# The relative upper bound for the third element in a $D(-1)$-quadruple 

Alan Filipin ${ }^{1}$ and Yasutsugu Fujita ${ }^{2, *}$<br>${ }^{1}$ Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, HR-10 000 Zagreb, Croatia<br>${ }^{2}$ Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan

Received April 19, 2011; accepted August 19, 2011


#### Abstract

A set of $m$ distinct positive integers is called a $D(-1)$ - $m$-tuple if the product of any distinct two elements in the set decreased by one is a perfect square. In this paper, we show that if $\{1, b, c, d\}$ with $b<c<d$ is a $D(-1)$-quadruple, then $c<9.6 b^{4}$.


AMS subject classifications: 11D09, 11J68
Key words: Diophantine tuples, system of Diophantine equations

## 1. Introduction

Let $n$ be a nonzero integer. A set $\left\{a_{1}, \ldots, a_{m}\right\}$ of $m$ distinct positive integers is called a Diophantine m-tuple with the property $D(n)$, or simply a $D(n)$-m-tuple, if $a_{i} a_{j}+n$ is a perfect square for each distinct $i, j$. Our concerns here are in the case of $n=-1$.

There is a conjecture ([3]) that there does not exist a $D(-1)$-quadruple. The biggest step toward this conjecture was taken by Dujella and Fuchs ([7]), who showed that if $\{a, b, c, d\}$ with $a<b<c<d$ is a $D(-1)$-quadruple, then $a=1$. This immediately implies that there does not exist a $D(-1)$-quintuple. Moreover, it was shown by Dujella, Filipin and Fuchs ([6]) that there exist only finitely many $D(-1)$ quadruples and that if $\{1, b, c, d\}$ with $1<b<c<d$ is a $D(-1)$-quadruple, then $c<\min \left\{11 b^{6}, 10^{491}\right\}$. This bound was very recently improved by Bonciocat, Cipu and Mignotte $([2])$ to $c<\min \left\{2.5 b^{6}, 10^{146}\right\}$. Note that they also showed that the number of $D(-1)$-quadruples is less than $10^{71}$, which improves the upper bound $10^{356}$ by the authors ([9]).

In this paper, we significantly improve the known upper bounds for $c$ in terms of $b$.

Theorem 1. If $\{1, b, c, d\}$ with $b<c<d$ is a $D(-1)$-quadruple, then $c<9.6 b^{4}$.
The core of the proof is to improve Rickert's theorem ([14]) in our situation (see Theorem 2). The upper bound " $9.6 b^{4}$ " comes from " $\lambda<2$ " with $N=b c$ in Theorem 2 , that is necessary in order to make the simultaneous approximation nontrivial. Theorem 1 is expected to take us one step closer to proving the conjecture.

[^0]
## 2. Preliminary results

Let $\{1, b, c\}$ be a $D(-1)$-triple with $b<c$ and let $r, s, t$ be positive integers such that $b-1=r^{2}, c-1=s^{2}, b c-1=t^{2}$. Suppose that $\{1, b, c, d\}$ is a $D(-1)$-quadruple with $c<d$. Then, there exist positive integers $x, y, z$ such that

$$
d-1=x^{2}, \quad b d-1=y^{2}, \quad c d-1=z^{2}
$$

Eliminating $d$ from these equations, we obtain the system of Diophantine equations

$$
\begin{align*}
z^{2}-c x^{2} & =c-1,  \tag{1}\\
b z^{2}-c y^{2} & =c-b . \tag{2}
\end{align*}
$$

By Theorem 1 (i) in [6], we may assume that $c \leq b^{9}$. Then, Lemmas 1 and 5 in [6] imply that the positive solutions $(z, x)$ of (1) and $(z, y)$ of (2) can be respectively expressed as follows:

$$
\begin{aligned}
z+x \sqrt{c} & =s(s+\sqrt{c})^{2 m} \quad(m \geq 0) \\
z \sqrt{b}+y \sqrt{c} & =(s \sqrt{b} \pm r \sqrt{c})(t+\sqrt{b c})^{2 n} \quad(n \geq 0) .
\end{aligned}
$$

