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1. The main result and its proof

It has been shown by Senge and Straus [8] that if a and b are multiplicatively
independent positive integers, then every large positive integer N has either many
nonzero digits in base a, or many nonzero digits in base b. This was made effective
by Stewart [9] using Baker’s theory of lower bounds for linear forms in logarithms
of algebraic numbers (see also [4]). There are also variants of these results involving
for example either the Zeckendorf representation instead of just representations in
integer bases, or asking that the digits of a number N in a fixed integer base b to
be distinct from a fixed given one, instead of only asking that they be distinct from
0 (see, for example, [4] and [9]). Recall that the Zeckendorf representation [10] of a
positive integer N is the representation

N = Fm1 + Fm2 + · · ·+ Fmt , with mi −mi+1 ≥ 2 for i = 1, . . . , t− 1,

where {Fn}n≥1 is the Fibonacci sequence F1 = F2 = 1 and Fm+2 = Fm+1 + Fm for
all m ≥ 1. We also set F0 := 0. In particular, large repdigits in a base b, that is
numbers with identical digits in base b, must have many terms in their Zeckendorf
representation. In [5], it was shown in an elementary way that the largest repdigit
in base 10 which is a Fibonacci number is 55.

Here, we find all repdigits in base 10 which are the sums of at most three Fi-
bonacci numbers. Similar problems were recently investigated. For example, Fi-
bonacci numbers which are sums of three factorials were found in [1], while factorials
which are sums of at most three Fibonacci numbers were found in [6].

We follow the general method described in [4].
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Theorem 1. All nonnegative integer solutions (m1,m2,m3, n) of the equation

N = Fm1 + Fm2 + Fm3 = d

(
10n − 1

9

)
, with d ∈ {1, . . . , 9} (1)

have

N ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 44, 55, 66, 77, 99, 111, 555, 666, 11111}.

Proof. To fix ideas, we assume that m1 ≥ m2 ≥ m3. A brute force search with
Mathematica in the range 0 ≤ m1 ≤ 50 turned up only the solutions shown in the
statement of Theorem 1. This took a few minutes. When m1 ≥ 51, we have that
N ≥ Fm1 ≥ F51 > 1010, so all solutions of equation (1) must have

Fm1 + Fm2 + Fm3 ≡ d

(
1010 − 1

9

)
(mod 1010), with some d ∈ {1, . . . , 9}.

We generated the list of residues

F := {Fm1 (mod 1010) : 51 ≤ m1 ≤ 1000}.

Then we tested, again with Mathematica, whether for some m2, m3 ∈ [0, 1000] and
d ∈ {1, . . . , 9}, we can have

d

(
1010 − 1

9

)
− Fm2 − Fm3 (mod 1010) ∈ F .

This took a few minutes and no new solution turned up.
A faster and more clever way of testing this range was pointed out to me by Juan

José Alba Gonzalez. Namely, one first shows by using only elementary manipulations
with the recurrence defining the Fibonacci numbers that if a number N is a sum of at
most three Fibonacci numbers, then its Zeckendorf representation contains at most
three terms. Next, if m1 ≤ 1000, then 10n−1 ≤ (10n − 1)/9 ≤ 3Fm1 ≤ 3F1000, so
n ≤ 210. For each d ∈ {1, . . . , 9} and each n ∈ [1, 210], we generated the Zeckendorf
representations of N = d(10n − 1)/9, and selected only the instances for which such
representation has at most three terms. This computation took a few seconds and
returned only the numbers N appearing in the statement of the theorem.

So, from now on, we may assume that m1 ≥ 1001, therefore n ≥ 208. We use
the fact that

Fm =
αm − βm

√
5

for m ≥ 0, where (α, β) :=

(
1 +

√
5

2
,
1−

√
5

2

)
.

