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ORBIT PROJECTIONS AND G-ANR-RESOLUTIONS

Alexander Bykov and Aura Lucina Kantún Montiel

Benemérita Universidad Autónoma de Puebla, Mexico

Abstract. We consider the orbit projection pE : E → E/G of a
G-space E with only one orbit type. We show that pE admits a G-ANR-
resolution consisting of G-fibrations if G is a compact metrizable group.

1. Introduction

The following fact is well known (see, for instance, [14, p. 54]): if G is a
compact Lie group and E is a paracompact G-space with orbits only of one
type, then the orbit projection pE : E → E/G is a G-fibration. But what can
one say about the orbit projection pE when G is not necessarily a Lie group?

In this paper we try to answer this question for the case of any compact
metrizable group G. Generally speaking, we show that, in this case, pE can
be approximated, in a good enough way, by G-fibrations of G-ANR’s. More
precisely, our main result (Theorem 4.11) states that the orbit projection
pE admits a G-ANR-resolution consisting of G-fibrations pi. Moreover, this
resolution can be chosen so that each pi is an orbit projection Ei → Ei/G,
where Ei is a G-ANR.

The G-map pE could be said to be a “shape G-fibration” because, in
the non-equivariant case, continuous maps, which admit ANR-resolutions
consisting of fibrations, are called shape fibrations. In fact, we use some
notions of the shape theory; in particular, dealing with a given G-space E
we consider ANR-resolutions of both G and E. We hope that the results
of this paper will have applications in the equivariant shape theory whose
foundations are given in [6] and [8].
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2. Preliminaries

The letter G will always denote a compact Hausdorff group; the unit
element of G is denoted by e. In the most part of the paper we work in the
category MG of metrizable G-spaces and G-maps.

The basic definitions and facts of the theory of G-spaces (the theory of
transformation groups) can be found in [9],[12] and [14]. We recall some of
them below for the convenience of the reader.

By a G-space we mean a topological space X together with a fixed
continuous action · : G × X → X , (g, x) 7→ g · x, of G on X . It is used
to write simply gx instead of g · x.

Let X be a G-space. For x ∈ X , the subgroup Gx = {g ∈ G | gx = x} is
called the isotropy group at x. For a subgroupH of G, the symbolXH denotes
theH-fixed point set ; it can be described as follows: XH = {x ∈ X |H ⊆ Gx}.

Let X and Y be G-spaces. A continuous map f : X → Y is said to be a
G-map or an equivariant map if f(gx) = gf(x) for every (g, x) ∈ G×X . If a
G-map f is a homeomorphism, it is called a G-equivalence. We write X ≈ Y
and say that X and Y are G-equivalent if there exists some G-equivalence
X → Y . A homotopy F : X × I → Y , where I = [0, 1], is called a G-
homotopy if it is a G-map considering X × I with the action g(x, t) = (gx, t).
Therefore F satisfies F (gx, t) = gF (x, t) for every (x, t) ∈ X × I and every
g ∈ G.

The homogeneous spaceG/H = {gH | g ∈ G}, for a given closed subgroup
H of G, is a G-space with the action g · g′H = gg′H .

The conjugacy class (H) of any closed subgroupH of G will be called a G-
orbit type (in [9] it is called G-isotropy type). The reason for this terminology
is the following: if X is a G-space, G(x) is the orbit of x ∈ X and H = Gx is
the isotropy group at x, then

(H) = {gHg−1 | g ∈ G} = {Gy | y ∈ G(x)}

and the orbit G(x) is G-equivalent to G/Gy for each y ∈ G(x); in particular,
G(x) ≈ G/H . A G-space X has only one orbit type (H) if (Gx) = (H) for
each point x ∈ X ; in this case every orbit is G-equivalent to G/H . A G-space
(and the corresponding action of G) is called free if it has only one orbit type
({e}), so that every orbit is G-equivalent to G.

If H is a subgroup of G, then every G-space and every G-map can be
regarded as an H-space and an H-map, respectively, by restricting the group
action from G to H . Thus we get the restriction functor MG → MH .

