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Umbilical hypersurfaces of Minkowski spaces *
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Abstract. In this paper, by the Gauss equation of the induced Chern connection for
Finsler submanifolds, we prove that if M is an umbilical hypersurface of a Minkowski space
(V"+17F), then either M is a Riemannian space form or a locally Minkowski space.
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1. Introduction

Let M be an n-dimensional smooth manifold and 7 : TM — M the natural projec-
tion from the tangent bundle. Let (z,Y") be a point of TM with 2 € MY € T,M
and let (z°,Y") be the local coordinates on TM with ¥ = Y?-2-. A Finsler metric

on M is a function F': TM — [0, +00) satisfying the following properties:

(i) Regularity: F(z,Y) is smooth in TM\0;
(ii) Positive homogeneity: F(z,\Y) = AF(z,Y) for A > 0;

(iii) Strong convexity: The fundamental quadratic form g = g;;(z,Y)dz" @ dz? is
positive definite, where g;; = %.
The simplest class of Finsler manifolds are Minkowski spaces. Let V" *! be a real
vector space. A Finsler metric F' : TV"! — [0,00) is called Minkowski if F is a
function of Y € V"1 only and (V™! F) is called a Minkowski space.

Finsler manifolds are just Riemannian manifolds with metrics without the quadra-
tic restriction. The geometry of Finsler submanifolds has been developed in the
recent years. In 1990s, Z. Shen ([4]) studied the geometry of Finsler submanifolds by
using the volume form. It is well known that the Gauss equation plays an important
role in studying the Riemannian submanifolds. On the other hand, to the best of
author’s knowledge, no one has so far used the induced Chern connection in stud-
ies on Finsler submanifolds and isometric immersions. In this paper, by the Gauss
and Codazzi equations of Finsler submanifolds on the induced Chern connection, we
study the umbilical hypersurfaces of a Minkowski space (V"*!, F') and obtain the
following classification theorem on the umbilical hypersurfaces of a Minkowski space
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Theorem 1 (Main theorem). If M is an umbilical hypersurface of a Minkowski

space (V"L F), then either M is a Riemannian space form or a locally Minkowski
space.

2. The Gauss formula

Let (M™, F') be an n-dimensional Finsler manifold. F inherits the Hilbert form and
the Cartan tensor as follows:
_OF Fog;;
Yy’ 20Yk"
It is well known that there exists uniquely the Chern connection V on 7*T'M

with V2 = wﬁ% and w! = T, da® satisfying that

w dz', A= Aijkdl'i ® dz? ® dz*, Aiji =

sY*

Torsion freeness: d(da') — da? Awj = —da? Awh =0,
Almost g compatibility: dg;; — gikwf — gjsz’»“ =245k "%,

where §Y? = dY* + N}daﬁj, N; = ’y;kYk — %A;k'yftYsYt and 7;k are the formal
Christoffel symbols of the second kind for g;;.
The curvature 2-forms of the Chern connection V are

1. 1 .
*R;kldxk AN dﬂjl + fP]Zk:ldxk A 6Yl,

i kA i — i —
wj—wj/\wk—Qj—2

where R}, and Pj;; are the components of the hh-curvature tensor and hv-curvature
tensor of the Chern connection, respectively.

Let ¢ : (M™ F) — (Mnﬂ),F) be a smooth map from a Finsler manifold to a

Finsler manifold. ¢ is called an isometric immersion if F(Y) = F(p.(Y)). We have
that [3]

gy (U, V) =Gy (v (px(U), (V).

Ay (U, VW) = Ay, (v)(#:(U), 0 (V), 2 (W), (1)

where Y,U,V,W € TM,q and A are the fundamental tensor and the Cartan tensor
of M, respectively.

It can be seen from (1) that ¢*(@) = w, where @ is the Hilbert form of M.

In the following, any vector U € T'M will be identified with the corresponding
vector ¢, (U) € TM and we will use the following convention:

1<idj,--<nmyn+1<a,B,---<n+p; 1<a,b,---<n+p; 1< A p,--<n—1

Let o : (M™, F) — (Hﬂﬂg, F') be an isometric immersion from a Finsler manifold to
a Finsler manifold. Take a g-orthonormal frame form {e,} for each fibre of 7*T M
and let {w®} be its local dual coframe, such that {e;} is a frame field for each fibre
of m™TM and w" is the Hilbert form. Let 67 and wj» denote the Chern connection
1-form of F and F, respectively, i.e., Ve, = 0%¢; and Ve; = w{ej, where V and V
are the Chern connection of M and M, respectively. We obtain

A(ei,ejv en) =0, A(eaa ebaen) =0, Vi,j, a7b- (2)
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The structure equations of M are given by

dw® = =07 A wb,

Aoy = —0% A 05 + LR, qw Aw? + Py we AGL,
0y + 05 = —2Aq05,
2 + 67 =0, 0" =0.