We rewrite equation (1) in three different ways as

αm1

√
5

− d×10n

9
= −d

9
+
βm1

√
5
−αm2

√
5

+
βm2

√
5

− αm3

√
5
+
βm3

√
5
,

αm1

√
5
(1 + αm2−m1)− d× 10n

9
= −d

9
+

βm1

√
5

+
βm2

√
5

− αm3

√
5

+
βm3

√
5
, (2)

αm1

√
5
(1 + αm2−m1 + αm3−m1)− d× 10n

9
= −d

9
+

βm1

√
5

+
βm2

√
5

+
βm3

√
5
.
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We take absolute values in each one of the three equations (2) obtaining∣∣∣∣αm1

√
5

− d× 10n

9

∣∣∣∣ ≤ d

9
+

|β|m1

√
5

+
αm2

√
5

+
|β|m2

√
5

(3)

+
αm3

√
5

+
|β|m3

√
5

≤ 4 +
2αm2

√
5

≤ 11αm2

√
5

<
αm2+5

√
5

,∣∣∣∣αm1

√
5
(1 + αm2−m1)− d× 10n

9

∣∣∣∣ ≤ d

9
+
|β|m1

√
5

+
|β|m2

√
5

+
αm3

√
5
+
|β|m3

√
5

≤ 4 +
αm3

√
5

<
10αm3

√
5

<
αm3+5

√
5

,∣∣∣∣αm1

√
5
(1 + αm2−m1 + αm3−m1)− d× 10n

9

∣∣∣∣ ≤ d

9
+

|β|m1

√
5

+
|β|m2

√
5

+
|β|m3

√
5

≤ 4 <
9√
5
<

α5

√
5
.

Dividing the left–hand sides of the three inequalities (3) by

αm1

√
5
,

αm1

√
5
(1 + αm2−m1) and

αm1

√
5
(1 + αm2−m1 + αm3−m1),

respectively, we get ∣∣∣∣∣1− α−m110n

(
d
√
5

9

)∣∣∣∣∣ < 1

αm1−m2−5
,∣∣∣∣∣1− α−m110n

(
d
√
5αm1−m2

9(αm1−m2 + 1)

)∣∣∣∣∣ < (1 + αm2−m1)−1

αm1−m3−5
<

1

αm1−m3−5
,∣∣∣∣∣1− α−m110n

(
d
√
5αm1−m3

9(αm1−m3 + αm2−m3 + 1)

)∣∣∣∣∣ < (1 + αm2−m1 + αm3−m1)−1

αm1−5

<
1

αm1−5
, (4)

respectively.
We use a result of Matveev (see [7], or Theorem 9.4 in [2]), which asserts that if

α1, α2, α3 are positive real algebraic numbers in an algebraic number field of degree
D and b1, b2, b3 are rational integers, then

|1− αb1
1 αb2

2 αb3
3 | > exp

(
−1.4× 306 × 34.5D2(1 + logD)(1 + logB)A1A2A3

)
(5)

(assuming that the left–hand side above is nonzero), where

B := max{|b1|, |b2|, |b3|},

and

Ai ≥ max{Dh(αi), | logαi|, 0.16}, for i = 1, 2, 3.
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Here, for an algebraic number η we write h(η) for its logarithmic height whose
formula is

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
,

with d being the degree of η over Q and

f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X]

being the minimal polynomial over the integers having η as a root.
We shall apply this to the left–hand sides of (4). In all three cases, we take

α1 := α, α2 := 10, b1 := −m1, b2 := n, b3 := 1. Only the number α3 is different in
each of the three instances, namely it is

d
√
5

9
,

d
√
5αm1−m2

9(αm1−m2 + 1)
and

d
√
5αm1−m3

9(αm1−m3 + αm2−m3 + 1)
,

respectively, according to whether we work with the first, second, or third of the
inequalities (4). In all cases, the three numbers α1, α2, α3 are real, positive and
belong to Q(

√
5), so we can take D := 2.

We next justify that the amounts on the left–hand sides of (4) are not zero.
Indeed, if the left–hand side of the first of inequalities (4) is zero, we then get

αm1 = 10nd
√
5/9, so α2m1 ∈ Q which is false.

If the left–hand side of the second of inequalities (4) is zero, we then get that

αm1−m2 + 1 = 10n

(
d
√
5

9

)
α−m2 ,

or

αm1 + αm2 = 10n

(
d
√
5

9

)
.

Conjugating the above relation in Q(
√
5), we get

βm1 + βm2 = −10n

(
d
√
5

9

)
.

Hence,

αm1 < αm1 + αm2 = |βm1 + βm2 | ≤ |β|m1 + |β|m2 < 2,

which is impossible for m1 ≥ 1001. A similar argument deals with the situation
when the left–hand side of the third of inequalities (4) were zero. Indeed, if this
were so, we would then get that

αm1−m3 + αm2−m3 + 1 = 10n

(
d
√
5

9

)
α−m3 ,
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or

αm1 + αm2 + αm3 = 10n

(
d
√
5

9

)
.

