_i)$. Since $t_i < r < s(i, j)$ and $H(D(E_i, t_i), A_i) \leq 2t_i$, we have $D(E_i, t_i) \subset N(2s(i, j), A_i)$ and $N(2s(i, j), \{p\}) \cap D(E_i, t_i) = \emptyset$. Since $A \in \mathcal{M}_j$, there exists an element $E_j \in \mathcal{B}_j$ such that $E_j \subset A \subset D(E_j, t_j) \cup C_j$, for some $C_j \in \mathcal{N}(t_j)$ (even in the case that $A \in \mathcal{R}_j(t_j)$). Let $u \in E_j$ be such that $d(p, u) \leq t_j < s(i, j)$. Then $N(s(i, j), \{u\}) \subset N(2s(i, j), \{p\})$ and $N(s(i, j), \{u\}) \cap D(E_i, t_i) = \emptyset$. In particular, $u \in A - D(E_i, t_i)$. This implies that $A = D(E_i, t_i) \cup B_i$ for some $B_i \in \mathcal{N}(t_i), u \in B_i$ and $D(E_i, t_i) \cap B_i = \emptyset$. We consider two subcases.

CASE 4.1. $A_i - A_j$ is a one-point set.

Proceeding as above, we have that A is of the form $A = D(E_j, t_j) \cup B_j$ for some $E_j \in \mathcal{B}_j, B_j \in \mathcal{N}(t_j)$. Notice that u was choosen in E_j . Let $R \in \mathcal{N}(t_j)$ be such that $u \in R$. Then $R \subset D(E_j, t_j) \subset A = D(E_i, t_i) \cup B_i$ and $R \subset$ $N(s(i, j), \{u\})$. This implies that $R \subset B_i$. Hence, $t_j = \delta(R) \leq \delta(B_i) = t_i$. Since $t_j \neq t_i$, we conclude that $t_j < t_i$. Similarly, $t_i < t_j$. This contradiction shows that this subcase is impossible.

CASE 4.2. $A_i \subset A_j$.

In this case, $A_i \subsetneq A_j$, so $m_j < m_i$ and $5t_j < t_i$. Since $E_j \in \mathcal{B}_j$, and $H(E_j, D(E_j, t_j)) \leq t_j$, we have $D(E_j, t_j) \subset N(2t_j, A_j) = N(2t_j, A_i) \cup$ $N(2t_j, \{p\})$. We also have $D(E_i, t_i) \subset N(2t_i, A_i)$ and $B_i \subset N(t_i, \{u\}) \subset$ $N(t_i + t_j, \{p\})$. Given a point $x \in B_i \subset A \subset D(E_j, t_j) \cup C_j$ such that $x \notin C_j$, we have that $x \in D(E_j, t_j) \subset N(2t_j, A_i) \cup N(2t_j, \{p\})$. Since $N(2t_j, A_i) \cap$ $N(t_i + t_j, \{p\}) \subset N(2s(i, j), A_i) \cap N(2s(i, j), \{p\}) = \emptyset$ and $B_i \subset N(t_i + t_j, \{p\})$, we obtain that $x \in N(2t_j, \{p\})$. We have shown that $B_i \subset V(2t_j, \{p\}) \cup C_j$. Since B_i is connected and the sets $V(2t_j, \{p\})$ and C_j are closed, we obtain that $t_i = \delta(B_i) \leq 5t_j$, a contradiction. This completes the proof that this subcase is also impossible.

Since we have considered all the possible cases, the proof of Claim 2 is complete. $\hfill \Box$

References

[1] M. E. Aguilera and A. Illanes, Connectedness properties of the hyperspaces $C_{\varepsilon}(X)$, to appear in Houston J. Math.

A. ILLANES

- [2] H. Hosokawa, Mutual aposyndesis of n-fold hyperspaces, Houston J. Math. 35 (2009), 131-137.
- [3] A. Illanes and J. M. Martínez-Montejano, Zero-dimensional closed set aposyndesis and symmetric products, Houston J. Math. 37 (2011), 1333–1346.
- [4] A. Illanes and J. M. Martínez-Montejano, *Concerning k-mutual aposyndesis in symmetric products*, preprint.
- [5] A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York and Basel, 1999.
- [6] J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Topology Proc. 24 (1999), 203–213.
- [7] J. M. Martínez-Montejano, Zero-dimensional closed set aposyndesis and hyperspaces, Houston J. Math. 32 (2006), 1101–1105.
- [8] J. M. Martínez-Montejano, Mutual aposyndesis of the hyperspace of compact sets, Questions Answers Gen. Topology 28 (2010), 197–201.
- [9] L. E. Rogers, Concerning n-mutual aposyndesis in products of continua, Trans. Amer. Math. Soc. 169 (1971), 239–251.

A. Illanes

Instituto de Matemáticas Universidad Nacional Autónoma de México Circuito Exterior, Cd. Universitaria México, 04510, D.F. *E-mail*: illanes@matem.unam.mx

Received: 2.11.2010. Revised: 31.5.2011.