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Abstract. A set of m distinct positive integers is called a D(—1)-m-tuple if the product
of any distinct two elements in the set decreased by one is a perfect square. In this paper,
we show that if {1,b,¢,d} with b < ¢ < d is a D(—1)-quadruple, then ¢ < 9.6b".
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1. Introduction

Let n be a nonzero integer. A set {ai,...,a,,} of m distinct positive integers is
called a Diophantine m-tuple with the property D(n), or simply a D(n)-m-tuple, if
a;a; + n is a perfect square for each distinct 4, j. Our concerns here are in the case
of n =—1.

There is a conjecture ([3]) that there does not exist a D(—1)-quadruple. The
biggest step toward this conjecture was taken by Dujella and Fuchs ([7]), who showed
that if {a,b,c,d} with a < b < ¢ < d is a D(—1)-quadruple, then a = 1. This
immediately implies that there does not exist a D(—1)-quintuple. Moreover, it was
shown by Dujella, Filipin and Fuchs ([6]) that there exist only finitely many D(—1)-
quadruples and that if {1,b,¢,d} with 1 < b < ¢ < d is a D(—1)-quadruple, then
¢ < min{116%,10%°*}. This bound was very recently improved by Bonciocat, Cipu
and Mignotte ([2]) to ¢ < min{2.5b° 10146}, Note that they also showed that the
number of D(—1)-quadruples is less than 107!, which improves the upper bound
1035 by the authors ([9]).

In this paper, we significantly improve the known upper bounds for ¢ in terms
of b.

Theorem 1. If {1,b,¢,d} with b < ¢ < d is a D(—1)-quadruple, then ¢ < 9.6b%.

The core of the proof is to improve Rickert’s theorem ([14]) in our situation (see
Theorem 2). The upper bound “9.66*” comes from “\ < 2” with N = bc in Theorem
2, that is necessary in order to make the simultaneous approximation nontrivial.
Theorem 1 is expected to take us one step closer to proving the conjecture.

*Corresponding author. Email addresses: filipin@grad.hr (A.Filipin),
fujita.yasutsugu@nihon-u.ac.jp (Y. Fujita)
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2. Preliminary results

Let {1,b,c} be a D(—1)-triple with b < ¢ and let r, s, t be positive integers such that
b—1=17r%c—1=s% bc—1=1t2 Suppose that {1,b,c,d} is a D(—1)-quadruple
with ¢ < d. Then, there exist positive integers x, y, z such that

d—1=22 bd—1=19° cd—1=22

Eliminating d from these equations, we obtain the system of Diophantine equations

22 —cx® =c—1, (1)
bz? —cy? = ¢ —b. (2)

By Theorem 1 (i) in [6], we may assume that ¢ < b%. Then, Lemmas 1 and 5 in [6]
imply that the positive solutions (z,z) of (1) and (z,y) of (2) can be respectively
expressed as follows:

z+ave=s(s+Ve)*  (m>0),
Vb +yve = (svVb + ry/e)(t + Vo)™ (n>0).
Hence, we may write z = v,,, = w,,, where
vog =8, v1 = (2¢—1)s, Vypio = (4c — 2)Uma1 — U,
wo =8, wy = (2bc — 1)s £ 2rtc, Wpy2 = (4be — 2)wp41 — W,
We conclude this section by quoting three lemmas from [6].
Lemma 1 (Lemma 2, [6]). If v, = w, with n # 0, then
(i) m=n (mod 2);
(ii) n < m < 2n;
(iii) (m? —bn?)s = £nrt (mod 4c).
Lemma 2 (Lemma 3, [6]). We have wy, > (c — b)(4bc — 3)" ™1 for n > 1.

Lemma 3 (Lemma 6, [6]). We have v1 # w1, vy # ws and vy # wa.

3. The proof of Theorem 1

Lemma 4. Assume that ¢ > 9.6b*. If v,,, = w,, with n > 3, then n > cl/s,

1/8

Proof. Suppose that n < ¢*/°. Since

bn?s < /et Aet? = c,

[m2s T nrt| < 4ct/*ct/? 4 M8e/ES/8 < 278 < o,
we have an equality in Lemma 1 (iii):

m?2s = bn%s + nrt.
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Now we have m?s < m?,/c and
bns — nrt > rn(Vben — vVbe — 1) > Vbern(n — 1),

which together imply m? > v/brn(n — 1). Hence, we see that

4n? m?
b
8>n(n_1) > o= > Vor,

which contradicts b > 8. O

Remark 1. It is known that for b < 101 the D(—1)-pair {1, b} cannot be extended
to a D(—1)-quadruple (see [4, 8, 12, 15]). Recently, it has been checked that the
same is true for b < 10'° (see the sentence before the last one of Section 5 in [11]).
Note that this result is now extended to b < 1.024 - 103 in [2].

Theorem 2. Let b and N be integers with b > 10 and N > 9.5b*(b — 1)3. Assume
that N is divisible by b. Then the numbers 6; = /1 —b/N and 03 = /1 —1/N

satisfy
max {

for all integers p1, p2, q with ¢ > 0, where

o, — L] g, — B2

q

)

} > (32.01b(b — 1)N) " 1g~2

= log(16.016(b — 1)N)

_ 2,
log(1.687b—1(b — 1)-2N?2) ~

Proof. Note that the assumption N > 9.56(b — 1)® immediately implies A < 2. It
suffices to find real numbers satisfying the conditions in the following lemma.

Lemma 5 (Lemma 22, [13]; Lemma 3.1, [14]; Lemma 2.1 [1]). Let 64,...,6,, be
arbitrary real numbers and 0y = 1. Assume that there exist positive real numbers
l,p, L, P and positive integers D, f with f dividing D and with L > D, having the
following property. For each positive integer k, we can find rational numbers p;ji
(0 < i,j < m) with nonzero determinant such that f~1DFp;;r (0 < i,5 < m) are
integers and

<IL7*F (0<i<m).

