
MATHEMATICAL COMMUNICATIONS 49
Math. Commun. 17(2012), 49–62

Iterative approximation of common fixed points for two
quasi-φ-nonexpansive mappings in Banach spaces

Haiyun Zhou1,∗and Xinghui Gao2

1 Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang
050 003, P.R.China
2 College of Mathematics and Computer Science, Yanan University, Yanan 716 000,
P.R.China

Received April 29, 2009; accepted March 25, 2010

Abstract. In this paper, we introduce a new type of a projective algorithm for a pair
of quasi-φ-nonexpansive mappings. We establish strong convergence theorems of common
fixed points in uniformly smooth and strictly convex Banach spaces with the property(K).
Our results improve and extend the corresponding results announced by many others.
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1. Introduction

Throughout this paper, we assume that E is a Banach space, C is a nonempty closed
convex subset of E and T : C → C is a nonlinear mapping. We use F (T ) to denote
the set of fixed points of T . Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (1)

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the set of
fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}.

One classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping, see [3]. More precisely, take t ∈ (0, 1) and
define a contraction Tt : C → C by

Ttx = tu + (1− t)Tx, x ∈ C, (2)

where u ∈ C is a fixed point. Banach’s Contraction Mapping Principle guarantees
that Tt has a unique fixed point xt in C. It is unclear, in general, what is the behavior
of xt as t → 0, even if T has a fixed point. However, in the case of T having a fixed
point, Browder [3] proved the following well-known strong convergence theorem.
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Theorem 1. Let K be a bounded closed convex subset of a Hilbert space H and let T
be a nonexpansive mapping on K. Fix u ∈ K and define zt ∈ K as zt = tu+(1−t)Tzt

for t ∈ (0, 1), {zt} converges strongly to an element of F (T ) nearest to u.

As motivated by Theorem 1, Halpern [6] considered the following explicit itera-
tion:

x0 ∈ K, xn+1 = αnu + (1− αn)Txn, n ≥ 0, (3)

and proved the following theorem.

Theorem 2. Let K be a bounded closed convex subset of a Hilbert space H and
let T be a nonexpansive mapping on K. Define a real sequence {αn} in [0, 1] by
αn = n−θ, 0 < θ < 1. Define a sequence {xn} by (3). Then {xn} converges strongly
to the element of F (T ) nearest to u.

In 1977, Lions [10] improved the result of Halpern [8], still in Hilbert spaces, by
proving the strong convergence of {xn} to a fixed point of T when the real sequence
{αn} satisfies the following conditions:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3) limn→∞
αn+1−αn

α2
n+1

= 0.

It was observed that both Halpern’s and Lion’s conditions on the real sequence
{αn} excluded the canonical choice αn = 1

n+1 . This was overcome in 1992 by
Wittmann [16], who proved, still in Hilbert spaces, the strong convergence of {xn}
to a fixed point of T if {αn} satisfies the following conditions:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C4)
∑∞

n=1 |αn+1 − αn| < ∞.

In 2002, Xu [17] improved the result of Lion twofold. First, he weakened condition
(C3) by removing the square in the denominator so that the canonical choice of
{αn} = 1

n is possible. Secondly, he proved the strong convergence of the scheme (3)
in the framework of real uniformly smooth Banach spaces. Xu also remarked ([18],
Remark 3.2) that Halpern [8] observed that conditions (C1) and (C2) are necessary
for the strong convergence of algorithm (3) for all nonexpansive mappings. It is well
known that (3) is widely believed to have slow convergence because of the restriction
of condition (C2). Thus to improve the rate of convergence of the iterative process
(3), one cannot rely only on the process itself. Martinez-Yanes and Xu [11] proposed
the following modification of the Halpern iteration for a single nonexpansive mapping
T in a Hilbert space. To be more precise, they proved the following theorem.
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Theorem 3. Let H be a real Hilbert space, C a closed convex subset of H and
T : C → C a nonexpansive mapping such that F (T ) 6= ∅. Assume that {αn} ⊂ (0, 1)
is such that limn→∞ αn = 0. Then the sequence {xn} defined by





x0 ∈ C chosen arbitrarily,

yn = αnx0 + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + αn(‖x0‖2 + 2〈xn − x0, z〉)},
Qn = {z ∈ C : 〈x0 − xn, xn − z〉 ≥ 0},

xn+1 = PCn∩Qn
x0

(4)

converges strongly to PF (T )x0.

