General rotational surfaces in Euclidean space \mathbb{E}^{4} with pointwise 1-type Gauss map

Uğur Dursun ${ }^{1, *}$ and Nurretin Cenk Turgay ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

Received September 30, 2010; accepted March 22, 2011

Abstract

In this paper, we study general rotational surfaces in \mathbb{E}^{4} with pointwise 1 -type Gauss map. We consider general rotational surfaces in \mathbb{E}^{4} whose meridian curves lie in two-dimensional planes. We firstly obtain all general rotational surfaces in \mathbb{E}^{4} with proper pointwise 1-type Gauss map of the first kind. Then we classify minimal rotational surfaces of \mathbb{E}^{4} with proper pointwise 1-type Gauss map of the second kind.

AMS subject classifications: 53B25, 53C40
Key words: Rotational surfaces, minimal surface, normal bundle, mean curvature, pointwise 1-type, Gauss map

1. Introduction

In late 1970's, B. Y. Chen introduced the notion of finite type immersion into a Euclidean space. Since then many works have been writen in this field (see [5, 6], etc.). A submanifold M of a Euclidean space \mathbb{E}^{m} is said to be of finite type if its position vector x can be expressed as a finite sum of eigenvectors of the Laplacian Δ of M, that is, $x=x_{0}+x_{1}+\cdots+x_{k}$, where x_{0} is a constant map, x_{1}, \ldots, x_{k} are nonconstant maps such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in \mathbb{R}, i=1,2, \ldots, k$. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are all different, then M is said to be of k-type. In [7], Chen and Piccinni similarly extended this definition to differentiable maps, in particular, to Gauss maps of submanifolds. They made a general study on compact submanifolds of Euclidean spaces with finite type Gauss map, and for hypersurfaces they proved that a compact hypersurface M of \mathbb{E}^{n+1} has 1 -type Gauss map if and only if M is a hypersphere in \mathbb{E}^{n+1}. Also, many geometers studied submanifolds with finite type Gauss map ([2, 3, 4, 7, 20] etc.).

If a submanifold M of a Euclidean space has 1-type Gauss map ν, then $\Delta \nu=$ $\lambda(\nu+C)$ for some $\lambda \in \mathbb{R}$ and some constant vector C. However, the Laplacian of the Gauss map of several surfaces such as helicoid, catenoid and right cones in \mathbb{E}^{3}, and also some hypersurfaces take the form

$$
\begin{equation*}
\Delta \nu=f(\nu+C) \tag{1}
\end{equation*}
$$

[^0]for some smooth function f on M and some constant vector C. A submanifold of a Euclidean space is said to have pointwise 1-type Gauss map if it satisfies (1). A submanifold with pointwise 1-type Gauss map is said to be of the first kind if C is the zero vector. Otherwise, it is said to be of the second kind. A pointwise 1-type Gauss map is called proper if the function f defined by (1) is non-constant. A non-proper pointwise 1-type Gauss map is just usual 1-type Gauss map.

Remark 1. For an n-dimensional plane M in a Euclidean space, the Gauss map ν is constant and $\Delta \nu=0$. For $f=0$ if we write $\Delta \nu=0 \cdot \nu$, then M has pointwise 1-type Gauss map of the first kind. If we choose $C=-\nu$ for any nonzero smooth function f, then (1) holds. In this case, M has pointwise 1-type Gauss map of the second kind. Therefore we say that an n-dimensional plane M in a Euclidean space is a trivial submanifold with pointwise 1-type Gauss map of the first kind or the second kind.

Surfaces and some hypersurfaces in Euclidean spaces with pointwise 1-type Gauss map were recently studied in $[1,8,9,10,12,13,14,15,17]$.

In [14], the characterizations of surfaces in the Euclidean space \mathbb{E}^{4} with pointwise 1 -type Gauss map were given. Also, in [1], simple rotational surfaces in \mathbb{E}^{4} whose meridian curves lie in 3 -spaces were considered, and the meridian curve of the flat rotational surfaces with pointwise 1-type Gauss map of the second kind was described.