In general, every continuous group homomorphism f : G′ → G induces
the functor F(f) : MG → MG′ : if X is a G-space, then the G′-action · on X
is defined by g ·x = f(g)x. In particular, the restriction functor is induced by
the natural inclusion H →֒ G. If N is a closed normal subgroup of a group G,
then every G/N -space and every G/N -map can be considered as a G-space
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and a G-map respectively due to the functor F(qN ) : MG/N → MG induced
by the natural projection qN : G → G/N .

Given a G-space X , the set of its G-orbits, endowed with the quotient
topology, is called the G-orbit space of X and is denoted by X/G. The natural
projection pX : X → X/G (defined by pX(x) = G(x)) is called the G-orbit
projection or, simply, orbit projection of X .

If f : X → Y is a G-map, then there exists a unique continuous map
f/G : X/G → Y/G, called the map induced by f , such that the diagram

X Y

X/G Y/G

-f

?
pX

?
pY

-f/G

commutes. Clearly, f/G is defined by (f/G)(G(x)) = G(f(x)).
If N is a closed normal subgroup of G and X is a G-space, the N -

orbit space X/N is a G/N -space with the action (gN) · (N(x)) = N(gx).
Every G-map f : X → Y induces a G/N -map f/N : X/N → Y/N given by
(f/N)(N(x)) = N(f(x)). The correspondence f 7→ f/N defines the N -orbit
functor −/N : MG → MG/N .

Note that in the above situation X/N , being a G/N -space, can be also
regarded as a G-space (with the action g · N(x) = N(gx)), and the N -orbit
projection X → X/N can be considered as a G-map. In particular, pX : X →
X/G is a G-map if X/G is taken with the trivial action of G.

A G-map p : E → B is called a G-fibration if it has the G-equivariant co-
vering homotopy property (ECHP), that is, if for every commutative diagram
of G-maps

x X E

(x, 0) X × I B

?

-f

?
∂0

?
p

-
F

there exists a G-homotopy F̃ : X × I → E as a filler.
The special case of a G-fibration of main interest to us is given by the

following statement (see [14, p. 54]) already mentioned in the Introduction.

Proposition 2.1. Let G be a compact Lie group. If a G-space E has
only one orbit type, then the orbit projection pE : E → E/G is a G-fibration.

Proposition 2.1 can be easily obtained either from the Covering Homotopy
Theorem of Palais ([9, II.7.3]) or from the fact that pE is a G-bundle (in the
sense of [10]) according to [9, II.5.8] and therefore has ECHP by [10, Corollary
2.12].
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By G-ANR-space (resp. by G-AR-space) we mean, of course, a G-
equivariant absolute neighborhood retract (resp.G-equivariant absolute retract)
for the class of all metrizable G-spaces (see, for instance, [1]-[5] and [12] for
the equivariant theory of retracts).

It is known ([1]) that a metrizable G-space Y is a G-ANR if and only if
it is a G-ANE. In other words, it has the following extension property: for
any G-map f : A → Y , where A is a closed invariant subset of a metrizable
G-space X , there exists a G-map f : U → Y such that f |A = f , where U is
some invariant neighborhood of A in X . In this paper we shall use also the
next two propositions.

Proposition 2.2 ([1],[6]). Let G be a compact Hausdorff group.
For any metrizable G-space X there exists a G-equivariant closed embedding
X →֒ M into some normed linear G-AR-space M .

Proposition 2.3 ([2],[5]). Let G be a compact Hausdorff group and let
N be a closed normal subgroup of G. If X is a G-A(N)R-space, then X/N is
a G/N -A(N)R-space. In particular, X/G is an A(N)R-space.

Some more facts concerning G-fibrations and G-ANRs are given in the
next section.

3. G-ANR-spaces and G-fibrations

We have already noticed in the previous section that, for a given closed
normal subgroup N of a group G, every G/N -space X can be considered in a
natural way as a G-space (if ∗ is the action of G/N on X , then the action · of
G on X is defined by g ·x = gN ∗x) and hence every G/N -map of G/N -spaces
can be regarded as a G-map.

Proposition 3.1. Let N be a closed normal subgroup of a compact group
G.

(a) If p : E → B is a G/N -fibration, then p is a G-fibration.
(b) If E is a G/N -ANR, then E is a G-ANR.

