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Abstract. In this paper, we consider a modified projective algorithm for finding com-
mon elements of the set of common fixed points of a finite family of quasi-ϕ-nonexpansive
mappings and the set of solutions of an equilibrium problem in uniformly smooth and
strictly convex Banach spaces with the property(K). Our results improve and extend the
corresponding results announced by many others.
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1. Introduction

Throughout this paper, we assume that E is a real Banach space, E∗ the dual space
of E. Let C be a nonempty closed convex subset of E and f a bifunction from C×C
to R, where R denotes the set of numbers. The equilibrium problem is to find p ∈ C
such that

f(p, y) ≥ 0, ∀y ∈ C. (1)

The set of solutions of (1) is denoted by EP (f). Given a mapping T : C → E∗, let
f(x, y) = ⟨Tx, y− x⟩ for all x, y ∈ C. Then p ∈ EP (f) if and only if ⟨Tp, y− p⟩ ≥ 0
for all y ∈ C, i.e., p is a solution of the variational inequality. Numerous problems in
physics, optimization, and economics reduce to find a solution of (1). Some methods
have been proposed to solve the equilibrium problem. See, for instance, [3, 8, 12].

Recall that T is nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the set of
fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}.
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Recently, many authors studied the problems of finding a common element of
the set of fixed points of a nonexpansive mapping and the set of solutions of an
equilibrium problem in the framework of Hilbert spaces and uniformly smooth and
uniformly convex Banach spaces, respectively. See, for instance, [16, 18, 19] and the
references therein.

Motivated and inspired by the research going on in this direction, we introduce
a modified projective algorithm for finding common elements of the set of common
fixed points of finite quasi-ϕ-nonexpansive mappings and the set of solutions of an
equilibrium problem in uniformly smooth and strictly convex Banach spaces with
the property(K).

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let J be the normalized duality
mapping from E into 2E

∗
given by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥∥x∗∥, ∥x∥ = ∥x∗∥}

for all x ∈ E, where E∗ denotes the dual space of E and ⟨·, ·⟩ the generalized duality
pairing between E and E∗. It is well-known that E is uniformly smooth if and only
if E∗ is uniformly convex.

As we all know, if C is a nonempty closed convex subset of a Hilbert space H
and PC : H → C is the metric projection of H onto C, then PC is nonexpansive.
This fact actually characterizes Hilbert spaces and consequently, it is not available
in more general Banach spaces. In this connection, Alber [2] recently introduced a
generalized projection operator ΠC in a Banach space E which is an analogue of the
metric projection in Hilbert spaces.

Consider the functional defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 for x, y ∈ E. (2)

Observe that in a Hilbert space H (2) reduces to ϕ(x, y) = ∥x − y∥2, x, y ∈ H.
The generalized projection ΠC : E → C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional ϕ(x, y), that is, ΠCx = x̄, where x̄ is the
solution to the minimization problem

ϕ(x̄, x) = inf
y∈C

ϕ(y, x). (3)

The existence and uniqueness of the operator ΠC follow from the properties of
the functional ϕ(x, y) and strict monotonicity of the mapping J (see, for example,
[1, 2, 7, 17]). In Hilbert spaces, ΠC = PC . It is obvious from the definition of function
ϕ that

(∥y∥ − ∥x∥)2 ≤ ϕ(y, x) ≤ (∥y∥+ ∥x∥)2, ∀x, y ∈ E. (4)

Remark 1. If E is a reflexive, strictly convex and smooth Banach space, then for
x, y ∈ E, ϕ(x, y) = 0 if and only if x = y. It is sufficient to show that if ϕ(x, y) = 0
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then x = y. From (4), we have ∥x∥ = ∥y∥. This implies ⟨x, Jy⟩ = ∥x∥2 = ∥Jy∥2.
From the definition of J, one has Jx = Jy. Therefore, we have x = y; see [7, 17]
for more details.

Let C be a closed convex subset of E, and let T be a mapping from C into
itself. A point p in C is said to be an asymptotic fixed point of T [15] if C contains
a sequence {xn} which converges weakly to p such that limn→∞ ∥xn − Txn∥ = 0.