In this paper, we study general rotational surfaces in \mathbb{E}^{4} with meridian curves lying in two-dimensional planes and pointwise 1-type Gauss map. We firstly prove that there exists no non-planar minimal general rotational surface with pointwise 1-type Gauss map of the first kind. Then we obtain all general rotational surfaces with proper pointwise 1-type Gauss map of the first kind which includes the results given in [19]. We also classify minimal general rotational surfaces of \mathbb{E}^{4} with proper pointwise 1-type Gauss map of the second kind.

2. Preliminaries

Let M be an oriented n-dimensional submanifold in an $(n+2)$-dimensional Euclidean space \mathbb{E}^{n+2}. We choose an oriented local orthonormal frame $\left\{e_{1}, \ldots, e_{n+2}\right\}$ on M such that e_{1}, \ldots, e_{n} are tangent to M and e_{n+1}, e_{n+2} are normal to M. We use the following convention on the range of indices: $1 \leq i, j, k, \ldots \leq n, n+1 \leq r, s, t, \ldots \leq$ $n+2$.

Let $\widetilde{\nabla}$ be the Levi-Civita connection of \mathbb{E}^{n+2} and ∇ the induced connection on M. Denote by $\left\{w^{1}, \ldots, w^{n+2}\right\}$ the dual frame and by $\left\{w_{B}^{A}\right\}, A, B=1, \ldots, n+2$, the connection forms associated to $\left\{e_{1}, \ldots, e_{n+2}\right\}$. Then we have

$$
\widetilde{\nabla}_{e_{k}} e_{i}=\sum_{j=1}^{n} w_{i}^{j}\left(e_{k}\right) e_{j}+\sum_{r=n+1}^{n+2} h_{i k}^{r} e_{r}, \widetilde{\nabla}_{e_{k}} e_{s}=-A_{s}\left(e_{k}\right)+\sum_{r=n+1}^{n+2} w_{s}^{r}\left(e_{k}\right) e_{r}
$$

and

$$
D_{e_{k}} e_{s}=\sum_{r=n+1}^{n+2} w_{s}^{r}\left(e_{k}\right) e_{r}
$$

where D is the normal connection, $h_{i j}^{r}$ the coefficients of the second fundamental form h, and A_{r} the Weingarten map in the direction e_{r}.

The mean curvature vector H and the squared length $\|h\|^{2}$ of the second fundamental form h are defined, respectively, by

$$
H=\frac{1}{n} \sum_{r, i} h_{i i}^{r} e_{r} \quad \text { and } \quad\|h\|^{2}=\sum_{r, i, j} h_{i j}^{r} h_{j i}^{r} .
$$

A submanifold M is said to have parallel mean curvature vector if the mean curvature vector satisfies $D H=0$ identically.

The Codazzi equation of M in \mathbb{E}^{n+2} is given by

$$
\begin{align*}
& h_{i j, k}^{r}=h_{j k, i}^{r}, \\
& h_{j k, i}^{r}=e_{i}\left(h_{j k}^{r}\right)+\sum_{s=n+1}^{n+2} h_{j k}^{s} w_{s}^{r}\left(e_{i}\right)-\sum_{\ell=1}^{n}\left(w_{j}^{\ell}\left(e_{i}\right) h_{\ell k}^{r}+w_{k}^{\ell}\left(e_{i}\right) h_{j \ell}^{r}\right) . \tag{2}
\end{align*}
$$