Proof. Let p : E → B be a G/N -map and let s : A →֒ X be a closed
G-embedding. Consider the following commutative diagram of G-maps

A E

A/N

X/N

X B

HHHHjqA

-f

?

s

?

p

����*
f/N

?s/N

HHHHj
F/N

-F����*qX
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and observe that the existence of a filler F : X/N → E is equivalent to the

existence of a filler F̃ : X → E.
(a) Let X = A × I and s(a) = (a, 0). Obviously, (A × I)/N can be

identified with (A/N) × I. If p is a G/N -fibration, then there is a filler

F : (A/N) × I → E. Consequently, the G-map F̃ : A × I → E, given by

F̃ = F ◦ qX , is also a filler of the diagram. This proves that p is a G-fibration.
(b) In order to prove that E is a G-ANR we need only the upper part of

the diagram, so we may assume that B is a one-point set with the trivial action
of G. Since E is a G/N -ANR-space, for some G/N -invariant neighborhood U
of A/N in X/N there exists a G/N -map f : U → E such that f |A/N = f/N .

Then V = q−1X (U) is a G-invariant neighborhood of A in X and (f ◦ qX)|V :
V → E is a G-extension of f . It means that E is a G-ANE and hence it is a
G-ANR.

In the proof of Proposition 3.1, in fact, we have used that the functor
F(qN ), induced by the projection qN : G → G/N , is a right adjoint to the
N -orbit functor −/N : MG → MG/N . The proof of the next statement is
analogous and can be found, for instance, in [7]. It is based on the fact that
the restriction functor, induced by the inclusion iH : H →֒ G, is a right adjoint
to the functor of the twisted product G ×H − (see [14, Ch. I, Proposition
4.3]).

Proposition 3.2. Let H be a closed subgroup of a compact group G.

(a) If p : E → B is a G-fibration, then p is an H-fibration.
(b) If E is a G-ANR and G/H is metrizable, then E is an H-ANR.

Remark 3.3. The condition “G/H is metrizable” is added in the assertion
(b) in order to get a metrizable G-space G ×H X for any metrizable H-
space X (see [4, Proposition 3]) and, therefore, to have a well defined functor
G×H − : MH → MG. Note that this restriction is unnecessary for (a).

Proposition 3.4 ([12, Corollary 1.6.7]). Let H be a closed subgroup of a
compact Lie group G. Then G/H is a G-ANR.

Corollary 3.5. Let X be a G-space such that G is a compact Lie group.
Then for every x ∈ X, the orbit G(x) is a G-retract of some open invariant
neighborhood of G(x) in X.

Indeed, it is sufficient to notice that G(x) is G-equivalent to the G-space
G/Gx and therefore G(x) is a G-ANR.

The property of the homogeneous space G/H to be a G-ANR deserves
special attention; it is characterized in [3] as follows:

Proposition 3.6. Let H be a closed subgroup of a compact group G.
Then the following conditions are equivalent:

(1) G/H is a G-ANR-space,
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(2) G/H is locally contractible,
(3) G/H is a smooth manifold,
(4) there exists a closed normal subgroup N of G such that N ⊆ H and

G/N is a Lie group.

Definition 3.7 ([4]). A closed subgroup H of a compact group G is called
large if it satisfies the equivalent conditions (1)-(4) of Proposition 3.6.

Remark 3.8. Though the conditions of Proposition 3.6 are equivalent, in
the original definition of a large subgroup, given in [3], namely the condition
(4) was used; in this form the definition can be easily generalized for the case
of non-compact groups as it was done in [4].

We shall need the following simple proposition.

Proposition 3.9. Let G be a compact group.

(a) If H is a large subgroup of G, then the quotient group N(H)/H is
a compact Lie group, where N(H) is the normalizer of H in G. In
particular, a closed normal subgroup N is large if and only if G/N is
a Lie group.

(b) If N is a large normal subgroup of G, then for each closed subgroup H
of G, the subgroup NH of G is also large.

Proof. (a) If N is a closed normal subgroup of G such that N ⊆ H and
G/N is a Lie group, then N(H)/N is a Lie group as a closed subgroup of
G/N . The inclusion N →֒ H induces a continuous epimorphism N(H)/N →
N(H)/H . Thus, N(H)/H is isomorphic to a quotient group of the Lie group
N(H)/N , and therefore it is a Lie group too.

(b) It follows immediately from Proposition 3.6(4), because N ⊆ NH .