Recently, Qin and Su [14] extended the main result of Martinez-Yanes and Xu
[12] from Hilbert spaces to Banach spaces. To be more precise, they proved the
following theorem.

Theorem 4. Let E be a uniformly convex and uniformly smooth Banach space,
let C be a nonempty closed convex subset of E and let T : C → C be a relatively
nonexpansive mapping. Assume that {αn}∞n=0 is a sequence in (0, 1) such that
limn→∞ αn = 0. Define a sequence {xn} in C by the following algorithm





x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1− αn)JTxn),
Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1− αn)φ(v, xn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

(5)

where J is the single-valued duality mapping on E. If F (T ) is nonempty, then {xn}
converges to ΠF (T )x0.

Very recently, Plubtieng and Ungchittrakool [13], still in the framework of uni-
formly smooth and uniformly convex Banach spaces, introduced the following hybrid
projection algorithm for a pair of relatively nonexpansive mappings





x0 = x ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1− αn)Jzn),

zn = J−1(β(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn) + αn(‖x‖2 + 2〈z, Jxn − Jx〉),
Qn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx,

(6)

where T, S are relatively nonexpansive mappings and J is the single-valued duality
mapping on E. They proved the sequence {xn} generated by (6) converges strongly
to a common fixed point of T and S.

In this paper, motivated and inspired by the above works, we introduce a new
type of a modified projective algorithm for a pair of quasi-φ-nonexpansive mappings
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which more general than relatively nonexpansive mappings to have a strong con-
vergence theorem in uniformly smooth and strictly convex Banach spaces with the
property(K). The main novelty of our results lies in the facts that we extend not
only the spaces but also the mappings to a more general setting; in part, we extend
Martinez-Yanes and Xu [11], Plubtieng and Ungchittrakool [13], Qin and Su [14]
and some others.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let J be the normalized duality
mapping from E into 2E∗ given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖} (7)

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality
pairing between E and E∗. It is well known that E is uniformly smooth if and only
if E∗ is uniformly convex.

It is well known that if C is a nonempty closed convex subset of a Hilbert space
H and PC : H → C is the metric projection of H onto C, then PC is nonexpansive.
This fact actually characterizes Hilbert spaces and consequently, it is not available
in more general Banach spaces. In this connection, Alber [2] recently introduced a
generalized projection operator ΠC in a Banach space E which is an analogue of the
metric projection in Hilbert spaces.

Consider the functional defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for x, y ∈ E. (8)

Observe that, in a Hilbert space H, (8) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H.
The generalized projection ΠC : E → C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x̄, where x̄ is the
solution to the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x), (9)

the existence and uniqueness of the operator ΠC follows from properties of the
functional φ(x, y) and strict monotonicity of the mapping J (see, for example, [1, 2,
7, 15]). In Hilbert spaces, ΠC = PC . It is obvious from the definition of function φ
that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E. (10)

Remark 1. If E is a reflexive, strictly convex and smooth Banach space, then for
x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0,
then x = y. From (10), we have ‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2.
From the definition of J, one has Jx = Jy. Therefore, we have x = y; see [7, 15]
for more details.
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Let C be a closed convex subset of E, and let T be a mapping from C into
itself. A point p in C is said to be an asymptotic fixed point of T [15] if C contains
a sequence {xn} which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0.
The set of asymptotic fixed points of T will be denoted by F̃ (T ). A mapping T

from C into itself is said to be relatively nonexpansive [4, 5, 7, 12] if F̃ (T ) = F (T )
and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ). The asymptotic behavior of a
relatively nonexpansive mapping was studied in [4, 5].