Conjugation in Q(
√
5) above replaces α by β on the left–hand side but only changes

the sign of the right–hand side. Thus, we get

αm1 < αm1 + αm2 + αm3 = |βm1 + βm2 + βm3 | ≤ 3,

which is false for m1 ≥ 1001.
Hence, indeed the left–hand sides of all three inequalities (4) are nonzero.
Next observe that

10n−1 ≤ 10n−1 + 10n−2 + · · ·+ 1 ≤ d

(
10n − 1

9

)
= Fm1 + Fm2 + Fm3

≤ 3Fm1 < 3αm1−1 < αm1+2,

therefore

m1 + 2 >

(
log 10

logα

)
(n− 1) > 4.78(n− 1).

Hence, m1 > 4.78n − 6.78 > n since n ≥ 208. So, with the notation B :=
max{|b1|, |b2|, |b3|}, we definitely have B = m1. We can choose A1 := 0.5 > 2h(α1),
A2 := 4.7 > 2 logα2. We now put

C1 := 3× 1012 > 1.4× 306 × 34.5 ×D2 × (1 + logD)×A1 ×A2. (6)

We have C1 > 2.27889× 1012. We apply inequality (5) iteratively on the left–hand
sides of inequalities (4). For the first one, we can take

A3 := 6.1 > (log 81 + 2 log
√
5) ≥ 2h(α3),

and get that

exp (−6.1C1(1 + logm1)) <

∣∣∣∣∣1− α−m110n

(
d
√
5

9

)∣∣∣∣∣ < 1

αm1−m2−5
,

implying

7 + (m1 −m2) logα < (7 + 5 logα) + 6.1C1(1 + logm1) < 7C1(1 + logm1). (7)

We now apply inequality (5) to the second of inequalities (4). We need some
statistics for the corresponding α3. Observe first that in this case

α3 =
d
√
5αm1−m2

9(αm1−m2 + 1)
≤

√
5, α−1

3 =
9(αm1−m2 + 1)

d
√
5αm1−m2

≤ 18√
5
,
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so that | logα3| < 2.1. Next, observe that

a0 | 92(αm1−m2 + 1)(βm1−m2 + 1); hence, a0 ≤ 324αm1−m2 .

The conjugate of α3 is in absolute value at most

d
√
5|β|m1−m2

9(βm1−m2 + 1)
≤

√
5

1− |β|
=

2
√
5

1 +
√
5
.

Hence, we can take

A3 := 7 + (m1 −m2) logα > log(324)+(m1 −m2) logα+log(
√
5)+log

(
2
√
5

1+
√
5

)
> max{2h(α3), | logα3|, 0.16}.

We then get, by applying inequality (5) to the second inequality (4),

exp (−(7 + (m1 −m2) logα)C1(1 + logm1)) <
1

αm1−m3−5
,

so

11 + (m1 −m3) logα < (11 + 5 logα) + (7 + (m1 −m2) logα)C1(1 + logm1).

Using also inequality (7), we get that

11 + (m1 −m3) logα < (11 + 5 logα) + 7C2
1 (1 + logm1)

2 < 8C2
1 (1 + logm1)

2. (8)

We now move to the third inequality (4). We need some statistics on the current
α3. Observe that

α3 =
d
√
5αm1−m3

9(αm1−m3 + αm2−m3 + 1)
≤

√
5, α−1

3 =
9(αm1−m3 + αm2−m3 + 1)

d
√
5αm1−m3

≤ 27√
5
,

so that | logα3| < 2.5. Next, observe that

a0 | 92(αm1−m3 + αm2−m3 + 1)(βm1−m3 + βm2−m3 + 1); hence, a0 ≤ 729αm1−m3 .

The conjugate of α3 is in absolute value at most

d
√
5|β|m1−m3

9|βm1−m3 + βm2−m3 + 1|
≤

√
5

|βm1−m3 + βm2−m3 + 1|
.

We need a lower bound for |βm1−m3 + βm2−m3 + 1|. We distinguish a few cases.
If m2 −m3 = 0, then

|βm1−m3 + βm2−m3 + 1| = |βm1−m3 + 2| ≥ 2− 1 = 1.

