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Abstract. A set of m distinct positive integers is called a D(−1)-m-tuple if the product
of any distinct two elements in the set decreased by one is a perfect square. In this paper,
we show that if {1, b, c, d} with b < c < d is a D(−1)-quadruple, then c < 9.6b4.
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1. Introduction

Let n be a nonzero integer. A set {a1, . . . , am} of m distinct positive integers is
called a Diophantine m-tuple with the property D(n), or simply a D(n)-m-tuple, if
aiaj + n is a perfect square for each distinct i, j. Our concerns here are in the case
of n = −1.

There is a conjecture ([3]) that there does not exist a D(−1)-quadruple. The
biggest step toward this conjecture was taken by Dujella and Fuchs ([7]), who showed
that if {a, b, c, d} with a < b < c < d is a D(−1)-quadruple, then a = 1. This
immediately implies that there does not exist a D(−1)-quintuple. Moreover, it was
shown by Dujella, Filipin and Fuchs ([6]) that there exist only finitely many D(−1)-
quadruples and that if {1, b, c, d} with 1 < b < c < d is a D(−1)-quadruple, then
c < min{11b6, 10491}. This bound was very recently improved by Bonciocat, Cipu
and Mignotte ([2]) to c < min{2.5b6, 10146}. Note that they also showed that the
number of D(−1)-quadruples is less than 1071, which improves the upper bound
10356 by the authors ([9]).

In this paper, we significantly improve the known upper bounds for c in terms
of b.

Theorem 1. If {1, b, c, d} with b < c < d is a D(−1)-quadruple, then c < 9.6b4.

The core of the proof is to improve Rickert’s theorem ([14]) in our situation (see
Theorem 2). The upper bound “9.6b4” comes from “λ < 2” with N = bc in Theorem
2, that is necessary in order to make the simultaneous approximation nontrivial.
Theorem 1 is expected to take us one step closer to proving the conjecture.
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2. Preliminary results

Let {1, b, c} be a D(−1)-triple with b < c and let r, s, t be positive integers such that
b − 1 = r2, c − 1 = s2, bc − 1 = t2. Suppose that {1, b, c, d} is a D(−1)-quadruple
with c < d. Then, there exist positive integers x, y, z such that

d− 1 = x2, bd− 1 = y2, cd− 1 = z2.

Eliminating d from these equations, we obtain the system of Diophantine equations

z2 − cx2 = c− 1, (1)

bz2 − cy2 = c− b. (2)

By Theorem 1 (i) in [6], we may assume that c ≤ b9. Then, Lemmas 1 and 5 in [6]
imply that the positive solutions (z, x) of (1) and (z, y) of (2) can be respectively
expressed as follows:

z + x
√
c = s(s+

√
c)2m (m ≥ 0),

z
√
b+ y

√
c = (s

√
b± r

√
c)(t+

√
bc)2n (n ≥ 0).

Hence, we may write z = vm = wn, where

v0 = s, v1 = (2c− 1)s, vm+2 = (4c− 2)vm+1 − vm,

w0 = s, w1 = (2bc− 1)s± 2rtc, wm+2 = (4bc− 2)wn+1 − wn.

We conclude this section by quoting three lemmas from [6].

Lemma 1 (Lemma 2, [6]). If vm = wn with n ̸= 0, then

(i) m ≡ n (mod 2);

(ii) n ≤ m ≤ 2n;

(iii) (m2 − bn2)s ≡ ±nrt (mod 4c).

Lemma 2 (Lemma 3, [6]). We have wn > (c− b)(4bc− 3)n−1 for n ≥ 1.

Lemma 3 (Lemma 6, [6]). We have v1 ̸= w1, v2 ̸= w2 and v4 ̸= w2.

3. The proof of Theorem 1

Lemma 4. Assume that c ≥ 9.6b4. If vm = wn with n ≥ 3, then n > c1/8.

Proof. Suppose that n ≤ c1/8. Since

bn2s < c1/4c1/4c1/2 = c,

|m2s∓ nrt| < 4c1/4c1/2 + c1/8c1/8c5/8 < 2c7/8 < c,

we have an equality in Lemma 1 (iii):

m2s = bn2s± nrt.
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Now we have m2s < m2
√
c and

bn2s− nrt > rn(
√
bcn−

√
bc− 1) >

√
bcrn(n− 1),

which together imply m2 >
√
brn(n− 1). Hence, we see that

8 >
4n2

n(n− 1)
>

m2

n(n− 1)
>

√
br,

which contradicts b > 8.