T is said to be φ-nonexpansive, if φ(Tx, Ty) ≤ φ(x, y) for x, y ∈ C. T is said to
be quasi-φ-nonexpansive if F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for x ∈ C and p ∈ F (T ).

Remark 2. The class of quasi-φ-nonexpansive mappings is more general than the
class of relatively nonexpansive mappings [4, 5, 12, 13, 14] which requires a strong
restriction: F (T ) = F̃ (T ).

Next, we give some examples which are closed quasi-φ-nonexpansive due to Zhou
et al. [18].

Example 1. Let E be a uniformly smooth and strictly convex Banach space and
A ⊂ E×E∗ is a maximal monotone mapping such that its zero set A−10 is nonempty.
Then, Jr = (J + rA)−1J is a closed quasi-φ-nonexpansive mapping from E onto
D(A) and F (Jr) = A−10.

Example 2. Let ΠC be a generalized projection from a smooth, strictly convex, and
reflexive Banach space E onto a nonempty closed convex subset C of E. Then, ΠC

is a closed and quasi-φ- nonexpansive mapping from E onto C with F (ΠC) = C.

A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E with

‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly convex if limn→∞ ‖xn − yn‖ =
0 for any two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn+yn

2 ‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be a unit sphere of E. Then the
Banach space E is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ U. It is said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ E. It is well known that if E is uniformly smooth, then J is
uniformly norm-to-norm continuous on each bounded subset of E.

Recall that a Banach space E has the Kadeč-Klee property (property(K) for
brevity) if for any sequence {xn} ⊂ E and x ∈ E, if xn → x weakly and ‖xn‖ → ‖x‖,
then ‖xn − x‖ → 0. For more information concerning property(K) the reader is
referred to [9] and references cited there in. It is well known that if E is a uniformly
convex Banach space, then E has the property(K); Banach space E is uniformly
smooth if and only if E∗ is uniformly convex.

In order to prove our main results, we need the following lemmas.

Lemma 1 (See [2]). Let C be a nonempty closed convex subset of a smooth Banach
space E, x ∈ E and x0 ∈ C. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0 ∀y ∈ C.
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Lemma 2 (See [2]). Let E be a reflexive, strictly convex and smooth Banach space,
let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x) ∀y ∈ C.

Lemma 3. Let E be a reflexive, strictly convex and smooth Banach space, let C be
a closed convex subset of E, and let T be a quasi-φ-nonexpansive mapping from C
into itself. Then F (T ) is a closed convex subset of C.

Proof. Let {pn} be a sequence in F (T ) with pn → p as n →∞, we prove that p ∈
F (T ). From the definition of quasi−φ−nonexpansive mappings, one has φ(pn, Tp) ≤
φ(pn, p), which implies that φ(pn, Tp) → 0 as n →∞. Noticing that

φ(pn, Tp) = ‖pn‖2 − 2〈pn, J(Tp)〉+ ‖Tp‖2.

Taking the limit as n →∞ yields

lim
n→∞

φ(pn, Tp) = ‖p‖2 − 2〈p, J(Tp)〉+ ‖Tp‖2 = φ(p, Tp).

Hence φ(p, Tp) = 0. It implies that p = Tp. We next show that F (T ) is convex.
To end this, for arbitrary p1, p2 ∈ F (T ), t ∈ (0, 1), putting p3 = tp1 + (1 − t)p2, we
prove that Tp3 = p3. Indeed, by using the definition of φ(x, y), we have

φ(p3, Tp3) = ‖p3‖2 − 2〈p3, J(Tp3)〉+ ‖Tp3||2
= ‖p3‖2 − 2〈tp1 + (1− t)p2, J(Tp3)〉+ ‖Tp3‖2
= ‖p3‖2 − 2t〈p1, J(Tp3)〉 − 2(1− t)〈p2, J(Tp3)〉+ ‖Tp3‖2
= ‖p3‖2 + tφ(p1, Tp3) + (1− t)φ(p2, Tp3)− t‖p1‖2 − (1− t)‖p2‖2
≤ ‖p3‖2 + tφ(p1, p3) + (1− t)φ(p2, p3)− t‖p1‖2 − (1− t)‖p2‖2
= ‖p3‖2 − 2〈p3, Jp3〉+ ‖p3‖2 = 0.