Assume next that m2 −m3 = 1. If m1 −m3 = 1, we get

|βm1−m3 + βm2−m3 + 1| = |2β + 1| =
√
5− 2.
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If m2 −m3 = 1 and m1 −m3 = 2, then

|βm1−m3 + βm2−m3 + 1| = |β2 + β + 1| = 3−
√
5.

If m2 −m3 = 1 and m1 −m3 ≥ 3, then

|βm1−m3 + βm2−m3 + 1| ≥ 1− |β| − |β|3 =
7− 3

√
5

2
.

Finally, if m2 −m3 ≥ 2, then

|βm1−m3 + βm2−m3 + 1| ≥ 1− 2β2 =
√
5− 2.

The above calculations show that |βm1−m3 + βm2−m3 + 1| ≥ (7− 3
√
5)/2, therefore

the conjugate of α3 has absolute value at most

√
5

(7− 3
√
5)/2

=
2
√
5

7− 3
√
5
.

Hence, we can take

A3 := 11 + (m1 −m2) logα > log(729)+(m1−m3) logα+log(
√
5)+log

(
2
√
5

7−3
√
5

)
> max{2h(α3), | logα3|, 0.16}.

We then get, by applying inequality (5) to the third inequality (4),

exp (−(11 + (m1 −m3) logα)C1(1 + logm1)) <
1

αm1−5
,

so

m1 logα < 5 logα+ (11 + (m1 −m3) logα)C1(1 + logm1).

Combining this with inequality (8), we get

m1 logα < 5 logα+8C3
1 (1+logm1)

3 < 9C3
1 (1+logm1)

3 < 9(3× 1012)3(1+logm1)
3,

so m1 < 6× 1044.
Now we only need to lower the bound.
Let

Λ1 := −m1 logα+ n log 10 + log(d
√
5/9).

Observe that the first equation (2) is

αm1

√
5

− d× 10n

9
=

αm1

√
5

(
1− α−m110n

(
d
√
5

9

))
=

αm1

√
5

(
1− eΛ1

)
= −d

9
+

βm1

√
5

− Fm2 − Fm3 ≤ −1

9
+

|β|1001√
5

< 0,
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where the last inequality holds because m1 ≥ 1001. This implies that Λ1 > 0.
Hence,

0 < Λ1 < eΛ1 − 1 =

∣∣∣∣∣1− α−m110n

(
d
√
5

9

)∣∣∣∣∣ < 1

αm1−m2−5
,

by the first of inequalities (4). Thus, we get that

0 < Λ1 = n log 10−m1 logα+ log(d
√
5/9) <

1

αm1−m2−5
,

giving

0 < n

(
log 10

logα

)
−m1 +

(
log(d

√
5/9

logα

)
<

1

(logα)αm1−m2−5
<

1

αm1−m2−7
.

We put γ := (log 10)/(logα), µ := (log(d
√
5/9))/(logα). We also put M := 6×1044.

Thus, we have the inequality

0 < nγ −m1 + µ <
1

αm1−m2−7
, (9)

where n < m1 ≤ M . By the standard Baker-Davenport reduction lemma (see
Lemma 5 in [3]), it follows that

m1 −m2 ≤ 7 +
log(q/ε)

logα
,

where q > 4× 1045 > 6M is the denominator of a convergent to γ and ε := ∥µq∥ −
M∥γq∥ > 0. We let [a0, a1, . . .] = [0, 4, 1, 3, 1, 1, 1, . . .] be the continued fraction of γ
and pk/qk the kth convergent to γ for all k ≥ 0.

We took q := q108, which is a number with 52 base 10 digits. Then q > 6M and
ε > 0.08 for all choices d ∈ {1, . . . , 9}, giving

m1 −m2 ≤ 7 +
log(q/0.08)

logα
< 263,

so that m1 −m2 ≤ 262. In particular, m2 ≥ 739.
Now we go back to the second equation (2) and use the same argument as the

one we used for the first equation (2). Namely, we fix m1 −m2 ≤ 262, and we put

Λ2 := −m1 logα+ n log 10 + log

(
d
√
5αm1−m2

9(αm1−m2 + 1)

)
.