3)

For any ¢ € T'(7*TM)* and X € I'(7*TM), we decompose V x¢ into a sum of
the form

Vxé=—A(X) + Vi,

where A¢(X) € I'(n*TM) and V€ € F(W*T@J‘.
By w® = 0 and the structure equations of M, we have that

07 Aw? = 0. (4)
It follows from (4) that
05 = hiw', hi; = h;. (5)
We now establish the following

Theorem 2 (The Gauss formula). Let ¢ : (M™, F) — (Mner,F) be an isometric
immersion from a Finsler manifold to a Finsler manifold and let 0§ denote the Chern
connection V 1-form of M. If

wf = HJ — \I/jikwk, (6)

K2

where
\Ijjik - h?nfzkia - %nzjia - h?nzkja - hznzikszsjoz +hznzijszska +hgnzjkszsiom (7)
then wg are the 1-forms of the Chern connection V of M.

Proof. (i) (Affine connection) Let B(e, V) = ViV = v 0%, YV = vie; € T(n*TM).
By (6) we have that B(e,V) = v'hw’ ® e,. Now, from (6) it follows that

VV = VV—i—B(O,V)-i-Zvj\Ilijkwk ® e;. (8)

3

Because V is an affine connection of M, B and A are linear, by (8) we obtain that
V is an affine connection of M.

(ii) (Torsion freeness) Because of the torsion freeness of M, using (6), we have
that

dw® = —wji» Awl — \Dijkwk Awl. (9)
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It can be seen from (7) that
Wik = Wik
It follows from (9) and (10) that
dw' = —w§ Awd.
(iii) (Almost g-compatibility) It is easy to see from (7) that
Uik + Wik = —2h, Aijo + 208, Aijs Aska-

By (5), (12) and the third formula of (3), we obtain that

(.L);- —+ w{ = (9; — \I/ijkwk) —+ (95 — \Ilﬂkwk)

= —QZZ-J-AHQ — QZijaeg + (Qh%nﬂija 2ha A”SASka)wk

A
= —2Aij>\wn.

Combining (i), (i) and (iii) completes the proof of Theorem 2.

From (7, we get that
9% — hy Ajmw 9” —w + ho AJ,\aw

By (5), (14) and the almost g-compatibility, we have that

6], = —0% — 24,0402

= (7h0¢ 2h Ajag + 2hﬁ Aj)\(,AM,g)w — 2Am)\w)‘

In particular,

n __ o, 1
0, = —h,,w".

3. The Gauss and Codazzi equations

By the structure equations, we have that

n*

d@szk/\9]+90‘/\93+ me AW+ Plowh AN+ Py w02

wF A wk + Upw! A wk + \I/jklwi Awt + {\I/sikllljsl —
[ 1—;

_2h h‘ﬁ Ajaﬁ + 2h erAjsaAlsﬁ + *Rzkl

_h Alsa iks T hnlpzka}w /\w - {2hzk}A]lX)\

On the other hand,

dw]—w /\wk—i— R]klw AWt —l—Pj Wk /\w

hikhsi

zk}\}wk Nw

n-.
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and
d(\I/jikwk) = d\:[/jik A WP + \I/jikwl A wlk
= ‘I’jikuwl AW + W jipawn A w”
+\I/]“‘lwl A wi + 2\I/kilAjkswl ANw; + \Ifjklwf Awl. (19)
where “|” and “;” denote the horizontal and the vertical covariant differentials with

respect to the Chern connection, respectively.
Substituting (17), (18) and (19) into (6), we obtain that

(=28 Ajana + Pipp)w® Aw) + (Wi s — hSphSy — 2080 Ajas

+2h?kh£nAjsaAlSB + ingl - hgnpzksASla + hale'ka)wk A Wl

. 1 .
= (Plox = Wginon + 28 AjonJ0* Aewny + (G R]y = Yyanp)w® Aw'. (20)
Then we have the following result

Theorem 3 (The Gauss equations). Let ¢ : (M™, F) — (Mnﬂ),F) be an isometric
immersion from a Finsler manifold to a Finsler manifold, then we have that

Pl = Pl + Wjinn — 20 Ajon — 208 Aja,

‘j « o (e N}
Ry = Rig — hiih§y + h§hsy + Wiy — Vjirge
+\Ijsik\11jsl - \Ijsil\I/jsk - 2h?kh§lzja[3 + Qh?ﬂlgkzjaﬁ (21)
+205 08, Ao Arep — 20502, Ao Apas — he Ao Pl

+h’gn25kaﬁgl5 + hzlpgka - hak?]

n ilact

‘We now establish the Codazzi equations. The exterior derivative of the left-hand
side term of (5) yields that

lia =<0 =1
. 1—
= (WF + Tpaw') ARG w! + R W™ A0S + §Riklwk Aw!
—I—ﬁ?,c/\wk A (wfl‘ — hgnﬁ,\sﬁws) + hﬁlﬁ?kﬁwk AW
1_ L .
= {h?z‘l’sik + §R?kz - hrﬁLnASlﬁP?ks + hizP?kﬁ}Wk Aw!
+Pwk Awd + AWk Aw! + R wE A 6. (22)
Moreover, the right-hand side term of (5) gives that
d(hf‘jwj) = h;"j‘kwk Aw! + h%;Awﬁ Awl + hgjwf Awl — hfj@g Awl. (23)
It follows from (22) and (23) that