Hence, we may write $z=v_{m}=w_{n}$, where

$$
\begin{aligned}
v_{0}=s, v_{1} & =(2 c-1) s, v_{m+2}=(4 c-2) v_{m+1}-v_{m} \\
w_{0}=s, w_{1} & =(2 b c-1) s \pm 2 r t c, w_{m+2}=(4 b c-2) w_{n+1}-w_{n}
\end{aligned}
$$

We conclude this section by quoting three lemmas from [6].
Lemma 1 (Lemma 2, [6]). If $v_{m}=w_{n}$ with $n \neq 0$, then
(i) $m \equiv n(\bmod 2)$;
(ii) $n \leq m \leq 2 n$;
(iii) $\left(m^{2}-b n^{2}\right) s \equiv \pm n r t(\bmod 4 c)$.

Lemma 2 (Lemma 3, [6]). We have $w_{n}>(c-b)(4 b c-3)^{n-1}$ for $n \geq 1$.
Lemma 3 (Lemma 6, [6]). We have $v_{1} \neq w_{1}, v_{2} \neq w_{2}$ and $v_{4} \neq w_{2}$.

## 3. The proof of Theorem 1

Lemma 4. Assume that $c \geq 9.6 b^{4}$. If $v_{m}=w_{n}$ with $n \geq 3$, then $n>c^{1 / 8}$.
Proof. Suppose that $n \leq c^{1 / 8}$. Since

$$
\begin{aligned}
b n^{2} s & <c^{1 / 4} c^{1 / 4} c^{1 / 2}=c \\
\left|m^{2} s \mp n r t\right| & <4 c^{1 / 4} c^{1 / 2}+c^{1 / 8} c^{1 / 8} c^{5 / 8}<2 c^{7 / 8}<c
\end{aligned}
$$

we have an equality in Lemma 1 (iii):

$$
m^{2} s=b n^{2} s \pm n r t
$$

Now we have $m^{2} s<m^{2} \sqrt{c}$ and

$$
b n^{2} s-n r t>r n(\sqrt{b c} n-\sqrt{b c-1})>\sqrt{b c} r n(n-1)
$$

which together imply $m^{2}>\sqrt{b} r n(n-1)$. Hence, we see that

$$
8>\frac{4 n^{2}}{n(n-1)}>\frac{m^{2}}{n(n-1)}>\sqrt{b} r
$$

which contradicts $b>8$.
Remark 1. It is known that for $b<101$ the $D(-1)$-pair $\{1, b\}$ cannot be extended to a $D(-1)$-quadruple (see $[4,8,12,15]$ ). Recently, it has been checked that the same is true for $b<10^{10}$ (see the sentence before the last one of Section 5 in [11]). Note that this result is now extended to $b<1.024 \cdot 10^{13}$ in [2].

Theorem 2. Let $b$ and $N$ be integers with $b \geq 10$ and $N \geq 9.5 b^{2}(b-1)^{3}$. Assume that $N$ is divisible by $b$. Then the numbers $\theta_{1}=\sqrt{1-b / N}$ and $\theta_{2}=\sqrt{1-1 / N}$ satisfy

$$
\max \left\{\left|\theta_{1}-\frac{p_{1}}{q}\right|,\left|\theta_{2}-\frac{p_{2}}{q}\right|\right\}>(32.01 b(b-1) N)^{-1} q^{-\lambda}
$$

for all integers $p_{1}, p_{2}, q$ with $q>0$, where

$$
\lambda=1+\frac{\log (16.01 b(b-1) N)}{\log \left(1.687 b^{-1}(b-1)^{-2} N^{2}\right)}<2 .
$$

Proof. Note that the assumption $N \geq 9.5 b^{2}(b-1)^{3}$ immediately implies $\lambda<2$. It suffices to find real numbers satisfying the conditions in the following lemma.