The set of asymptotic fixed points of T will be denoted by F̃ (T ). A mapping T

from C into itself is said to be relatively nonexpansive [4, 5, 11] if F̃ (T ) = F (T )
and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F (T ). The asymptotic behavior of a
relatively nonexpansive mapping was studied in [4, 5, 11].
T is said to be ϕ-nonexpansive, if ϕ(Tx, Ty) ≤ ϕ(x, y) for x, y ∈ C. T is said to be
quasi-ϕ-nonexpansive if F (T ) ̸= ∅ and ϕ(p, Tx) ≤ ϕ(p, x) for x ∈ C and p ∈ F (T ).

Remark 2. The class of quasi-ϕ-nonexpansive mappings is more general than the
class of relatively nonexpansive mappings [4, 5, 13, 14] which requires the strong

restriction: F (T ) = F̃ (T ).

Next, we give some examples that are closed quasi-ϕ-nonexpansive which are due
to Zhou [20].

Example 1. Let E be a uniformly smooth and strictly convex Banach space and
A ⊂ E×E∗ a maximal monotone mapping such that its zero set A−10 is nonempty.
Then, Jr = (J + rA)−1J is a closed quasi-ϕ-nonexpansive mapping from E onto
D(A) and F (Jr) = A−10.

Example 2. Let ΠC be the generalized projection from a smooth, strictly convex,
and reflexive Banach space E onto a nonempty closed convex subset C of E. Then,
ΠC is a closed and quasi-ϕ-nonexpansive mapping from E onto C with F (ΠC) = C.

A Banach space E is said to be strictly convex if ∥x+y
2 ∥ < 1 for all x, y ∈ E with

∥x∥ = ∥y∥ = 1 and x ̸= y. It is said to be uniformly convex if limn→∞ ∥xn − yn∥ =
0 for any two sequences {xn} and {yn} in E such that ∥xn∥ = ∥yn∥ = 1 and
limn→∞ ∥xn+yn

2 ∥ = 1. Let U = {x ∈ E : ∥x∥ = 1} be the unit sphere of E. Then
the Banach space E is said to be smooth provided

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ E. It is well-known that if E is uniformly smooth, then J
is uniformly norm-to-norm continuous on each bounded subset of E. Recall that
a Banach space E has the Kadeč-Klee property (property(K) for brevity) if for
any sequence {xn} ⊂ E and x ∈ E, if xn → x weakly and ∥xn∥ → ∥x∥, then
∥xn − x∥ → 0. For more information concerning the property(K) the reader is
referred to [9] and references cited there in. It is well-known that if E is a uniformly
convex Banach space, then E has the property(K); Banach space E is uniformly
smooth if and only if E∗ is uniformly convex.

In order to establish our main results, we need the following lemmas.
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Lemma 1 (See [2]). Let C be a nonempty closed convex subset of a smooth Banach
space E, x ∈ E and x0 ∈ C. Then, x0 = ΠCx if and only if

⟨x0 − y, Jx− Jx0⟩ ≥ 0 ∀y ∈ C.

Lemma 2 (See [2]). Let E be a reflexive, strictly convex and smooth Banach space,
let C be a nonempty closed convex subset of E and let x ∈ E. Then

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x) ∀y ∈ C.

Lemma 3. Let E be a reflexive, strictly convex and smooth Banach space, C a closed
convex subset of E, and T a quasi-ϕ-nonexpansive mapping from C into itself. Then
F (T ) is a closed convex subset of C.

Proof. Let {pn} be a sequence in F (T ) with pn → p as n → ∞, we prove that p ∈
F (T ). From the definition of quasi−ϕ−nonexpansive mappings, one has ϕ(pn, Tp) ≤
ϕ(pn, p), which implies that ϕ(pn, Tp) → 0 as n → ∞. Noticing that

ϕ(pn, Tp) = ∥pn∥2 − 2⟨pn, J(Tp)⟩+ ∥Tp∥2.