The notion of a large subgroup is used in the next statement which is a
slight generalization of Proposition 2.1.

Proposition 3.10. Let H be a large subgroup of a compact group G. If a
G-space E has only one orbit type (H), then pE : E → E/G is a G-fibration.

It is not hard to prove this proposition by slightly modifying the proof
of Proposition 2.1 which, in fact, is based on the existence of tubes of the
form G/H ×A about the orbits (see the proof of Theorem II.5.8. in [9]). But
we prefer to obtain Proposition 3.10 as a direct corollary of the statement of
Proposition 2.1 and the following proposition of general interest:

Proposition 3.11. Let Y be an H-space, where H is a closed subgroup
of a group G. If the orbit projection qY : Y → Y/H is an H-fibration, then
the map p : G×H Y → Y/H, given by p([g, y]) = qY (y), is a G-fibration.
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Proof. The map p is well defined and continuous being the map (of
H-orbit spaces) induced by the projection G× Y → Y .

Suppose that it is given a commutative diagram

X G×H Y

X × I Y/H

-f

?

∂0

?

p

-F

of G-maps. We have to show that there exists a filler F̃ : X × I → G×H Y .
Let S = f−1(iY (Y )), where iY : Y →֒ G×H Y is the closed H-embedding

given by iY (y) = [e, y]. Let f ′ : S → Y be an H-map defined by f ′(s) =
(iY )

−1(f(s)). With no loss of generality we can assume that X = G ×H S
(see [12, Corollary 1.7.8]) and f = G ×H f ′, i.e., f([g, s]) = [g, f ′(s)] for
[g, s] ∈ X .

Define F ′ : S × I → Y/H by F ′(s, t) = F ([e, s], t). Clearly, F ′ is an
H-map and F ′(s, 0) = F ([e, s], 0) = (p ◦ f)([e, s]) = p([e, f ′(s)]) = qY (f

′(s))
for every s ∈ S. Since qY is an H-fibration, there exists an H-homotopy

F̂ : S × I → Y such that diagram

S Y

S × I Y/H

-f ′

?

∂′

0

?

qY

-F ′
�
�
�
���

F̂

commutes.
Now we can define F̃ : X × I → G×H Y as follows:

F̃ ([g, s], t) = [g, F̂ (s, t)], [s, t] ∈ X, g ∈ G.

It is easy to check that F̃ is the required filler.

Proof of Proposition 3.10. Let N = N(H) be the normalizer of H
in G. Since all orbits of E have type (H), there is a commutative diagram
(see [9, II.5.9, II.5.10])

G×N EH E

EH/N E/G

-η

?

p

?

pE

-ζ
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where η is a G-equivalence, defined by [g, y] 7→ gy, ζ is a homeomorphism
taking N(y) ∈ EH/N to G(y) ∈ E/G and p([g, y]) = N(y) . Therefore we
must show only that pEH : EH → EH/N is an N -fibration because in this
case p is a G-fibration by Proposition 3.11.

Note that the N -space EH can be regarded as a free N/H-space. By
Proposition 2.1, the orbit projection q : EH → EH/(N/H) is an N/H-
fibration, because N/H is a Lie group. Hence q is also an N -fibration by
Proposition 3.1 (a). Since we have the natural homeomorphism EH/N ≈
EH/(N/H), the orbit projection pEH is also an N -fibration.

4. Resolutions of orbit projections

In this paper we are interested only in the G-ANR-resolutions of compact
G-spaces. Therefore the general definition of a G-resolution, given in [2] and
[6], can be reduced to a simpler one which looks as follows:

Definition 4.1. Let X be a compact G-space. An inverse sequence of
G-ANR-spaces and G-maps {Xi, q

j
i } is called G-ANR-resolution of X if:

(1) X = lim
←−

{Xi, q
j
i },

(2) the family of natural projections {qi : X → Xi} satisfies the following
condition: for every i and any invariant open neighborhood U of qi(X)

in Xi there exists j ≥ i such that qji (Xj) ⊆ U .

It is easy to see that every compact G-space admits a G-ANR-resolution
(for the general case see [6]). Indeed, by Proposition 2.2, we can consider a
given compact G-space X as a closed invariant subset of some G-AR-space
M . Since the G-space X is compact it has a countable neighborhood basis
{Ui}i∈N in M consisting of invariant open subsets Ui such that Ui+1 ⊆ Ui

for every i. Then the inverse sequence {Ui, u
j
i}, where uj

i are the inclusions
Uj →֒ Ui for j ≥ i, is a G-ANR-resolution of X .