Lemma 5 (Lemma 22, [13]; Lemma 3.1, [14]; Lemma 2.1 [1]). Let $\theta_{1}, \ldots, \theta_{m}$ be arbitrary real numbers and $\theta_{0}=1$. Assume that there exist positive real numbers $l, p, L, P$ and positive integers $D, f$ with $f$ dividing $D$ and with $L>D$, having the following property. For each positive integer $k$, we can find rational numbers $p_{i j k}$ $(0 \leq i, j \leq m)$ with nonzero determinant such that $f^{-1} D^{k} p_{i j k}(0 \leq i, j \leq m)$ are integers and

$$
\left|p_{i j k}\right| \leq p P^{k} \quad(0 \leq i, j \leq m), \quad\left|\sum_{j=0}^{m} p_{i j k} \theta_{j}\right| \leq l L^{-k} \quad(0 \leq i \leq m)
$$

Then

$$
\max \left\{\left|\theta_{1}-\frac{p_{1}}{q}\right|, \ldots,\left|\theta_{m}-\frac{p_{m}}{q}\right|\right\}>c q^{-\lambda}
$$

holds for all integers $p_{1}, \ldots, p_{m}, q$ with $q>0$, where

$$
\lambda=1+\frac{\log (D P)}{\log (L / D)} \quad \text { and } \quad c^{-1}=2 m f^{-1} p D P\left(\max \left\{1,2 f^{-1} l\right\}\right)^{\lambda}
$$

In our situation, we take $m=2, a_{0}=-b, a_{1}=-1, a_{2}=0$ and $\theta_{1}, \theta_{2}$ as in Theorem 2. A contour integral has the form $\sum_{j=0}^{2} p_{i j k} \theta_{j}$, and estimating the integral and the relevant integrals we obtain the following (see the arguments following Lemma 3.1 in [1]).

$$
\begin{equation*}
\left|\sum_{j=0}^{2} p_{i j k} \theta_{j}\right|<\frac{27}{64}\left(1-\frac{b}{N}\right)^{-1}\left\{\frac{27}{4}\left(1-\frac{b}{N}\right)^{2} N^{3}\right\}^{-k} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{i j k}\right| \theta_{j} \leq \max _{z \in \Gamma_{j}}\left|\frac{(1+z / N)^{k+1 / 2}}{|A(z)|^{k}}\right| \quad(0 \leq j \leq 2) \tag{4}
\end{equation*}
$$

where $A(z)=\prod_{i=0}^{2}\left(z-a_{i}\right)$ and the contours $\Gamma_{j}(0 \leq j \leq 2)$ are defined by

$$
\left|z-a_{j}\right|=\min _{i \neq j}\left\{\frac{\left|a_{j}-a_{i}\right|}{2}\right\}
$$

Inequality (3) shows that we may take

$$
l=\frac{27}{64}\left(1-\frac{b}{N}\right)^{-1}, L=\frac{27}{4}\left(1-\frac{b}{N}\right)^{2} N^{3}
$$

Since

$$
\left|1+\frac{z}{N}\right| \leq \begin{cases}1+\frac{3 b-1}{2 N} & \text { on } \Gamma_{0} \\ 1-\frac{1}{2 N} & \text { on } \Gamma_{1} \\ 1+\frac{1}{2 N} & \text { on } \Gamma_{2}\end{cases}
$$

and $\min _{z \in \Gamma_{j}}|A(z)| \geq(2 b-1) / 8$ for all $j$, we see from (4) that

$$
\begin{aligned}
\left|p_{i j k}\right| & \leq \frac{\max _{z \in \Gamma_{j}}|1+z / N|^{k+1 / 2}}{\theta_{j} \cdot \min _{z \in \Gamma_{j}}|A(z)|^{k}} \\
& \leq\left(1+\frac{3 b+1}{2(N-1)}\right)^{1 / 2}\left(\frac{8\left(1+\frac{3 b-1}{2 N}\right)}{2 b-1}\right)^{k}
\end{aligned}
$$

Therefore, we may take

$$
p=\left(1+\frac{3 b+1}{2(N-1)}\right)^{1 / 2}, P=\frac{8\left(1+\frac{3 b-1}{2 N}\right)}{2 b-1} .
$$

It remains to consider how to take $D$ and $f$. The way of choosing them is similar to the one of the proof of Theorem 2.5 in [10]. By the proof of Lemma 3.3 in [14], we may express $p_{i j k}=p_{i j}(1 / N)$ as

$$
p_{i j k}=\sum_{i j}\binom{k+\frac{1}{2}}{h_{j}} C_{i j}^{-1} \prod_{l \neq j}\binom{-k_{i l}}{h_{l}}
$$

where

$$
C_{i j}=\frac{N^{k}}{\left(N+a_{j}\right)^{k-h_{j}}} \prod_{l \neq j}\left(a_{j}-a_{l}\right)^{k_{i l}+h_{l}}
$$