By an argument similar to the previous one, the second equation (2) is

αm1

√
5
(1 + αm2−m1)

(
1− eΛ2

)
= −d

9
+
βm1

√
5
+
βm2

√
5
−Fm3 ≤−1

9
+
|β|1001√

5
+
|β|739√

5
< 0,
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since m1 ≥ 1001 and m2 ≥ 739. So, as before, we get that Λ2 > 0. We get, as
before, that

0 < n

(
log 10

logα

)
−m1 +

(
1

logα

)
log

(
d
√
5αm1−m2

9(αm1−m2 + 1)

)
<

1

αm1−m3−7
. (10)

We keep the value of γ and of q, replace µ by

µ :=

(
1

logα

)
log

(
d
√
5αm1−m2

9(αm1−m2 + 1)

)
,

and recognize that inequality (10) is of the same type as inequality (9), except that
the exponent m1 −m2 on α in the right–hand side has been replaced by m1 −m3.
We next compute the lower bound ε > 10−4 valid for all choices d ∈ {1, . . . , 9} and
0 ≤ m1 −m2 ≤ 262, except for the pair (d,m1 −m2) = (9, 2) for which actually one
gets that µ = 0, so the amount ∥µq∥ −M∥qγ∥ = −M∥qγ∥ is negative. So, except
for this pair, we have

m1 −m3 < 7 +
log(104q)

logα
< 275,

therefore m1 −m3 ≤ 274. When (d,m1 −m2) = (9, 2), we then have that

0 < nγ −m1 <
1

αm1−m3−7
.

The largest partial quotient ak for 0 ≤ k ≤ 109 is a35 = 106. We now use the fact
that if ζ is a positive irrational number with continued fraction [b0, b1, . . . , bk, . . .],
partial quotients Pk/Qk = [b0, . . . , bk] for k ≥ 0, and we put ζk := [bk, bk+1, . . .] for
k ≥ 0, then whenever x and y are integers with |y| ≤ Qk, we have

|x− ζy| ≥ |Pk − ζQk| =
1

Qk(ζk+1Qk +Qk−1)
≥ 1

Q2
k(ζk+1 + 1)

>
1

Q2
k(bk+1 + 2)

.

Applying the above inequality with ζ := γ and k := 108, we conclude, from the fact
that m1 < q = q108,

1

108q
≤ 1

(a109 + 2)q
< |q108γ − p108| ≤ nγ −m1 <

1

αm1−m3−7
.

Hence,

m1 −m3 < 7 +
log(108q)

logα
< 266,

so we get the same conclusion as before, namely that m1 − m3 ≤ 274. Thus,
m3 ≥ 737.

Next, we fix d ∈ {1, . . . , 9}, m1 − m2 ≤ 262, and m1 − m2 ≤ m1 − m3 ≤ 274.
The same argument as the one we did before ensures that

0 < nγ −m1 + µ <
1

αm1−7
,
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where

µ :=

(
1

logα

)
log

(
d
√
5αm3−m1

9(αm1−m3 + αm1−m2 + 1)

)
.

We computed that ε > 10−7 for all the above instances except when (d,m1−m2,m1−
m3) = (9, 0, 1), (9, 3, 3), (9, 4, 1) for which we have that µ = 0 for the first two triples
and µ = 1 for the last triple. In fact, except for these three triples, the minimum
value of ε is > 7 × 10−7 and it is achieved in the triple (d,m1 − m2,m1 − m3) =
(3, 168, 2). Therefore, except for the above three triples, we have

m1 < 7 +
log(107q)

logα
< 300,

which is false since m1 > 1000. However, in the case of the three exceptional
triples, the previous argument based solely on the continued fraction of γ shows, as
previously, that

m1 < 7 +
log(108q)

logα
< 266,

which is impossible again. This finishes the proof.

2. Comments

A few words about the computations. They were carried out with Mathematica, and
the largest loop, which consisted of computing a lower bound for ε over all triples
(d,m2 −m2,m1 −m3) with components in [1, 9]× [0, 262]× [0, 274] with the three
exceptions (9, 0, 1), (9, 3, 3), (9, 4, 1) took a few minutes. It is not unreasonable to
conjecture that the same method may be applied to compute all solutions of the
equation

d

(
10n − 1

9

)
= Fm1 + Fm2 + Fm3 + Fm4 with m1 ≥ m2 ≥ m3 ≥ m4 ≥ 0.

We leave this as a problem for other researchers.
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