1_ _ . .
(Wi + 5 R = W At Pris + Wy P Ju* Ao 4+ Py A w)

nl n

= h;’j‘kwk Aw + h%;/\wﬁ Awl. (24)
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From (24), we may state the following theorem

Theorem 4 (The Codazzi equations). Let ¢ : (M™, F) — (MHJFP,F) be an isomet-
ric immersion from a Finsler manifold to a Finsler manifold, then we have that

(0%

h%;,\ = _ﬁij,v
(% a _ _pY B p« B P
hise = Py = —Rijr + i Pikg — hyi Pijp (25)

—h§ Wi + h Uk — Wi, Ayjp Py + b, A Py

4. Umbilical hypersurfaces of Minkowski space

Let (M™, F) be a hypersurface of a Minkowski space (V"1 F). For £ = e, 1, the
Weingarten transformation Ag : I'(7m*T M) — I'(7*TM) is defined by

{(Ae(X),Y) = (B(X,Y),8), (26)
where X, Y e I'(n*TM).

Definition 1. A pointp € M is called umbilical if all eigenvalues of the Weingarten
transformation Ag¢ are equal one to another. M s called an umbilical hypersurface
if all points are umbilical points.

Thus the hypothesis that M is an umbilical hypersurface means
Rt = (Blei, ), €) = (Aeler), ej) = T8y, (27)

where 7 is the eigenvalue of the Weingarten transformation Ae.
Now we can prove the following

Theorem 5. If M is an umbilical hypersurface of a Minkowski space (V"1 F),
then either M is a Riemannian space form or a locally Minkowski space.

Proof. It can be seen from ht! = bt that

n+1 4 n+1l, A n+1l, A n+1lpn+1
hnn\jw + hnn;)\wn + th)\ Wn — h‘nn 9n+1 (28)
__1n+l 4 n+1l A n+1l 7j n+1gn+1
= hii|j w’! + hii;/\ wy + thj wij —hiT 0T (29)

It follows from (27), (28) and w! = — A w; that

Rl 4+ hZ;;l/\w)‘ = pntld ¢ (h:lft\l — 27 A\ )W)y, (30)

nnlj n = M)

which associated with the first formula of (25) implies that

thrl' _ h7'7,.+.1’
{T el N ) 1)
A — Y.
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On the other hand, it can be seen from h%“ =0 (i # j) that

_ 1n+1l k n+1l, A n+1l, k n+1, k
0= hijpw” +hiywy + e wi + hy wj

il iix ;
_ pn+l k J i
= g w + 7(wj +w}) (32)
1k A
= hZTk w — 27—Aij)\wn-

Then we have that

n+1l _
Pk =0 i) (33)
TAZ'j)\ =0.

Substituting Ry, = Pogs = 0, Trnn = 0 and the first formula of (33) into the
second formula of (25) yields that

prtl — pntl h?;_l‘l/lnn + h?n-"_l‘l’ln,\ =0. (34)

nn|\ niln
On the other hand, we also have that
h’n+1 _ h’n+1

nn|n AX|n

1 1 1
= Ayt — A+ AT,

An|A
= —h W+ AT,
= 277 A\ 41 (35)
It follows from the second formulas of (31) and (33) that
0 = d(TAijr) = (' + 72w Aiji + T(Agrpw! + Agjrawy), (36)

which together with 74;;, = 0 implies that

TAijk|l = O7 i.e., TP;kA = O7 (37)
TAijk;)\ = 0.
It can be seen from (7), (37) and the first formula of (25) that
\Il;ulﬁ;)\ =0. (38)
Substituting (37) and (38) into the first formula of (21), we get that
Tthle,\n+1 =0. (39)

Substituting (39) into (35), we have that h”"! = 0, which, together with (34) and

nn|n

the first formula of (25), yields that A1 is constant, i.e., 7 is constant, which

associated with the second formulas of (31) and (33) implies that 7 =0 or A;;; = 0.
(1) The first case. When 7 = 0, we have that h?jﬂ =0 and ¥;;; = 0. By (3.5)
we obtain that be\ =0 and ngl =0, i.e., M is a locally Minkowski space.

(2) The second case. When A;;, = 0, i.e., M is Riemannian. Substituting (39)
into (8), we get W, = 0. Then the second formula of (21) implies that

Rl = _h?k+1h;‘ll+1 + h?z“h?;jl = 7%(6:u0jk — Oilju)- (40)

This completes the proof of Main theorem. O



70 J.T.Li
Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Uni-
versities (N0:2010121002). The author would like to thank the referee for careful
reading of the manuscript and very helpful suggestions.

References

[1] D.BAOo, S.S.CHERN, Z.SHEN, An introduction to Riemann-Finsler geometry,
Springer-Verlag, New York, 2000.

[2] G.BERCK, Minimality of totally geodesic submanifolds in Finsler geometry, Math.
Ann. 343(2009), 955-973.

[3] L. MARIA ABATANGELO, On totally umbilical submanifolds of locally Minkowski man-
ifold, Collect. Math. 43(1992), 151-175.

[4] Z.SHEN, On Finsler geometry of submanifolds, Math. Ann. 311(1998), 549-576.