$k_{i l}=k+\delta_{i l}$ with $\delta_{i l}$ the Kronecker delta, $\sum_{i j}$ denotes the sum over all non-negative integers $h_{0}, h_{1}, h_{2}$ satisfying $h_{0}+h_{1}+h_{2}=k_{i j}-1$, and $\prod_{l \neq j}$ denotes the product from $l=0$ to $l=2$ omitting $l=j$ (which is expression (3.7) in [14] with $\nu=1 / 2$ ). Let $N=b N_{0}$ for some integer $N_{0}$. If $j=0$, then

$$
\left|C_{i 0}\right|=\frac{b^{h_{0}} N_{0}^{k}(b-1)^{k_{i 1}+h_{1}} b^{k_{i 2}+h_{2}}}{\left(N_{0}-1\right)^{k-h_{0}}}=\frac{b^{k_{i 2}+h_{0}+h_{2}-k}(b-1)^{k_{i 1}+h_{1}} N^{k}}{\left(N_{0}-1\right)^{k-h_{0}}} .
$$

Since $k_{i l}+h_{j}+h_{l}-k \leq k_{i l}+k_{i j}-1-k \leq k$ and $k_{i l}+h_{l} \leq k_{i l}+k_{i j}-1 \leq 2 k$, we have $b^{k}(b-1)^{2 k} N^{k} C_{i 0}^{-1} \in \mathbb{Z}$ for all $i$. If $j=1$, then $\left|C_{i 1}\right|=N^{k}(b-1)^{k_{i 0}+h_{0}} /(N-1)^{k-h_{1}}$ and we have $(b-1)^{2 k} N^{k} C_{i 1}^{-1} \in \mathbb{Z}$ for all $i$. If $j=2$, then $\left|C_{i 2}\right|=N^{h_{2}} b^{k_{i 0}+h_{0}}=$ $b^{k_{i 0}+h_{0}+h_{2}-k} N^{k} / N_{0}^{k-h_{2}}$ and we have $b^{k} N^{k} C_{i 2}^{-1} \in \mathbb{Z}$ for all $i$. It follows that $b^{k}(b-$ $1)^{2 k} N^{k} C_{i j}^{-1} \in \mathbb{Z}$ for all $i, j$. Since

$$
2^{h_{j}+h_{j}^{\prime}}\binom{k+\frac{1}{2}}{h_{j}} \in \mathbb{Z}
$$

for all $j$ (see the proof of Lemma 4.3 in [14]), we obtain $2^{-1}\left\{4 b(b-1)^{2} N\right\}^{k} p_{i j k} \in \mathbb{Z}$ for all $i, j$, which means that we may take $f=2$ and $D=4 b(b-1)^{2} N$.

To sum up, we see from the assumptions that

$$
D P<16.01 b(b-1) N, \quad \frac{L}{D}>\frac{1.687 N^{2}}{b(b-1)^{2}}, \quad c^{-1}<32.01 a^{\prime} b N
$$

which together with Lemma 5 completes the proof of Theorem 2.
Lemma 6. All positive integer solutions $x, y, z$ of (1) and (2) satisfy

$$
\max \left\{\left|\theta_{1}-\frac{s b x}{b z}\right|,\left|\theta_{2}-\frac{t y}{b z}\right|\right\}<c z^{-2}
$$

where $\theta_{1}=\sqrt{1-1 / c}$ and $\theta_{2}=\sqrt{1-1 /(b c)}$.
Proof. This is a special case of Lemma 1 in [5].
We are now in a position to prove Theorem 1.
Proof of Theorem 1. Suppose that $c \geq 9.6 b^{4}$. Since $b c>9.5 b^{2}(b-1)^{3}$, we can apply Theorem 2 and Lemma 6 with $N=b c, p_{1}=s b x, p_{2}=t y$ and $q=b z$, and we have