Also, from the Ricci equation of M in \mathbb{E}^{n+2}, we have

$$
\begin{equation*}
R^{D}\left(e_{j}, e_{k} ; e_{r}, e_{s}\right)=\left\langle\left[A_{e_{r}}, A_{e_{s}}\right]\left(e_{j}\right), e_{k}\right\rangle=\sum_{i=1}^{n}\left(h_{i k}^{r} h_{i j}^{s}-h_{i j}^{r} h_{i k}^{s}\right), \tag{3}
\end{equation*}
$$

where R^{D} is the normal curvature tensor.
Let M be an oriented n-dimensional submanifold of a Euclidean space \mathbb{E}^{m}. The $\operatorname{map} \nu: M \rightarrow G(m-n, m)$ defined by $\nu(p)=\left(e_{n+1} \wedge e_{n+2} \wedge \cdots \wedge e_{m}\right)(p)$ is called the Gauss map of M that is a smooth map which carries a point $p \in M$ into the oriented $(m-n)$-plane in \mathbb{E}^{m} which is obtained from the parallel translation of the normal space of M at p in \mathbb{E}^{m}, where $G(m-n, m)$ denotes the Grassmannian manifold consisting of all oriented $(m-n)$-planes through the origin of \mathbb{E}^{m}. Since $G(m-n, m)$ is canonically embedded in $\bigwedge^{m-n} \mathbb{E}^{m}=\mathbb{E}^{N}, N=\binom{m}{m-n}$, then the notion of the type of the Gauss map is naturally defined.

2.1. General rotational surfaces

In [16], Moore introduced general rotational surfaces in the Euclidean space \mathbb{E}^{4}. A rotational surface in \mathbb{E}^{4} is a surface left invariant by a rotation in \mathbb{E}^{4} which is defined as a linear transformation of positive determinant preserving distance and leaving one point fixed.

In [11], Cole studied the general theory of rotations in \mathbb{E}^{4}. In \mathbb{E}^{4}, two planes which have no line in common are called completely (or absolutely) perpendicular to each other. A rotation in general leaves two completely perpendicular planes invariant not fixed point for point, but only as planes. A rotation which leaves one of the invariant planes fixed point for point and converts the other invariant plane to itself is called a simple rotation. In general, every general rotation (also called double rotation) of \mathbb{E}^{4} can be reduced to a succession of two simple rotations whose fixed planes are completely perpendicular to each other (for details see [11]). By a suitable isometry of \mathbb{E}^{4}, two completely perpendicular planes at a point in \mathbb{E}^{4} can be transformed to completely perpendicular $x y$ - and $z w$-planes at the origin of \mathbb{E}^{4}.

Let $\beta(s)=(x(s), y(s), z(s), w(s))$ be a regular smooth curve in \mathbb{E}^{4} on an open interval I in \mathbb{R}, and let a and b be some real numbers. Then, considering the equations of the general rotation given in [11], a general rotational surface M in \mathbb{E}^{4} with the meridian curve β is given by

$$
\begin{align*}
X(s, t)= & (x(s) \cos a t-y(s) \sin a t, x(s) \sin a t+y(s) \cos a t \tag{4}\\
& z(s) \cos b t-w(s) \sin b t, z(s) \sin b t+w(s) \cos b t)
\end{align*}
$$

where a and b are the rates of rotation in fixed planes of the rotation, [16]. If a or b is zero, then a surface M defined by (4) is a simple rotational surface as the rotation subgroup which produces M is a simple rotation.

Let M be a general rotational surface in \mathbb{E}^{4} whose meridians lie in 2-planes. Then these planes of meridians are perpendicular to the two fixed planes of the rotation that generates the surface M. If M with planar meridians is parametrized by (4), then the planes of meridians are perpendicular to the invariant $x y$ - and $z w$-planes of the rotation which generates the surface M. Therefore, without loss of generality, we can choose a meridian curve β of M in the $x z$-plane as $\beta(s)=(x(s), 0, z(s), 0)$, and thus a general rotational surface M in \mathbb{E}^{4} whose meridians lie in 2-planes is given by the parametrization

$$
\begin{equation*}
F(s, t)=(x(s) \cos a t, x(s) \sin a t, z(s) \cos b t, z(s) \sin b t) \tag{5}
\end{equation*}
$$

with the rates of rotation a and b, where $s \in I \subset \mathbb{R}, t \in(0,2 \pi)$. Throughout this work we suppose that $a b \neq 0$. Since β is a regular smooth curve, parametrization (5) is an immersion if and only if $a^{2} x^{2}(s)+b^{2} z^{2}(s)>0$ on I.