Proposition 4.2. Let H be a large subgroup of a compact group G. If a
compact G-space X has only one orbit type (H), then X admits a G-ANR-

resolution {Xi, u
j
i} such that all orbits of every G-ANR-space Xi have the

same orbit type (H).

Clearly, Proposition 4.2 is an immediate consequence of the following
lemma.

Lemma 4.3. Let H be a large subgroup of a compact group G. If a G-space
X has only one orbit type (H), then there is a closed G-embedding X →֒ U
such that U is a G-ANR-space with all orbits of the same type (H).

Proof. First we consider the particular case when H = {e}. In other
words, we suppose that G is a Lie group and X is a free G-space. According
to Proposition 2.2 the G-space X can be considered as an invariant closed
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subspace of some G-AR-space M . For every x ∈ X the orbit G(x) is a
G-retract of some invariant open neighborhood Ux of G(x) in M . If r :
Ux → G(x) is a G-retraction, then Gy ⊆ Gr(y) = {e}, that is, Gy = {e}
for all y ∈ Ux. Thus the action of G on Ux is free for each x ∈ X and
therefore the action of G on U =

⋃
x∈X Ux is free. Obviously, U is an invariant

neighborhood of X and X →֒ U is the required embedding because U is G-
ANR-space as an open invariant subset of the G-AR-space M .

Now let us return to the general case. Since X has orbits only of type
(H), there exists a canonical G-equivalence X ≈ G×N XH , where XH is the
set of H-fixed points and N = N(H) is the normalizer of H (see [9, II.5.9]);
therefore we can assume that X = G ×N XH . Note that the quotient group
N/H acts freely on XH according to the rule: nH ·x = nx. Moreover, N/H is
a Lie group (see Proposition 3.9 (a)). Hence, by the initial part of the proof,
there is a closed N/H-embedding i : XH →֒ V in some free N/H-ANR-space
V . Clearly, i can be regarded as an N -embedding of the N -space XH in the
N -ANR-space V (see Proposition 3.1(b)).

The induced closed G-embedding G×N i : G×N XH →֒ G×N V has the
desired properties. Indeed, since N is obviously a large subgroup of G and V
is an N -ANR, U = G ×N V is a G-ANR-space by Proposition 8 of [4]. It is
easy to see that U has only orbits of type (H).

The following fact is well known (see, for instance, [13, §46]):

Proposition 4.4. If G is a compact metrizable group, then there exists
a decreasing sequence

N1 ⊇ N2 ⊇ ... ⊇ Ni ⊇ Ni+1 ⊇ ...,

of large normal subgroups of G such that
⋂

i∈N Ni = {e}. Therefore

lim
←−

{G/Ni, q
j
i } = G,

where qji : G/Nj −→ G/Ni, j ≥ i, are natural projections.

Definition 4.5. If a sequence {Ni}i∈N of subgroups of a group G satisfies
the conditions of Proposition 4.4, we say that it is a pro-Lie sequence.

Proposition 4.6. Let {Ni}i∈N be a pro-Lie sequence of subgroups of a
compact group G. If X is a G-space then

X = lim
←−

{X/Ni, p
j
i}

where pji : X/Nj −→ X/Ni, j ≥ i, are natural projections.

Note that here the spaces X/Ni are G/Ni-spaces, but we also can regard

them as G-spaces and consider the maps pji as G-maps. The proof of
Proposition 4.6 is given in [7] (see also [1, Corollary 9]).
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Theorem 4.7. Let G be a compact metrizable group and let {Ni}i∈N be
any pro-Lie sequence of subgroups of G. If all orbits of a compact G-space E
have type (H), then E admits a G-ANR-resolution {Ei, q

j
i } such that each

Ei has orbits only of type (HNi).

Proof. According to Proposition 4.6, we can represent E as

E = lim
←−

{E/Ni, p
j
i}

where pji : E/Nj −→ E/Ni, j ≥ i, are the natural projections. Since, for each
i, E/Ni is a G-space with all orbits of type (HNi) andHNi is a large subgroup
of G, we can consider, by Lemma 4.3, each E/Ni as a closed invariant subset
of some G-ANR-space Ui with all orbits of the same orbit type (HNi).