Taking the limit as n → ∞ yields

lim
n→∞

ϕ(pn, Tp) = ∥p∥2 − 2⟨p, J(Tp)⟩+ ∥Tp∥2 = ϕ(p, Tp).

Hence ϕ(p, Tp) = 0. It implies that p = Tp. We next show that F (T ) is convex.
To this end, for arbitrary p1, p2 ∈ F (T ), t ∈ (0, 1), putting p3 = tp1 + (1 − t)p2, we
prove that Tp3 = p3. Indeed, by using the definition of ϕ(x, y), we have

ϕ(p3, Tp3) = ∥p3∥2 − 2⟨p3, J(Tp3)⟩+ ∥Tp3||2

= ∥p3∥2 − 2⟨tp1 + (1− t)p2, J(Tp3)⟩+ ∥Tp3∥2

= ∥p3∥2 − 2t⟨p1, J(Tp3)⟩ − 2(1− t)⟨p2, J(Tp3)⟩+ ∥Tp3∥2

= ∥p3∥2 + tϕ(p1, Tp3) + (1− t)ϕ(p2, Tp3)− t∥p1∥2 − (1− t)∥p2∥2

≤ ∥p3∥2 + tϕ(p1, p3) + (1− t)ϕ(p2, p3)− t∥p1∥2 − (1− t)∥p2∥2

= ∥p3∥2 − 2⟨p3, Jp3⟩+ ∥p3∥2 = 0.

This implies that Tp3 = p3.

Lemma 4 (See [6]). Let E be a uniformly convex Banach space, r a fixed positive
real number and Br(0) a dosed ball of E. Then there exists a continuous strictly
increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

∥λx+ µy + γz∥2 ≤ λ∥x∥2 + µ∥y∥2 + γ∥z∥2 − λµg(∥x− y∥)

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ+ µ+ γ = 1.

Remark 3. Let E, Br(0) and g : [0,∞) → [0,∞) be the same as in Lemma 4. By
a simple induction we have the following more general inequality:

∥
n∑

i=1

λixi∥2 ≤
n∑

i=1

λi∥xi∥2 − λiλjg(∥xi − xj∥)

for all λi ∈ [0, 1] with
∑n

i=1 λi = 1 and all xi ∈ Br(0)(i = 1, 2, · · ·, n, ∀n ≥ 1).
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In order to solve the equilibrium problem for a bifunction from C × C to R, we
assume that f satisfies the following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt�0 f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semi-continuous.

Lemma 5 (See [3]). Let C be a closed convex subset of a smooth, strictly convex and
reflexive Banach space. Let f be a bifunction from C×C to R satisfying (A1)−(A4).
Let r > 0 and x ∈ E. Then there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0, ∀y ∈ C.

Lemma 6 (See [3]). Let C be a closed convex subset of a uniformly smooth, strictly
convex Banach space E. Let f be a bifunction from C×C to R satisfying (A1)−(A4).
For r > 0 and x ∈ E. Define the mapping Tr : E → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0, ∀y ∈ C}.

Then the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

⟨Tr(x)− Tr(y), JTr(x)− JTr(y)⟩ ≤ ⟨Tr(x)− Tr(y), Jx− Jy⟩;

(3) F (Tr) = EP (f);

(4) EP (f) is closed and convex.

Proof. (1)-(3) are due to Takahashi and Zembayashi [19]. We just show (4). From
the proof of Lemma 2.8 of [25], one sees that Tr is a quasi-ϕ-nonexpansive mapping.
It follows from Lemma 3 that F (Tr) is closed and convex. This implies that EP (f)
is closed and convex.