Moreover, a rotational surface in \mathbb{E}^{4} defined by (5) for $a=b=1, x(s)=u(s) \cos s$ and $z(s)=u(s) \sin s$ is also known as a Vranceanu rotational surface [18], where u is a differentiable function.

From now on, since β is a plane curve, without loss of generality, we consider β of the form $\beta(s)=(x(s), z(s))$ on some open interval I.

Suppose that s is the arc length parameter of β. Then, ${x^{\prime}}^{2}(s)+{z^{\prime}}^{2}(s)=1$, and the curvature function κ of β is given by $\kappa(s)=x^{\prime}(s) z^{\prime \prime}(s)-x^{\prime \prime}(s) z^{\prime}(s), s \in I$.

Let M be a general rotational surface in \mathbb{E}^{4} defined by (5). We consider the following orthonormal moving frame field $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on M such that e_{1}, e_{2} are tangent to M, and e_{3}, e_{4} are normal to M :

$$
\begin{align*}
& e_{1}=\frac{\partial}{\partial s}, \quad e_{2}=\frac{1}{\sqrt{a^{2} x^{2}+b^{2} z^{2}}} \frac{\partial}{\partial t} \tag{6}\\
& e_{3}=\left(-z^{\prime} \cos a t,-z^{\prime} \sin a t, x^{\prime} \cos b t, x^{\prime} \sin b t\right) \tag{7}\\
& e_{4}=\frac{1}{\sqrt{a^{2} x^{2}+b^{2} z^{2}}}(-b z \sin a t, b z \cos a t, a x \sin b t,-a x \cos b t) . \tag{8}
\end{align*}
$$

By a direct computation we have components of the second fundamental form and
the connection forms as

$$
\begin{align*}
h_{11}^{3} & =\kappa, \quad h_{22}^{3}=\frac{a^{2} x z^{\prime}-b^{2} z x^{\prime}}{a^{2} x^{2}+b^{2} z^{2}}, \quad h_{12}^{3}=0, \tag{9}\\
h_{12}^{4} & =\frac{a b\left(z x^{\prime}-x z^{\prime}\right)}{a^{2} x^{2}+b^{2} z^{2}}, \quad h_{11}^{4}=h_{22}^{4}=0, \tag{10}\\
w_{1}^{2}\left(e_{1}\right) & =0, \quad w_{1}^{2}\left(e_{2}\right)=\frac{a^{2} x x^{\prime}+b^{2} z z^{\prime}}{a^{2} x^{2}+b^{2} z^{2}}, \tag{11}\\
w_{4}^{3}\left(e_{1}\right) & =0, \quad w_{4}^{3}\left(e_{2}\right)=\frac{a b\left(x x^{\prime}+z z^{\prime}\right)}{a^{2} x^{2}+b^{2} z^{2}} . \tag{12}
\end{align*}
$$

Thus, the shape operators of M are of the form

$$
A_{3}=\left(\begin{array}{cc}
h_{11}^{3} & 0 \tag{13}\\
0 & h_{22}^{3}
\end{array}\right) \quad \text { and } \quad A_{4}=\left(\begin{array}{cc}
0 & h_{12}^{4} \\
h_{12}^{4} & 0
\end{array}\right)
$$

from which we obtain the mean curvature vector and the normal curvature of M as follows:

$$
\begin{align*}
H & =\frac{1}{2}\left(h_{11}^{3}+h_{22}^{3}\right) e_{3}, \tag{14}\\
R^{D}\left(e_{1}, e_{2} ; e_{3}, e_{4}\right) & =h_{12}^{4}\left(h_{22}^{3}-h_{11}^{3}\right) . \tag{15}
\end{align*}
$$