This implies that Tp3 = p3.

Lemma 4 (See [6]). Let X be a uniformly convex Banach space, r a fixed positive
number and Br(0) be a dosed ball of X. Then there exists a continuous strictly
increasing convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµg(‖x− y‖)

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ + µ + γ = 1.

3. Main results

Theorem 5. Let E be a uniformly smooth and strictly convex Banach space with
the property(K), C a nonempty closed convex subset of E. Let T, S : C → C
be two closed quasi-φ-nonexpansive mappings such that the common fixed point set
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F := F (T ) ∩ F (S) is nonempty. Let {xn} be a sequence generated in the following
manner:





x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJx1 + (1− αn)Jzn),

zn = J−1(β(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn),

Cn+1 = {u ∈ Cn : φ(u, yn) ≤ φ(u, xn) + αn(‖x1‖2 + 2〈u, Jxn − Jx1〉)},
xn+1 = ΠCn+1x1,

(11)

where J is the duality mapping on E, {αn}, {β(i)
n } (i = 1, 2, 3) are sequences in

(0,1) such that

(a) β
(1)
n + β

(2)
n + β

(3)
n = 1;

(b) limn→∞ αn = 0;

(c) lim infn→∞ β
(2)
n β

(3)
n > 0 and limn→∞ β

(1)
n = 0.

Then {xn} converges strongly to ΠF x1.

Proof. First, we show that Cn is closed and convex for every n ≥ 0. It is obvious
that C1 = C is closed and convex. Suppose that Ck is closed and convex for some
k ∈ N, where N denotes the natural number set. For u ∈ Ck+1, one obtains that

φ(u, yk) ≤ φ(u, xk) + αk(‖x1‖2 + 2〈u, Jxk − Jx1〉)
is equivalent to

2〈u, Jxk〉 − 2〈u, Jyk〉 − 2αk〈u, Jxk − Jx1〉 ≤ ‖xk‖2 − ‖yk‖2 + αk‖x1‖2.
It is easy to see that Ck+1 is closed and convex. Then, for all n ≥ 1, Cn are closed
and convex. This shows that ΠCn+1x1 is well defined. Next, we prove F ⊂ Cn

for all n ≥ 1. F ⊂ C1 = C is obvious. Suppose F ⊂ Ck for some k. Then, for
∀w ∈ F ⊂ Ck, one has

φ(w, zk) = φ(w, J−1(β(1)
k Jxk + β

(2)
k JTxk + β

(3)
k JSxk)

= ‖w‖2 − 2〈w, β
(1)
k Jxk + β

(2)
k JTxk + β

(3)
k JSxk〉

+‖β(1)
k Jxk + β

(2)
k JTxk + β

(3)
k JSxk‖2

≤ ‖w‖2 − 2β
(1)
k 〈w, Jxk〉 − 2β

(2)
k 〈w, JTxk〉 − 2β

(3)
k 〈w, JSxk〉

+β
(1)
k ‖xk‖2 + β

(2)
k ‖Txk‖2 + β

(3)
k ‖JSxk‖2

= β
(1)
k φ(w, xk) + β

(2)
k φ(w, Txk) + β

(3)
k φ(w, Sxk)

≤ β
(1)
k φ(w, xk) + β

(2)
k φ(w, xk) + β

(3)
k φ(w, xk)