For each i we shall find an open invariant neighborhood Vi of E/Ni in
Ui by induction as follows. Put V1 = U1 and suppose that Vi is given. Let
Vi+1 be an open invariant neighborhood of E/Ni+1 in Ui+1 for which there is
a G-equivariant extension f i+1

i : Vi+1 → Vi of the composition

E/Ni+1 → E/Ni →֒ Vi.

This extension exists because Vi is a G-ANE.
Now, by obvious induction on i and j, we choose a collection of G-spaces

{W
(j)
i }i,j∈N which satisfies the following conditions:

(1) For each i the family {W
(j)
i }j∈N is a basis of open invariant neighbor-

hoods of E/Ni in Vi such that W
(j+1)
i ⊂ W

(j)
i for all j.

(2) W
(j)
i+1 ⊆ (f i+1

i )−1(W
(j)
i ) for all i and j.

Finally, we put Ei = W
(i)
i for each i, and define qi+1

i : Ei+1 → Ei as the

restriction of f i+1
i to Ei+1 (note that f i+1

i (W
(i+1)
i+1 ) ⊆ W

(i+1)
i ⊆ W

(i)
i ). Of

course, qji : Ej → Ei for j > i is defined by qji = qi+1
i ◦ qi+2

i+1 ◦ ... ◦ q
j
j−1.

It is easily checked that {Ei, q
j
i } is the required G-ANR-resolution of E.

Definition 4.8. Let f : X → Y be a G-map of compact G-spaces. An
inverse sequence {fi, β

j
i } consisting of G-maps fi and pairs βj

i = (qji , r
j
i ) of

G-maps such that the diagram

Xi Xi+1

Yi Yi+1

?

fi

?

fi+1

�q
i+1

i

�
ri+1

i

commutes, for every i, is called G-ANR-resolution of f if

1. {Xi, q
j
i } is a G-ANR-resolution of X,



ORBIT PROJECTIONS AND G-ANR-RESOLUTIONS 203

2. {Yi, r
j
i } is a G-ANR-resolution of Y ,

3. f = lim
←−

{fi, β
j
i }.

Of course, if the group G is trivial this definition (as well as Definition
4.1) reduces to the definition of an ANR-resolution for non-equivariant case
(see [11, Definition 4]).

Proposition 4.9. Let N be a closed normal subgroup of a compact group
G and let {Xi, q

j
i } be a G-ANR-resolution of a compact G-space X. Then

(i) {Xi/N, qji /N} is a G/N -ANR-resolution of X/N .

(ii) If, for each i, pXi
: Xi → Xi/N is the orbit projection, then {pXi

, βj
i }

is a G-ANR-resolution of the N -orbit projection pX : X → X/N ,

where βj
i = (qji , q

j
i /N) for i ≤ j.

The most part of the proof of Proposition 4.9 is covered by the following
general lemma. This lemma seems to be well known, but we shall give its
proof because we could not find an adequate reference.

Lemma 4.10. Let N be a closed normal subgroup of a compact group
G and let {Xλ, q

µ
λ ,Λ} be an inverse system of Hausdorff G-spaces. If X =

lim
←−

{Xλ, q
µ
λ ,Λ} with the projections qλ : X → Xλ, then

X/N = lim
←−

{Xλ/N, qµλ/N,Λ}

with the projections qλ/N : X/N → Xλ/N .

Proof. First note that for any N -orbit N(x) in X

N(x) =
⋂

λ∈Λ

q−1λ (qλ(N(x)))

because N(x) is a closed subset of X .
Let

Y = lim
←−

{Xλ/N, qµλ/N,Λ}

with the projections q̂λ : Y → Xλ/N . Since, for λ ≤ µ, qλ/N = qµλ/N ◦ qµ/N ,
there is a unique G/N -map h : X/N → Y such that q̂λ ◦ h = qλ/N for each
λ ∈ Λ. We must show that h is a homeomorphism.