On the other hand, from Codazzi equation (2) we have

$$
\begin{align*}
& e_{1}\left(h_{22}^{3}\right)=w_{2}^{1}\left(e_{2}\right)\left(h_{22}^{3}-\kappa\right)+h_{12}^{4} w_{4}^{3}\left(e_{2}\right) \tag{16}\\
& e_{1}\left(h_{12}^{4}\right)=2 w_{2}^{1}\left(e_{2}\right) h_{12}^{4}-\kappa w_{4}^{3}\left(e_{2}\right) \tag{17}
\end{align*}
$$

Remark 2. If the meridian curve β of M is a line $z=c_{0} x$ passing through the origin, and the rates of rotation a and b hold $a^{2}=b^{2}$, then the rotational surface M is given by $F(x, t)=\left(x \cos t, x \sin t, c_{0} x \cos t, \varepsilon c_{0} x \sin t\right), x>0, \varepsilon=a / b= \pm 1$. It can be easily shown that M is an open part of a plane in \mathbb{E}^{4}.

3. General rotational surfaces with pointwise 1-type Gauss map of the first kind

In this section, we obtain all general rotational surfaces defined by (5) with pointwise 1-type Gauss map of the first kind.

The Laplacian of the Gauss map ν for an n-dimensional submanifold M in the Euclidean space \mathbb{E}^{n+2} was given by

Lemma 1 (See [14]). Let M be an n-dimensional submanifold of Euclidean space \mathbb{E}^{n+2}. Then, the Laplacian of the Gauss map $\nu=e_{n+1} \wedge e_{n+2}$ is given by

$$
\begin{align*}
\Delta \nu= & \|h\|^{2} \nu+2 \sum_{j<k} R^{D}\left(e_{j}, e_{k} ; e_{n+1}, e_{n+2}\right) e_{j} \wedge e_{k} \\
& +n \sum_{j=1}^{n} w_{n+2}^{n+1}\left(e_{j}\right) e_{j} \wedge H+\nabla\left(\operatorname{tr} A_{n+1}\right) \wedge e_{n+2}-\nabla\left(\operatorname{tr} A_{n+2}\right) \wedge e_{n+1} \tag{18}
\end{align*}
$$

where $\|h\|^{2}$ is the squared length of the second fundamental form, R^{D} the normal curvature tensor, and $\nabla\left(\operatorname{tr} A_{r}\right)$ the gradient of $\operatorname{tr} A_{r}$.

In [14], the following results were given for the characterization of surfaces in \mathbb{E}^{4} with pointwise 1-type Gauss map of the first kind.

Theorem 1 (See [14]). An oriented minimal surface M in the Euclidean space \mathbb{E}^{4} has pointwise 1-type Gauss map of the first kind if and only if M has flat normal bundle.

Theorem 2 (See [14]). An oriented non-minimal surface M in the Euclidean space \mathbb{E}^{4} has pointwise 1-type Gauss map of the first kind if and only if M has parallel mean curvature vector in \mathbb{E}^{4}.

We will classify rotational surfaces in \mathbb{E}^{4} with pointwise 1-type Gauss map of the first kind by using the above theorems.

Theorem 3. Let M be a general rotational surface in \mathbb{E}^{4} defined by (5) for the rates of rotation a and b. Then, M is minimal, and its normal bundle is flat if and only if M is an open part of a plane.

Proof. Let M be a general rotational surface given by (5). Then, we have an orthonormal moving frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on M in \mathbb{E}^{4} given by (6)-(8), and the shape operators A_{3} and A_{4} are given by (13). If M is minimal, and its normal bundle is flat, then (14) and (15) imply, respectively,

$$
\begin{align*}
\kappa+h_{22}^{3} & =0 \tag{19}\\
h_{12}^{4}\left(h_{22}^{3}-\kappa\right) & =0, \tag{20}
\end{align*}
$$

as $h_{11}^{3}=\kappa$, where κ is the curvature of the meridian curve of M. By using these equations we get $h_{12}^{4} \kappa=0$ which implies either $\kappa=0$ or $h_{12}^{4}=0$.