= φ(w, xk)
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and then

φ(w, yk) = φ(w, J−1[αkJx1 + (1− αk)Jzk])
= ‖w‖2 − 2〈w, αkJx1 + (1− αk)Jzk〉+ ‖αkJx1 + (1− αk)Jzk‖2
≤ ‖w‖2 − 2αk〈w, Jx1〉 − 2(1− αk)〈w, Jzk〉+ αk‖x1‖2 + (1− αk)‖zk‖2
= αkφ(w, x1) + (1− αk)φ(w, zk)
≤ αkφ(w, x1) + (1− αk)φ(w, xk)
= φ(w, xk) + αk[φ(w, x1)− φ(w, xk)]
≤ φ(w, xk) + αk(‖x1‖2 + 2〈w, Jxk − Jx1〉).

This shows w ∈ Ck+1. That is, F ⊂ Cn for all n ≥ 1. From xn = ΠCn
x1, one sees

〈xn − u, Jx1 − Jxn〉 ≥ 0, ∀u ∈ Cn. (12)

Since F ⊂ Cn for all n ≥ 0, we arrive at

〈xn − w, Jx1 − Jxn〉 ≥ 0, ∀w ∈ F. (13)

From Lemma 2, one has

φ(xn, x1) = φ(ΠCnx1, x1) ≤ φ(w, x1)− φ(w, xn) ≤ φ(w, x1),

for each w ∈ F ⊂ Cn. Therefore, the sequence {φ(xn, x1)} is bounded, it follows
from (10) that {xn} is bounded. On the other hand, noticing that xn = ΠCnx1 and
xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn, one has

φ(xn, x1) ≤ φ(xn+1, x1)

for all n ≥ 1. Therefore, {φ(xn, x1)} is nondecreasing. It follows that the limit of
{φ(xn, x1)} exists. By the construction of Cn, one has that Cm ⊂ Cn and xm =
ΠCmx1 ∈ Cn for any positive integer m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠCnx1)
≤ φ(xm, x1)− φ(ΠCnx1, x1) (14)
= φ(xm, x1)− φ(xn, x1).

Letting m,n → ∞ in (14), one has φ(xm, xn) → 0. Hence |‖xm‖ − ‖xn‖| → 0.
This implies that {xn} is bounded. Since X is reflexive, without loss of generality,
we can assume that xn → p weakly as n → ∞. Since Cj ⊂ Cn for j ≥ n, we
have xj ∈ Cn for j ≥ n. Since Cn is closed and convex, one has p ∈ Cn for all
n ≥ 1. Hence p ∈ ⋂∞

n=1 Cn = D. Noticing that φ(xn, x0) ≤ φ(xn+1, x0) ≤ φ(p, x0),
xn → p weakly as n → ∞ and by using the fact that the norm is weakly lower
semi-continuous, we have

φ(p, x0) ≤ lim inf
n→∞

φ(xn, x0) ≤ lim sup
n→∞

φ(xn, x0) ≤ φ(p, x0),

which implies that φ(xn, x0) → φ(p, x0) as n → ∞. Hence ‖xn‖ → ‖p‖. By the
property(K) of X, we have xn → p ∈ C as n →∞.
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Finally, we show that p = ΠF x1. To show this, we first show p ∈ F . By taking
m = n + 1 in (14), one arrives at

lim
n→∞

φ(xn+1, xn) = 0. (15)

Since xn → p, one has

lim
n→∞

‖xn+1 − xn‖ = 0. (16)

Noticing that xn+1 ∈ Cn+1, we obtain

φ(xn+1, yn) ≤ φ(xn+1, xn) + αn(‖x1‖2 + 2〈xn+1, Jxn − Jx1〉).