Remark 1. It is known that for b < 101 the D(−1)-pair {1, b} cannot be extended
to a D(−1)-quadruple (see [4, 8, 12, 15]). Recently, it has been checked that the
same is true for b < 1010 (see the sentence before the last one of Section 5 in [11]).
Note that this result is now extended to b < 1.024 · 1013 in [2].

Theorem 2. Let b and N be integers with b ≥ 10 and N ≥ 9.5b2(b− 1)3. Assume
that N is divisible by b. Then the numbers θ1 =

√
1− b/N and θ2 =

√
1− 1/N

satisfy

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ , ∣∣∣∣θ2 − p2
q

∣∣∣∣} > (32.01b(b− 1)N)−1q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(16.01b(b− 1)N)

log(1.687b−1(b− 1)−2N2)
< 2.

Proof. Note that the assumption N ≥ 9.5b2(b− 1)3 immediately implies λ < 2. It
suffices to find real numbers satisfying the conditions in the following lemma.

Lemma 5 (Lemma 22, [13]; Lemma 3.1, [14]; Lemma 2.1 [1]). Let θ1, . . . , θm be
arbitrary real numbers and θ0 = 1. Assume that there exist positive real numbers
l, p, L, P and positive integers D, f with f dividing D and with L > D, having the
following property. For each positive integer k, we can find rational numbers pijk
(0 ≤ i, j ≤ m) with nonzero determinant such that f−1Dkpijk (0 ≤ i, j ≤ m) are
integers and

|pijk| ≤ pP k (0 ≤ i, j ≤ m),

∣∣∣∣ m∑
j=0

pijkθj

∣∣∣∣ ≤ lL−k (0 ≤ i ≤ m).

Then

max

{∣∣∣∣θ1 − p1
q

∣∣∣∣ , . . . , ∣∣∣∣θm − pm
q

∣∣∣∣} > cq−λ

holds for all integers p1, . . . , pm, q with q > 0, where

λ = 1 +
log(DP )

log(L/D)
and c−1 = 2mf−1pDP

(
max{1, 2f−1l}

)λ
.
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In our situation, we take m = 2, a0 = −b, a1 = −1, a2 = 0 and θ1, θ2 as in
Theorem 2. A contour integral has the form

∑2
j=0 pijkθj , and estimating the inte-

gral and the relevant integrals we obtain the following (see the arguments following
Lemma 3.1 in [1]).∣∣∣∣∣∣

2∑
j=0

pijkθj

∣∣∣∣∣∣ < 27

64

(
1− b

N

)−1
{
27

4

(
1− b

N

)2

N3

}−k

(3)

and

|pijk|θj ≤ max
z∈Γj

∣∣∣∣ (1 + z/N)k+1/2

|A(z)|k

∣∣∣∣ (0 ≤ j ≤ 2), (4)

where A(z) =
∏2

i=0(z − ai) and the contours Γj (0 ≤ j ≤ 2) are defined by

|z − aj | = min
i ̸=j

{
|aj − ai|

2

}
.

Inequality (3) shows that we may take

l =
27

64

(
1− b

N

)−1

, L =
27

4

(
1− b

N

)2

N3.

Since

∣∣∣1 + z

N

∣∣∣ ≤

1 +

3b− 1

2N
on Γ0,

1− 1

2N
on Γ1,

1 +
1

2N
on Γ2,

and minz∈Γj |A(z)| ≥ (2b− 1)/8 for all j, we see from (4) that

|pijk| ≤
maxz∈Γj

|1 + z/N |k+1/2

θj ·minz∈Γj |A(z)|k

≤
(
1 +

3b+ 1

2(N − 1)

)1/2
(
8
(
1 + 3b−1

2N

)
2b− 1

)k

.

Therefore, we may take

p =

(
1 +

3b+ 1

2(N − 1)

)1/2

, P =
8
(
1 + 3b−1

2N

)
2b− 1

.