Lemma 7 (See [19]). Let C be a closed convex subset of a smooth, strictly convex
and reflexive Banach space E. Let f be a bifunction from C × C to R satisfying
(A1)− (A4), and let r > 0. Then for x ∈ E and q ∈ F (Tr),

ϕ(q, Tr(x)) + ϕ(Tr(x), x) ≤ ϕ(q, x).
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3. Main results

Theorem 1. Let E be a uniformly smooth and strictly convex Banach space with
the property(K), and C a nonempty closed convex subset of E. Let N be a fixed
positive integer, {Ti}Ni=1 : C → C a finite family of closed quasi-ϕ-nonexpansive
mappings and f a bifunction from C × C to R satisfying (A1) − (A4) such that
F := ∩N

i=1F (Ti) ∩ EP (f) is nonempty. Let {xn} be a sequence generated in the
following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(αn,0Jxn +
∑N

i=1 αn,iJTixn),

un ∈ C such that f(un, y) +
1
rn
⟨y − un, Jun − Jyn⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},

xn+1 = ΠCn+1x0,

(5)

where J is the duality mapping on E, {αn,i} are N + 1 sequences in [0,1] such that

(a)
∑N

i=0 αn,i = 1;

(b) lim infn→∞ αn,0αn,i > 0;

(c) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠFx0.

Proof. First of all, we show that Cn is closed and convex for every n ≥ 0. It is
obvious that C1 = C is closed and convex. Suppose that Ck is closed and convex for
some k ∈ N, where N denotes the set of natural numbers. For z ∈ Ck+1, one obtains
that

ϕ(z, uk) ≤ ϕ(z, xk)

is equivalent to

2⟨z, Jxk − Juk⟩ ≤ ∥xk∥2 − ∥uk∥2.

It is easy to see that Ck+1 is closed and convex. Then, for all n ≥ 0, Cn are closed
and convex.

Noting that un = Trnyn for all n ≥ 0. From Lemma 6, one has Trn is a quasi-
ϕ-nonexpansive mapping. Next, we prove F ⊂ Cn for all n ≥ 1. F ⊂ C1 = C is
obvious. Suppose F ⊂ Ck for some k. Then, for ∀w ∈ F ⊂ Ck, noting the fact that
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∥ · ∥2 is convex, one has

ϕ(w, uk) = ϕ(w, Trkyk)

≤ ϕ(w, yk)

= ϕ(w, J−1(αkJxk + βkJTxk + γkJSxk)

= ∥w∥2 − 2⟨w,αk,0Jxk +
N∑
i=1

αk,iJTixk⟩

+∥αk,0Jxk +
N∑
i=1

αk,iJTixk∥2

≤ ∥w∥2 − 2αk,0⟨w, Jxk⟩ − 2
N∑
i=1

αk,i⟨w, JTixk⟩⟩ (6)

+αk,0∥xk∥2 +
N∑
i=1

αk,i∥Tixk∥2

= αk,0ϕ(w, xk) +
N∑
i=1

αk,iϕ(w, Tixk)

≤ αk,0ϕ(w, xk) +
N∑
i=1

αk,iϕ(w, xk)

= ϕ(w, xk),

which shows that w ∈ Ck+1. This implies that F ⊂ Cn for all n ≥ 1. By the
assumption that F is nonempty, we have that Cn are nonempty closed and convex
subsets of E, which in turn shows that ΠCn+1x0 is well defined.

Now we shall show that {xn} is bounded. From xn = ΠCnx0, one sees

⟨xn − u, Jx0 − Jxn⟩ ≥ 0, ∀u ∈ Cn. (7)

Since F ⊂ Cn for all n ≥ 1, we arrive at

⟨xn − w, Jx0 − Jxn⟩ ≥ 0, ∀w ∈ F. (8)

From Lemma 2, one has

ϕ(xn, x0) = ϕ(ΠCnx0, x0) ≤ ϕ(w, x0)− ϕ(w, xn) ≤ ϕ(w, x0),

for each w ∈ F ⊂ Cn. Therefore, the sequence {ϕ(xn, x0)} is bounded. On the other
hand, noticing that xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, one has

ϕ(xn, x0) ≤ ϕ(xn+1, x0)

for all n ≥ 1. Therefore, {ϕ(xn, x0)} is nondecreasing. It follows that the limit of
{ϕ(xn, x0)} exists.
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By the construction of Cn, one has that Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for
any positive integer m ≥ n. It follows that

ϕ(xm, xn) = ϕ(xm,ΠCnx0)

≤ ϕ(xm, x0)− ϕ(ΠCnx0, x0) (9)

= ϕ(xm, x0)− ϕ(xn, x0)

Letting m,n → ∞ in (9), one has ϕ(xm, xn) → 0. Hence |∥xm∥ − ∥xn∥| → 0. This
implies that {xn} is bounded.