$$
(32.01 b(b-1) b c)^{-1}(b z)^{-\lambda}<c z^{-2}
$$

which together with $\lambda<2$ yields

$$
z^{2-\lambda}<32.01 b^{4}(b-1) c^{2}
$$

Now we have

$$
\frac{1}{2-\lambda}<\frac{\log \left(\frac{1.687 b c^{2}}{(b-1)^{2}}\right)}{\log \left(\frac{0.1053 c}{b(b-1)^{3}}\right)}<\frac{2 \log \left(1.299 b^{-1 / 2} c\right)}{\log \left(0.1053 b^{-4} c\right)}
$$

where we used the inequality $b>10^{10}$ (see Remark 1). Hence,

$$
\log z<\frac{4 \log \left(5.658 b^{5 / 2} c\right) \log \left(1.299 b^{-1 / 2} c\right)}{\log \left(0.1053 b^{-4} c\right)}
$$

Moreover, by Lemma 2 we have

$$
\log z>(n-1) \log (4 b c-3)>(n-1) \log (3.999 b c)
$$

It follows from Lemma 4 that

$$
c^{1 / 8}-1<\frac{4 \log \left(5.658 b^{5 / 2} c\right) \log \left(1.299 b^{-1 / 2} c\right)}{\log (3.999 b c) \log \left(0.1053 b^{-4} c\right)}
$$

Since $c \geq 9.6 b^{4}$, we obtain

$$
9.6^{1 / 8} b^{1 / 2}-1<\frac{4 \log \left(54.32 b^{13 / 2}\right) \log \left(12.48 b^{7 / 2}\right)}{\log \left(38.39 b^{5}\right) \log (1.01)}
$$

Putting $g(b)=1830 \log (1.85 b) \log (2.06 b)-\left(1.32 b^{1 / 2}-1\right) \log (2.07 b)$, we must have $g(b)>0$. However, $g(b)$ is decreasing for $b \geq 10^{8}$ and $g\left(10^{10}\right)<0$, which contradict $b>10^{10}$. This completes the proof of Theorem 1 .

## Acknowledgment

The authors thank the referees for their valuable suggestions.

## References

[1] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498(1998), 173-199.
[2] N. C. Bonciocat, M. Cipu, M. Mignotte, On $D(-1)$-quadruples, preprint.
[3] A. Dujella, On the exceptional set in the problem of Diophantus and Davenport, in: Application of Fibonacci Numbers, Vol. 7, (G. E. Bergum, A. N. Philippou, A. F. Horadam, Eds.), Kluwer, Dordrecht, 1998, 69-76.
[4] A. Dujella, Complete solution of a family of simultaneous Pellian equations, Acta Math. Inform. Univ. Ostraviensis 6(1998), 59-67.
[5] A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132(2002), 23-33.
[6] A. Dujella, A. Filipin, C. Fuchs, Effective solution of the $D(-1)$-quadruple conjecture, Acta Arith. 128(2007), 319-338.
[7] A. Dujella, C. Fuchs, Complete solution of a problem of Diophantus and Euler, J. London Math. Soc. 71(2005), 33-52.
[8] A. Filipin, Non-extendibility of $D(-1)$-triples of the form $\{1,10, c\}$, Internat. J. Math. Math. Sci. 35(2005), 2217-2226.
[9] A. Filipin, Y. Fujita, The number of $D(-1)$-quadruples, Math. Commun. 15(2010), 387-391.
[10] A. Filipin, Y. Fujita, The number of Diophantine quintuples II, Publ. Math. Debrecen, to appear.
[11] A. Filipin, Y. Fujita, M. Mignotte, The non-extendibility of some parametric families of $D(-1)$-triples, Q. J. Math., to appear.
[12] Y. Fujita, The extensibility of $D(-1)$-triples $\{1, b, c\}$, Publ. Math. Debrecen 70(2007), 103-117.
[13] Y. Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, J. Number Theory 129(2009), 1678-1697.
[14] J. H. Rickert, Simultaneous rational approximation and related Diophantine equations, Math. Proc. Cambridge Philos. Soc. 113(1993), 461-472.
[15] R. Tamura, Non-extendibility of $D(-1)$-triples $\{1, b, c\}$, preprint.


[^0]:    *Corresponding author. Email addresses: filipin@grad.hr (A.Filipin),
    fujita.yasutsugu@nihon-u.ac.jp (Y. Fujita)
    http://www.mathos.hr/mc
    (c)2012 Department of Mathematics, University of Osijek