It remains to consider how to take D and f . The way of choosing them is similar
to the one of the proof of Theorem 2.5 in [10]. By the proof of Lemma 3.3 in [14],
we may express pijk = pij(1/N) as

pijk =
∑
ij

(
k + 1

2
hj

)
C−1

ij

∏
l ̸=j

(
−kil
hl

)
,
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where

Cij =
Nk

(N + aj)k−hj

∏
l ̸=j

(aj − al)
kil+hl ,

kil = k+ δil with δil the Kronecker delta,
∑

ij denotes the sum over all non-negative
integers h0, h1, h2 satisfying h0 + h1 + h2 = kij − 1, and

∏
l ̸=j denotes the product

from l = 0 to l = 2 omitting l = j (which is expression (3.7) in [14] with ν = 1/2).
Let N = bN0 for some integer N0. If j = 0, then

|Ci0| =
bh0Nk

0 (b− 1)ki1+h1bki2+h2

(N0 − 1)k−h0
=

bki2+h0+h2−k(b− 1)ki1+h1Nk

(N0 − 1)k−h0
.

Since kil+hj+hl−k ≤ kil+kij−1−k ≤ k and kil+hl ≤ kil+kij−1 ≤ 2k, we have
bk(b− 1)2kNkC−1

i0 ∈ Z for all i. If j = 1, then |Ci1| = Nk(b− 1)ki0+h0/(N − 1)k−h1

and we have (b − 1)2kNkC−1
i1 ∈ Z for all i. If j = 2, then |Ci2| = Nh2bki0+h0 =

bki0+h0+h2−kNk/Nk−h2
0 and we have bkNkC−1

i2 ∈ Z for all i. It follows that bk(b −
1)2kNkC−1

ij ∈ Z for all i, j. Since

2hj+h′
j

(
k + 1

2
hj

)
∈ Z

for all j (see the proof of Lemma 4.3 in [14]), we obtain 2−1{4b(b− 1)2N}kpijk ∈ Z
for all i, j, which means that we may take f = 2 and D = 4b(b− 1)2N .

To sum up, we see from the assumptions that

DP < 16.01b(b− 1)N,
L

D
>

1.687N2

b(b− 1)2
, c−1 < 32.01a′bN,

which together with Lemma 5 completes the proof of Theorem 2.

Lemma 6. All positive integer solutions x, y, z of (1) and (2) satisfy

max

{∣∣∣∣θ1 − sbx

bz

∣∣∣∣ , ∣∣∣∣θ2 − ty

bz

∣∣∣∣} < cz−2,

where θ1 =
√
1− 1/c and θ2 =

√
1− 1/(bc).

Proof. This is a special case of Lemma 1 in [5].

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Suppose that c ≥ 9.6b4. Since bc > 9.5b2(b − 1)3, we can
apply Theorem 2 and Lemma 6 with N = bc, p1 = sbx, p2 = ty and q = bz, and we
have

(32.01b(b− 1)bc)−1(bz)−λ < cz−2,

which together with λ < 2 yields

z2−λ < 32.01b4(b− 1)c2.
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Now we have

1

2− λ
<

log
(

1.687bc2

(b−1)2

)
log
(

0.1053c
b(b−1)3

) <
2 log(1.299b−1/2c)

log(0.1053b−4c)
,

where we used the inequality b > 1010 (see Remark 1). Hence,

log z <
4 log(5.658b5/2c) log(1.299b−1/2c)

log(0.1053b−4c)
.

Moreover, by Lemma 2 we have

log z > (n− 1) log(4bc− 3) > (n− 1) log(3.999bc).

It follows from Lemma 4 that

c1/8 − 1 <
4 log(5.658b5/2c) log(1.299b−1/2c)

log(3.999bc) log(0.1053b−4c)
.

Since c ≥ 9.6b4, we obtain

9.61/8b1/2 − 1 <
4 log(54.32b13/2) log(12.48b7/2)

log(38.39b5) log(1.01)
.

Putting g(b) = 1830 log(1.85b) log(2.06b) − (1.32b1/2 − 1) log(2.07b), we must have
g(b) > 0. However, g(b) is decreasing for b ≥ 108 and g(1010) < 0, which contradict
b > 1010. This completes the proof of Theorem 1.
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