Zpijkaj

Jj=0

pijil < pP* (0<4,5 <m),

max{ ,...,'Gmpm'}>cq)‘
q

holds for all integers p1,...,Pm,q with ¢ > 0, where

Then
6, - 2

log(DP)

= Tog(L/D) and c_l:2mf_1pDP(max{1,2f_1l}))\.
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In our situation, we take m = 2, a9 = —b, a1 = —1, as = 0 and 604, 6> as in
Theorem 2. A contour integral has the form Z?:O pijk0;, and estimating the inte-
gral and the relevant integrals we obtain the following (see the arguments following
Lemma 3.1 in [1]).

—k

2 —1 2
97 b 97 b
S pinls| < = (1- + -2 N3
jzopf’“gf <64< N) {4( N) } (3)

(14 2/N)k+1/2
[A(z)[*

and

(0<j<2), (4)

k|0 <
Ipijrl; < max

where A(z) = [[>_,(z — a;) and the contours I'; (0 <j <2) are defined by

=0
. flaj —ai
- ol = min {5

Inequality (3) shows that we may take

27 b\t 27 b\?2
=—(1-—= == (1-—= 3.
! 64( N) » L 4( N)N

Since
3b—-1
1+W on Fo,
z 1
‘1+N‘§ 1_ﬁ Onrl,
1
1+ﬁ on FQ,

and min.cr, |A(z)| > (20 — 1)/8 for all j, we see from (4) that

max.er, |1+ z/N|[F+1/2

6; - min e, |A(2)[*

k
o1 Bt V28 (1+ 25
- 2(N-1) 2b—1
Therefore, we may take

(. BN 85
b= oN—-1)) T 2-1

[pijr| <

It remains to consider how to take D and f. The way of choosing them is similar
to the one of the proof of Theorem 2.5 in [10]. By the proof of Lemma 3.3 in [14],
we may express p;jr = p;j(1/N) as

1 k.
pijk:Z(k;;2>C’i}1H( }Z?l),

ij 1]
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where
N* H( )k +h
C.. — a; — aq il 1
v N \k—h; J ’
( + a]) l?ﬁj

ki = k+9; with ¢;; the Kronecker delta, Zl y denotes the sum over all non-negative
integers ho, hi, ho satisfying ho + hq + ho = k;; — 1, and Hl# denotes the product
from { = 0 to I = 2 omitting ! = j (which is expression (3.7) in [14] with v = 1/2).
Let N = bNy for some integer Ny. If j = 0, then

bhoNéfa) _ 1)ki1+h1 pkiz+ha bki2+ho+h2—k(b _ 1)7%1 +h1 \NE
(No — 1)k~ho B (Ng — 1)k—ho

|Cio| =

Since ky+h;j+h—k <ky+kij—1—k <kand ky+h <ky+k;—1<2k, we have
V(b —1)2*N*C;;t € Z for all i. If j = 1, then |Cyy| = N¥(b — 1)kotho /(N — 1)k=ha
and we have (b — 1)2*N*kC;;! € Z for all 4. If j = 2, then |Cip| = Nh2pFiotho =
priothotha—k Nk /NE=I2 and we have b N*C ;' € Z for all i. Tt follows that b*(b —
1)2’“N]“C’i;1 € Z for all i, j. Since

1
ohithy (K43 oy
h;
for all j (see the proof of Lemma 4.3 in [14]), we obtain 271{4b(b — 1)2N }p,;x € Z
for all 4, j, which means that we may take f =2 and D = 4b(b — 1)2N.
To sum up, we see from the assumptions that

L  1.687N?
DP < 16.01b(b — 1)N = —— 1 < 32.01a'bN
< ( )N, D>b(b—1)2’ < a'bN,
which together with Lemma 5 completes the proof of Theorem 2. O

Lemma 6. All positive integer solutions x,y, z of (1) and (2) satisfy

t
max{ Hgy‘} <ez7?,

bz
where 61 = /1 —1/c and 03 = \/1 —1/(bc).

Proof. This is a special case of Lemma 1 in [5]. O

sbx
9, — 2~
! bz

)

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Suppose that ¢ > 9.6b%. Since bc > 9.5b%(b — 1)3, we can
apply Theorem 2 and Lemma 6 with N = bc, p; = sbx, po = ty and g = bz, and we
have

(32.01b6(b — 1)be) "L (b2) ™ < e272,

which together with A < 2 yields

2272 < 32.016% (b — 1)c2.
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Now we have

.687bc?
L log (1@?51)2 ) _ 2log(1:299" /%)
2-X o (0.10530) log(0.1053b—4¢) ’

b(b—1)°
where we used the inequality b > 10'° (see Remark 1). Hence,

41og(5.658b°/2¢) log(1.299b~1/2¢)
log(0.1053b—4¢) ’

log z <

Moreover, by Lemma 2 we have
logz > (n — 1)log(4bc — 3) > (n — 1)log(3.999bc).
It follows from Lemma 4 that

s 410g(5.658b°/%¢) log(1.299b~1/2¢)
log(3.999b¢) 1log(0.1053b—4¢)

Since ¢ > 9.6b%, we obtain

_ 41og(54.32b'3/2) log(12.48b7/2)

9.6/8p1/2 — 1
log(38.396%) log(1.01)

Putting g(b) = 18301og(1.85b) log(2.06b) — (1.32b'/2 — 1)1og(2.07b), we must have
g(b) > 0. However, g(b) is decreasing for b > 10% and g(10'%) < 0, which contradict

b > 10'9. This completes the proof of Theorem 1.
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