At this point, we are in a position to prove that xn → p as n → ∞. Since X is
reflexive, without loss of generality, we can assume that xn → p weakly as n → ∞.
Since Cj ⊂ Cn for j ≥ n, we have xj ∈ Cn for j ≥ n. Since Cn is closed and
convex, one has p ∈ Cn for all n ≥ 1. Hence p ∈

∩∞
n=1 Cn = D. Noticing that

ϕ(xn, x0) ≤ ϕ(xn+1, x0) ≤ ϕ(p, x0), we have

ϕ(p, x0) ≤ lim inf
n→∞

ϕ(xn, x0) ≤ lim sup
n→∞

ϕ(xn, x0) ≤ ϕ(p, x0),

which implies that ϕ(xn, x0) → ϕ(p, x0) as n → ∞. Hence ∥xn∥ → ∥p∥. By the
property (K) of X, we have xn → p as n → ∞.

Next, we show p ∈ ∩N
i=1F (Ti). By taking m = n+ 1 in (9), one arrives at

lim
n→∞

ϕ(xn+1, xn) = 0. (10)

Since xn → p, one has

lim
n→∞

∥xn+1 − xn∥ = 0. (11)

Noting that xn+1 ∈ Cn+1, we obtain

ϕ(xn+1, un) ≤ ϕ(xn+1, xn). (12)

It follows from (10) that

lim
n→∞

ϕ(xn+1, un) = 0. (13)

Noting that 0 ≤ (∥xn+1∥ − ∥un∥)2 ≤ ϕ(xn+1, un). Hence ∥un∥ → ∥p∥ and conse-
quently ∥Jun∥ → ∥Jp∥. This implies that {J(un)} is bounded. Since E is reflexive,
E∗ is also reflexive. So we can assume that

J(un) → f0 ∈ X∗

weakly. On the other hand, in view of the reflexivity of E, one has J(E) = E∗,
which means that for f0 ∈ E∗, there exists x ∈ E, such that Jx = f0. By using
(13), xn → p and the weak lower semi-continuity of the norm ∥ · ∥, we have that

0 = lim
n→∞

ϕ(xn+1, un) = lim inf
n→∞

[∥xn+1∥2 − 2⟨xn+1, Jun⟩+ ∥un||2]

= lim inf
n→∞

[∥xn+1∥2 − 2⟨xn+1, Jun⟩+ ∥Jun||2]

≥ ∥p∥2 − 2⟨p, f0⟩+ ∥f0||2

= ∥p∥2 − 2⟨p, Jx⟩+ ∥Jx||2

= ϕ(p, x) ≥ 0,
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which gives that ϕ(p, x) = 0 and hence p = x, which implies that f0 = Jp. Conse-
quently,

Jun → Jp ∈ E∗

weakly. Since ∥Jun∥ → ∥Jp∥ and E∗ has the property(K), we have

∥Jun − Jp∥ → 0.

Noting that J−1 : E∗ → E is demi-continuous, we have un → p weakly. Since
∥un∥ → ∥p∥ and E has the property(K), we obtain that

un → p as n → ∞. (14)

Hence

lim
n→∞

∥xn − un∥ = 0. (15)

Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞

∥Jxn − Jun∥ = 0. (16)

Since E is a uniformly smooth Banach space, one knows that E∗ is a uniformly
convex Banach space. Let r = supn≥0{∥xn∥,max{∥Tixn∥ : i = 1, 2, · · ·, N}}. By
using Remark 3, we have

ϕ(w, un) = ϕ(w, Trnyn)

≤ ϕ(w, yn)

= ϕ(w, J−1(αn,0Jxn +

N∑
i=1

αn,iJTixn)

= ∥w∥2 − 2⟨w,αn,0Jxn +

N∑
i=1

αn,iJTixn+⟩

+∥αn,0Jxn +

N∑
i=1

αn,iJTixn∥2

≤ ∥w∥2 − 2αn,0⟨w, Jxn⟩ − 2
N∑
i=1

αn,i⟨w, JTixn⟩ (17)