Case 1. $\kappa=0$. Then the meridian curve of M is a line. We may put

$$
\begin{equation*}
x(s)=x_{1} s+x_{2}, \quad z(s)=z_{1} s+z_{2} \tag{21}
\end{equation*}
$$

for some constants $x_{1}, x_{2}, z_{1}, z_{2}$ with $x_{1}^{2}+z_{1}^{2}=1$. From (19) we also have $h_{22}^{3}=0$. By using the second equation in (9) and (21) we obtain

$$
h_{22}^{3}=\frac{\left(a^{2}-b^{2}\right) x_{1} z_{1} s+\left(a^{2} x_{2} z_{1}-b^{2} x_{1} z_{2}\right)}{a^{2}\left(x_{1} s+x_{2}\right)^{2}+b^{2}\left(z_{1} s+z_{2}\right)^{2}}=0
$$

which yields

$$
\begin{array}{r}
\left(a^{2}-b^{2}\right) x_{1} z_{1}=0 \\
a^{2} x_{2} z_{1}-b^{2} x_{1} z_{2}=0 \tag{23}
\end{array}
$$

Equation (22) implies either $a^{2}-b^{2}=0$ or $x_{1} z_{1}=0$. If $x_{1}=0$, then $z_{1}= \pm 1$. Also from (23) we get $x_{2}=0$. Thus, $x=0$, and M is an open part of the $x_{3} x_{4}$-plane because of (5). By a similar argument, if $z_{1}=0$, then M is an open part of the $x_{1} x_{2}$-plane.

Now, assume that $x_{1} z_{1} \neq 0$ and $a^{2}-b^{2}=0$. Then, (23) implies $x_{2} z_{1}=x_{1} z_{2}$ from which and (21) we get $x_{1} z=z_{1} x$, i.e., line (21) is passing through the origin. In view of Remark 2, M is an open part of a plane.

Case 2. $h_{12}^{4}=0$. From the first equation in (10) we have $x z^{\prime}-x^{\prime} z=0$, i.e., $z=c_{0} x$, where c_{0} is a constant. Hence, β is an open part of a line passing through the origin. Therefore M is an open part of a plane because of Remark 2.

The converse of the proof is trivial.
From Theorem 1 and Theorem 3 we state
Theorem 4. There exists no non-planar minimal general rotational surface in \mathbb{E}^{4} defined by (5) with pointwise 1-type Gauss map of the first kind.

In [20], Yoon studied flat Vranceanu rotational surfaces in \mathbb{E}^{4} with pointwise 1type Gauss map of the first kind. He proved that a flat Vranceanu rotational surface M in \mathbb{E}^{4} has pointwise 1-type Gauss map of the first kind if and only if M is a Clifford torus in \mathbb{E}^{4}, that is, the product of two plane circles with the same radius.

Now we investigate non-minimal general rotational surfaces in \mathbb{E}^{4} with parallel mean curvature vector to obtain surfaces in \mathbb{E}^{4} with proper pointwise 1-type Gauss map of the first kind. For this reason we prove

Theorem 5. A non-minimal general rotational surface M in \mathbb{E}^{4} defined by (5) has parallel mean curvature vector if and only if it is an open part of the surface defined by

$$
\begin{equation*}
F(s, t)=\left(r_{0} \cos \left(\frac{s}{r_{0}}\right) \cos a t, r_{0} \cos \left(\frac{s}{r_{0}}\right) \sin a t, r_{0} \sin \left(\frac{s}{r_{0}}\right) \cos b t, r_{0} \sin \left(\frac{s}{r_{0}}\right) \sin b t\right) \tag{24}
\end{equation*}
$$

which is minimal in $S^{3}\left(r_{0}\right) \subset \mathbb{E}^{4}$.
Proof. Let M be a non-minimal general rotational surface in \mathbb{E}^{4} defined by (5). Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be an orthonormal moving frame on M in \mathbb{E}^{4} given by (6)-(8). From (13) we have $H=\frac{1}{2}\left(h_{11}^{3}+h_{22}^{3}\right) e_{3}$. Suppose that the mean curvature vector H is parallel, i.e., $D H=0$. By considering (12), we obtain that

$$
D_{e_{2}} H=-\frac{a b\left(h_{11}^{3}+h_{22}^{3}\right)\left(x x^{\prime}+z z^{\prime}\right)}{2\left(a^{2} x^{2}+b^{2} z^{2}\right)} e_{4}=0 .
$$