It follows from (15) and limn→∞ αn = 0 that

lim
n→∞

φ(xn+1, yn) = 0. (17)

Noting that 0 ≤ (‖xn+1‖ − ‖yn‖)2 ≤ φ(xn+1, yn). Hence ‖yn‖ → ‖p‖ and conse-
quently ‖Jyn‖ → ‖Jp‖. This implies that {J(yn)} is bounded. Since E is reflexive,
E∗ is also reflexive. So we can assume that

J(yn) → f0 ∈ X∗

weakly. On the other hand, in view of the reflexivity of E, one has J(E) = E∗,
which means that for f0 ∈ E∗, there exists x ∈ E, such that Jx = f0. In view of
(17) and the weak lower semi-continuity of the norm, we have that

0 = lim inf
n→∞

φ(xn+1, yn) = lim inf
n→∞

{‖xn+1‖2 − 2〈xn+1, Jyn〉+ ‖yn||2}
= lim inf

n→∞
{‖xn+1‖2 − 2〈xn+1, Jyn〉+ ‖Jyn||2}

≥ ‖p‖2 − 2〈p, f0〉+ ‖f0||2
= ‖p‖2 − 2〈p, Jx〉+ ‖Jx||2
= φ(p, x) ≥ 0.

It follows that φ(p, x) = 0 and then p = x, which implies that f0 = Jp. Hence

Jyn → Jp ∈ E∗

weakly. Since ‖Jyn‖ → ‖Jp‖ and E∗ has the property(K), we have

‖Jyn − Jp‖ → 0. (18)

Noting that J−1 : E∗ → E is demi-continuous, we have yn → p weakly. Since
‖yn‖ → ‖p‖ and E has the property(K), we obtain

yn → p as n →∞. (19)
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Noticing that

φ(zn, yn) = ‖zn‖2 − 2〈zn, αnJx1 + (1− αn)Jzn〉+ ‖αnJx1 + (1− αn)Jzn‖2
≤ ‖zn‖2 − 2αn〈zn, Jx1〉 − 2(1− αn)〈zn, Jzn〉+ αn‖x1‖2 + (1− αn)‖zn‖2
= αn(‖zn‖2 − 2〈zn, Jx1〉+ ‖x1‖2)
= αnφ(zn, x1).

Since {xn} is bounded, from (10) and the definition of T and S, we can prove that
{Txn} and {Sxn} are all bounded, and hence {JTxn} and {JSxn} are all bounded.
At this point, by using the definition of {zn}, we know that {zn} is bounded. It
follows from (10) that {φ(zn, x1)} is bounded, consequently, by condition (b) we
have

lim
n→∞

φ(zn, yn) = 0. (20)

Noting that 0 ≤ (‖zn‖ − ‖yn‖)2 ≤ φ(zn, yn). It follows from (19) and (20) that
‖zn‖ → ‖p‖. Since E is reflexive, {zn} is bounded, we can assume that

zn → g0 ∈ X∗

weakly. By using (18), (19), (20) and the weak lower semi-continuity of the norm,
we have

0 = lim inf
n→∞

φ(zn, yn) = lim inf
n→∞

{‖zn‖2 − 2〈zn, Jyn〉+ ‖yn||2}
≥ ‖g0‖2 − 2〈g0, Jp〉+ ‖p||2
= φ(g0, p) ≥ 0,

It follows that φ(g0, p) = 0. Hence p = g0 and consequently

zn → p

weakly. Since ‖zn‖ → ‖p‖ and E has the property (K), we have

zn → p as n →∞. (21)

From xn → p, we have

lim
n→∞

‖zn − xn‖ = 0. (22)

Since J is also uniformly norm-to-norm continuous on bounded sets, one sees

lim
n→∞

‖Jzn − Jxn‖ = 0. (23)

Let r = supn≥1{‖xn‖, ‖Sxn‖, ‖Txn‖}. From Lemma 4, for any w ∈ F , one
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arrives at

φ(w, zn) = φ(w, J−1[β(1)
n Jxn + β(2)

n JTxn + β(3)
n JSxn])