“h is injective”. Suppose that N(x), N(x′) ∈ X/N are such that
h(N(x)) = h(N(x′)). Then, for each λ, (qλ/N)(N(x)) = (qλ/N)(N(x′)),
which means that qλ(N(x)) = qλ(N(x′)). Therefore

N(x) =
⋂

λ∈Λ

q−1λ (qλ(N(x))) =
⋂

λ∈Λ

q−1λ (qλ(N(x′))) = N(x′).

“h is surjective”. Let y ∈ Y and let N(xλ) = q̂λ(y) for every λ, where
xλ ∈ Xλ. For λ ≤ µ we have (qµλ/N)(N(xµ)) = N(xλ) and hence qµλ(N(xµ)) =
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N(xλ). So we get the inverse system {N(xλ), q̃
µ
λ ,Λ}, where q̃

µ
λ(z) = qµλ(z) for

z ∈ N(xµ). Since all the spaces N(xλ) are compact and non-empty,

F = lim
←−

{N(xλ), q̃
µ
λ ,Λ} 6= ∅.

Clearly F can be regarded as a closed subset of X such that F =⋂
λ∈Λ q−1λ (N(xλ)). Now let x ∈ F . Then qλ(x) ∈ N(xλ) and therefore

qλ(N(x)) = N(xλ) (recall that qλ takes any N -orbit onto some N -orbit) for
each λ. This implies that h(N(x)) = y because (qλ/N)(N(x)) = qλ(N(x)) =
N(xλ) = q̂λ(y) for every λ ∈ Λ.

“h is an open map”. Let y ∈ h(U), where U is an open subset of X/N .
For x ∈ X satisfying h(N(x)) = y, we can find λ and an open neighborhood
V of qλ(x) in Xλ such that q−1λ (V ) ⊆ (pX)−1(U), where pX : X → X/N is
the N -orbit projection. Since the N -orbit projection pXλ

: Xλ → Xλ/N is
open, q̂−1λ (pXλ

(V )) is an open subset of Y . It is easy to see that

y ∈ q̂−1λ (pXλ
(V )) ⊆ h(U).

Indeed,

q̂λ(y) = q̂λh(pX(x)) = (qλ/N)(pX(x)) = pXλ
qλ(x)

and therefore y ∈ q̂−1λ (pXλ
(V )), because qλ(x) ∈ V . If y′ ∈ q̂−1λ (pXλ

(V )), then
for x′ ∈ X , satisfying y′ = h(N(x′)), we have pXλ

qλ(x
′) = q̂λ(y

′) ∈ pXλ
(V ).

Hence we can find v ∈ V and n ∈ N such that nqλ(x
′) = v. This implies that

nx′ ∈ q−1λ (V ) ⊆ (pX)−1(U). Thus N(x′) ∈ U and y′ = h(N(x′)) ∈ h(U).

Proof of Proposition 4.9. We shall prove only the assertion (i)
because (ii) is its obvious consequence.

By lemma 4.10 we already have that X/N = lim
←−

{Xi/N, qji /N}.

According to Proposition 2.3, every Xi/N is a G/N -ANR. To finish

the proof we must show that {Xi/N, qji /N} satisfies the second condition of
Definition 4.1. Let U be a neighborhood of (qi/N)(X/N) in Xi/N . Since

{Xi, q
j
i } is a G-ANR-resolution and qi(X) ⊆ p−1Xi

(U), there is j ≥ i such that

qji (Xj) ⊆ p−1Xi
(U). Then (qji /N)(Xj/N) ⊂ U .

Finally, combining Theorem 4.7 and Proposition 4.9, we obtain the main
result of this paper.

Theorem 4.11. Let G be a compact metrizable group and let {Ni}i∈N be
any pro-Lie sequence of subgroups of G. If all orbits of a compact G-space E
have type (H), then the orbit projection

pE : E → E/G

admits a G-ANR-resolution {pi, β
j
i } consisting of the orbit projections pi :

Ei → Ei/G such that each Ei has only one orbit type (HNi) and therefore
each pi is a G-fibration.
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Proof. It is sufficient to apply the orbit projection functor −/G to the

G-ANR-resolution {Ei, q
j
i } given by Theorem 4.7. Hence, by Proposition 4.9,

we obtain a G-ANR-resolution {pi, β
j
i } of pE where pi = pEi

: Ei → Ei/G
for each i. By Proposition 3.10 every pi is a G-fibration.
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