Since M is non-minimal, this equation yields $x x^{\prime}+z z^{\prime}=0$, i.e., $x^{2}+z^{2}=r_{0}^{2}$, where r_{0} is a positive real number. Hence, the meridian curve β is an open part of a circle which is parametrized by

$$
x(s)=r_{0} \cos \frac{s}{r_{0}}, \quad z(s)=r_{0} \sin \frac{s}{r_{0}}
$$

Therefore, M is an open part of the surface given by (24).
The converse follows from a direct calculation.
By Theorem 2 and Theorem 5 we have

Corollary 1. A non-minimal general rotational surface M in \mathbb{E}^{4} defined by (5) has pointwise 1-type Gauss map of the first kind if and only if it is an open part of the surface given by (24).

By computation we have

$$
\|h\|^{2}=\operatorname{tr}\left(A_{3}\right)^{2}+\operatorname{tr}\left(A_{4}\right)^{2}=\frac{2}{r_{0}^{2}}\left(1+\frac{a^{2} b^{2}}{\left(a^{2} \cos ^{2} \frac{s}{r_{0}}+b^{2} \sin ^{2} \frac{s}{r_{0}}\right)^{2}}\right)
$$

for the rotational surface (24).
By combining the results obtained in this section we state a classification theorem:
Theorem 6. Let M be a general rotational surface in \mathbb{E}^{4} defined by (5). Then M has pointwise 1-type Gauss map of the first kind if and only if M is an open part of a plane or a surface given by (24). Moreover, the Gauss map $\nu=e_{3} \wedge e_{4}$ of the rotational surface (24) satisfies (1) for the function

$$
f=\frac{2}{r_{0}^{2}}\left(1+\frac{a^{2} b^{2}}{\left(a^{2} \cos ^{2} \frac{s}{r_{0}}+b^{2} \sin ^{2} \frac{s}{r_{0}}\right)^{2}}\right)
$$

Corollary 2. The only general rotational surface M in \mathbb{E}^{4} defined by (5) with proper pointwise 1-type Gauss map of the first kind is the surface given by (24) for $a^{2} \neq b^{2}$.

In particular, if the rates of rotation a and b in (5) meet $a^{2}=b^{2}$, then the rotational surface (24) is a Clifford torus in \mathbb{E}^{4} which has (global) 1-type Gauss map of the first kind studied in [19, 20].

4. Minimal general rotational surfaces with pointwise 1-type Gauss map of the second kind

In [16], Moore proved that a general rotational surface M defined by (5) for $a=b=1$ is minimal if and only if its meridian curve is an open part of the hyperbola

$$
\begin{equation*}
c_{1}\left(z^{2}-x^{2}\right)+2 x z+c_{2}=0 \tag{25}
\end{equation*}
$$

where c_{1} and c_{2} are some real numbers. A direct calculation shows that this result still holds if $a^{2}=b^{2}$.

In [14], a characterization of minimal surfaces in \mathbb{E}^{4} with pointwise 1-type Gauss map of the second kind was given as follows:
Theorem 7 (See [14]). A non-planar minimal oriented surface M in the Euclidean space \mathbb{E}^{4} has pointwise 1-type Gauss map of the second kind if and only if, with respect to some suitable local orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on M, the shape operators of M are given by

$$
A_{3}=\left(\begin{array}{cc}
\rho & 0 \tag{26}\\
0 & -\rho
\end{array}\right) \quad \text { and } \quad A_{4}=\left(\begin{array}{cc}
0 & \varepsilon \rho \\
\varepsilon \rho & 0
\end{array}\right)
$$

where $\varepsilon= \pm 1$ and ρ is a smooth non-zero function on M.