+αn,0∥xn∥2 +
N∑
i=1

αn,i∥Tixn∥2 − αn,0αn,ig(∥Jxn − JTixn∥)

= αn,0ϕ(w, xn) +
N∑
i=1

αn,iϕ(w, Tixn)− αn,0αn,ig(∥Jxn − JTixn∥)

≤ αnϕ(w, xn) + βnϕ(w, xn) + γnϕ(w, xn)− αn,0αn,ig(∥Jxn − JTixn∥)
= ϕ(w, xn)− αn,0αn,ig(∥Jxn − JTixn∥).



44 H.Y. Zhou, G.Gao and X.H.Gao

It follows that

αn,0αn,ig(∥Jxn − JTixn∥) ≤ ϕ(w, xn)− ϕ(w, un). (18)

On the other hand, one has

ϕ(w, xn)− ϕ(w, un) = ∥xn∥2 − ∥un∥2 − 2⟨w, Jxn − Jun⟩
≤ ∥xn − un∥(∥xn∥+ ∥un∥) + 2∥w∥∥Jxn − Jun∥.

It follows from (15) and (16) that

ϕ(w, xn)− ϕ(w, un) → 0 as n → ∞. (19)

In view of the assumption (b)lim infn→∞ αn,0αn,i > 0, (3.13) and (3.14), we have

g(∥Jxn − JTixn∥) → 0 as n → ∞.

It follows from the property of g that

∥Jxn − JTixn∥ → 0 as n → ∞. (20)

Since ∥xn − p∥ → 0 as n → ∞, noting that J : E → E∗ is demi-continuous, we
have

Jxn → Jp ∈ X∗

weakly. Noting that

|∥Jxn∥ − ∥Jp∥| = |∥xn∥ − ∥p∥| ≤ ∥xn − p∥ → 0,

which implies that ∥Jxn∥ → ∥Jp∥. By using the property(K) of X∗, we have

∥Jxn − Jp∥ → 0 as n → ∞.

In view of (20), one has

∥JTixn − Jp∥ → 0 as n → ∞.

Noting that J−1 : E∗ → E is demi-continuous, we have

Tixn → p

weakly as n → ∞ for all i = 1, 2, · · ·, N . Noting that

|∥Tixn∥ − ∥p∥| = |∥JTixn∥ − ∥Jp∥| ≤ ∥JTixn − Jp∥ → 0,

which implies that ∥Tixn∥ → ∥p∥. By using the property(K) of E, we have

∥Tixn − p∥ → 0 as n → ∞.

It follows from xn → p and the closedness of Ti that Tip = p, which means that
p ∈ ∩N

i=1F (Ti).
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Then we prove p ∈ EF (f). From (6), we arrive at

ϕ(w, yn) ≤ ϕ(w, xn). (21)

From un = Trnyn and Lemma 7, one has

ϕ(un, yn) = ϕ(Trnyn, yn)

≤ ϕ(w, yn)− ϕ(w, Trnyn)

≤ ϕ(w, xn)− ϕ(w, Trnyn)

= ϕ(w, xn)− ϕ(w, un) (22)

It follows from (19) that

ϕ(un, yn) → 0 as n → ∞. (23)

Noting that 0 ≤ (∥un∥ − ∥yn∥)2 ≤ ϕ(un, yn). It follows from (14) that ∥yn∥ → ∥p∥
and consequently ∥Jyn∥ → ∥Jp∥. This implies that {J(yn)} is bounded. Since E is
reflexive, E∗ is also reflexive. So we can assume that

J(yn) → h0 ∈ X∗

weakly. On the other hand, in view of the reflexivity of E, one has J(E) = E∗,
which means that for h0 ∈ E∗, there exists x ∈ E, such that Jx = h0. By using
(23), un → p and the weak lower semi-continuity of the norm ∥ · ∥, we have that

0 = lim
n→∞

ϕ(un, yn) = lim inf
n→∞

[∥un∥2 − 2⟨un, Jyn⟩+ ∥yn||2]