= ‖w‖2 − 2〈w, β(1)
n Jxn + β(2)

n JTxn + β(3)
n JSxn〉

+‖β(1)
n Jxn + β(2)

n JTxn + β(3)
n JSxn‖2

≤ ‖w‖2 − 2β(1)
n 〈w, Jxn〉−2β(2)

n 〈w, JTxn〉−2β(3)
n 〈w, JSxn〉+ β(1)

n ‖xn‖2
+β(2)

n ‖Txn‖2 + β(3)
n ‖Sxn‖2−β(2)

n β(3)
n g(‖JTxn − JSxn‖)

= β(1)
n φ(w, xn)+β(2)

n φ(w, Txn)+β(3)
n φ(w, Sxn)−β(2)

n β(3)
n g(‖JTxn−JSxn‖)

≤ β(1)
n φ(w, xn)+β(2)

n φ(w, xn)+β(3)
n φ(w, xn)−β(2)

n β(3)
n g(‖JTxn−JSxn‖)

= φ(w, xn)− β(2)
n β(3)

n g(‖JSxn − JTxn‖).

This implies that

β(2)
n β(3)

n g(‖JTxn − JSxn‖) ≤ φ(w, xn)− φ(w, zn). (24)

On the other hand, one has

φ(w, xn)− φ(w, zn) = ‖xn‖2 − ‖zn‖2 − 2〈w, Jxn − Jzn〉
≤ ‖xn − zn‖(‖xn‖+ ‖zn‖) + 2‖w‖‖Jxn − Jzn‖.

It follows from (22) and (23) that

φ(w, xn)− φ(w, zn) → 0, as n →∞. (25)

Observing that assumption lim infn→∞ β
(2)
n β

(3)
n > 0, (24) and (25), one has

g(‖JTxn − JSxn‖) → 0, as n →∞.

It follows from the property of g that

‖JTxn − JSxn‖ → 0, as n →∞. (26)

Noticing that |‖Txn‖−‖Sxn‖| = |‖JTxn‖−‖JSxn‖| ≤ ‖JTxn−JSxn‖. It follows
from (26) that

‖Txn‖ − ‖Sxn‖ → 0, as n →∞. (27)

Observe that

φ(Txn, Sxn) = ‖Txn‖2 − 2〈Txn, JSxn〉+ ‖Sxn‖2
= ‖Txn‖2 − 2〈Txn, JTxn〉+ 2〈Txn, JTxn − JSxn〉+ ‖Sxn‖2
≤ ‖Sxn‖2 − ‖Txn‖2 + 2‖Sxn‖‖JTxn − JSxn‖

It follows from (26) and (27) that

lim
n→∞

φ(Txn, Sxn) = 0. (28)
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On the other hand, one has

φ(Txn, zn) = φ(Txn, J−1[β(1)
n Jxn + β(1)

n JTxn + β(3)
n JSxn])

= ‖Txn‖2 − 2〈Txn, β(1)
n Jxn + β(2)

n JTxn + β(3)
n JSxn〉

+‖β(1)
n Jxn + β(2)

n JTxn + β(3)
n JSxn‖2

≤ ‖Txn‖2 − 2β(1)
n 〈Txn, Jxn〉 − 2β(2)

n 〈Txn, JTxn〉 − 2β(3)
n 〈Txn, JSxn〉

+β(1)
n ‖xn‖2 + β(2)

n ‖Txn‖2 + β(3)
n ‖Sxn‖2

≤ β(1)
n φ(Txn, xn) + β(3)

n φ(Txn, Sxn). (29)

Noticing that β
(1)
n → 0 as n →∞, (28) and (29), one arrives at

lim
n→∞

φ(Txn, zn) = 0. (30)

Since J : X → X∗ is demi-continuous, from (21), we have

Jzn → Jp

weakly. Noticing that |‖Jzn‖ − ‖Jp‖| = |‖zn‖ − ‖p‖| ≤ ‖zn − p‖ → 0. Since X∗ has
the property(K), we have

Jzn → Jp as n →∞. (31)

On the other hand, noting that 0 ≤ (‖Txn‖ − ‖zn‖)2 ≤ φ(Txn, zn). It follows from
(21) that ‖Txn‖ → ‖p‖. Since E is reflexive, {Txn} is bounded, we can assume that

Txn → g0 ∈ X∗

weakly. By using (21), (30), (31) and the weak lower semi-continuity of the norm,
we have

0 = lim inf
n→∞

φ(Txn, zn) = lim inf
n→∞

{‖Txn‖2 − 2〈Txn, Jzn〉+ ‖zn||2}
≥ ‖g0‖2 − 2〈g0, Jp〉+ ‖p||2
= φ(g0, p) ≥ 0.

It follows that φ(g0, p) = 0. Hence p = g0 and consequently

Txn → p

weakly. Since ‖Txn‖ → ‖p‖ and E has the property(K), we have

Txn → p as n →∞. (32)

In view of xn → p and the closedness of T , one gets p ∈ F (T ). In a similar way, we
can obtain p ∈ F (S). Hence p ∈ F (T ) ∩ F (S) = F.

Finally, we show that p = ΠF x1. By taking the limit as n →∞ in (13), we obtain

〈p− w, Jx1 − Jp〉 ≥ 0, ∀w ∈ F,

and hence p = ΠF x1 by Lemma 1. This completes the proof.
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Remark 3. Theorem 5 improves Theorem 3.5 of Plubtieng and Ungchittrakool [13]
in the following senses:

(1) from uniformly convex and uniformly smooth Banach spaces to uniformly smooth
and strictly convex Banach spaces with the property(K).

(2) from relatively nonexpansive mappings to more general quasi-φ-nonexpansive
mappings, that is, we remove the strict restriction: F̃ (T ) = F (T );

(3) from computation point of view, algorithm (11) is also more simple and con-
venient to compute than the one given by [13]. To be more precise, we remove
the set ”Wn” in [13].

As consequence of Theorem 5, we immediately obtain the following results.
If β

(1)
n = 0 for all n ≥ 0 and T = S in Theorem 5, then Theorem 5 reduces to

the following.

Corollary 1. Let E be a uniformly smooth and strictly convex Banach space, and
let C be a nonempty closed convex subset of E. Let T : C → C be a closed quasi-
φ-nonexpansive mapping. Assume the fixed point set F (T ) of T is nonempty. Let
{xn} be a sequence generated in the following manner:





x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1[αnJx1 + (1− αn)JTxn],
Cn+1 = {u ∈ Cn : φ(u, yn) ≤ φ(u, xn) + αn(‖x1‖2 + 2〈u, Jxn − Jx1〉)},
xn+1 = ΠCn+1x1,

where J is the duality mapping on E and {αn} is a sequence in (0,1) such that
lim supn→∞ αn = 0. Then {xn} converges strongly to ΠF (T )x1.

Remark 4. Corollary 1 mainly improves the analogue of Qin and Su [14].

In the framework of Hilbert spaces, Corollary 1 reduces to the following result.

Corollary 2. Let H be a real Hilbert space, and let C be a nonempty closed convex
subset of H. Let T : C → C be a quasi-nonexpansive mapping. Assume the fixed
point set F (T ) of T is nonempty. Let {xn} be a sequence generated in the following
manner:





x0 ∈ H chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn = αnx1 + (1− αn)Txn,

Cn+1 = {u ∈ Cn : ‖u− yn‖2 ≤ ‖u− xn‖2 + αn(‖x1‖2 + 2〈u, xn − x1〉)},
xn+1 = PCn+1x1,

where {αn} is a sequence in (0,1) such that lim supn→∞ αn = 0. Then {xn} con-
verges strongly to PF (T )x1.
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Remark 5. Corollary 2 extends the corresponding result announced by Martinez-
Yanes and Xu [11] from nonexpansive mappings to quasi-nonexpansive mappings.
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