= lim inf
n→∞

[∥un∥2 − 2⟨un, Jyn⟩+ ∥Jyn||2]

≥ ∥p∥2 − 2⟨p, h0⟩+ ∥h0||2

= ∥p∥2 − 2⟨p, Jx⟩+ ∥Jx||2

= ϕ(p, x) ≥ 0,

which gives that ϕ(p, x) = 0 and hence p = x, which implies that h0 = Jp. Conse-
quently,

Jyn → Jp ∈ E∗

weakly. Since ∥Jyn∥ → ∥Jp∥ and E∗ has the property(K), we have

∥Jyn − Jp∥ → 0.

Noting that J−1 : E∗ → E is demi-continuous, we have yn → p weakly. Since
∥yn∥ → ∥p∥ and E has the property(K), we obtain that

yn → p as n → ∞. (24)

From (14), one can obtain

lim
n→∞

∥un − yn∥ = 0. (25)
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Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞

∥Jun − Jyn∥ = 0. (26)

In view of the assumption (c)rn ≥ a, one sees

lim
n→∞

∥Jun − Jyn∥
rn

= 0. (27)

Noting that un = Trnyn, one obtains

f(un, y) +
1

rn
⟨y − un, Jun − Jyn⟩ ≥ 0, ∀ y ∈ C.

From(A2), one arrives at

∥y − un∥
∥Jun − Jyn∥

rn
≥ 1

rn
⟨y − un, Jun − Jyn⟩ ≥ −f(un, y) ≥ f(y, un), ∀y ∈ C.

By taking the limit as n → ∞ in above inequality and from (A2) and (3.9), one has

f(y, p) ≤ 0, ∀y ∈ C.

From 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)p. Noting that y, p ∈ C, one
obtains yt ∈ C, which yields that f(yt, p) ≤ 0. It follows from (A1) and (A4) that

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y).

That is,

f(yt, y) ≥ 0.

Let t ↓ 0, from (A3), we obtain f(p, y) ≥ 0, ∀y ∈ C. This implies that p ∈ EP (f).
This shows that p ∈ F .

Finally, we shows that p = ΠFx0.
By the assumption on F , F ̸= ∅. In view of Lemma 3 and Lemma 6, we know

that F is a nonempty closed and convex subset of E, and hence ΠFx0 is well defined
for every x0 ∈ E. By taking the limit in (8), one has

⟨p− w, Jx0 − Jp⟩ ≥ 0, ∀w ∈ F.

At this point, in view of Lemma 1, one sees that p = ΠFx0. This completes the
proof.

If Ti = S in Theorem 1, then we immediately obtain the following result.

Corollary 1. Let E be a uniformly smooth and strictly convex Banach space with
the property(K), C a nonempty closed convex subset of E. Let S : C → C be a
closed quasi-ϕ-nonexpansive mapping and f a bifunction from C×C to R satisfying
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(A1) − (A4) such that F := F (S) ∩ EP (f) is nonempty. Let {xn} be a sequence
generated in the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJxn + (1− αn)JSxn),

un ∈ C such that f(un, y) +
1
rn
⟨y − un, Jun − Jyn⟩ ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : ϕ(z, un) ≤ ϕ(z, xn)},

xn+1 = ΠCn+1x0,

where J is the duality mapping on E, {αn} is sequence in [0,1] such that lim infn→∞ αn

(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly to
ΠFx0.

Remark 4. Corollary 1 improves and extends Theorem 3.1 of Takahashi and Zem-
bayashi [19] in the following senses:

(i) from uniformly convex and uniformly smooth Banach spaces extend to uni-
formly smooth and strictly convex Banach spaces with the property(K).

(ii) from relatively nonexpansive mappings extend to more general quasi−ϕ−non-

expansive mappings, that is, the very strict restriction that F̃ (T ) = F (T ) has
been removed.

(iii) our algorithm is simpler than the one given by Takahashi and Zembayashi [19].

Remark 5. We do not know whether the uniform smoothness of Banach space E
can be weakened to smoothness in Theorem 1.
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