By using Theorem 7 we classify non-planar minimal general rotational surfaces in \mathbb{E}^{4} defined by (5) with pointwise 1-type Gauss map of the second kind.
Theorem 8. Let M be a non-planar general rotational surface in \mathbb{E}^{4} defined by (5) for the rates of rotation a and b. Then,

1. if $a^{2}=b^{2}$, then the minimal surface M whose meridian curve is given by (25) has proper pointwise 1-type Gauss map of the second kind.
2. if $a^{2} \neq b^{2}$, then M is minimal and its Gauss map is of pointwise 1-type of the second kind if and only if the meridian curve of M is given by

$$
\begin{equation*}
z=c x^{\mp b / a}, \quad x>0 \tag{27}
\end{equation*}
$$

for some real number $c \neq 0$.
Proof. Let M be a non-planar general rotational surface in \mathbb{E}^{4} defined by (5). Then we have an orthonormal moving frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on M in \mathbb{E}^{4} given by (6)-(8), and the shape operators A_{3} and A_{4} are given by (13). For $a^{2}=b^{2}$, assume that M is minimal. Thus we have $h_{11}^{3}+h_{22}^{3}=0$ which gives the differential equation

$$
x^{\prime} z^{\prime \prime}-z^{\prime} x^{\prime \prime}+\frac{x z^{\prime}-z x^{\prime}}{x^{2}+z^{2}}=0
$$

that has a general solution given by (25). Also, from the second equation in (9) and the first equation in (10) we have $\left(h_{22}^{3}\right)^{2}=\left(h_{12}^{4}\right)^{2}$. If we put $\rho=h_{11}^{3}$, then $h_{22}^{3}=-\rho$ and $h_{12}^{4}=\varepsilon \rho$, where $\varepsilon= \pm 1$. Thus, the shape operators A_{3} and A_{4} are of the form (26). A direct calculation (or see the proof of Theorem 7) shows that the function f satisfying (1) is given by $f=8 \rho^{2}=8 \kappa^{2}$ as $\rho=h_{11}^{3}=\kappa$ from (9). Since κ is not constant for the hyperbola given by (25), f is not a constant function. As a result M has proper pointwise 1-type Gauss map of the second kind by Theorem 7. This gives case 1 of the theorem.

Now, for $a^{2} \neq b^{2}$ assume that a non-planar general rotational surface M in \mathbb{E}^{4} defined by (5) is minimal and its Gauss map $\nu=e_{3} \wedge e_{4}$ is of pointwise 1-type of the second kind. Then, Theorem 7 implies that the shape operators A_{3} and A_{4} of M are of the form (26). Hence we have $h_{11}^{3}+h_{22}^{3}=0$ and $h_{12}^{4}=\varepsilon h_{11}^{3}=-\varepsilon h_{22}^{3}$, where $\varepsilon= \pm 1$.

From the second equation in (9) and the first equation in (10) it is seen that $h_{12}^{4}=-\varepsilon h_{22}^{3}$ implies the differential equation $a x z^{\prime}=-\varepsilon b z x^{\prime}$ as $a^{2} \neq b^{2}$, and its solution gives (27).

Conversely, suppose that the meridian curve of the rotational surface M is given by (27). We will show that the shape operators A_{3} and A_{4} of M are of the form (26).

From (27) if we write $z=c x^{-\varepsilon b / a}$, then we have $a x z^{\prime}=-\varepsilon b z x^{\prime}$ from which, the second equation in (9) and the first equation in (10) it is seen that $h_{12}^{4}=-\varepsilon h_{22}^{3}$. Now, let us show that the minimality condition holds, i.e., $h_{11}^{3}+h_{22}^{3}=0$ or equivalently, $h_{11}^{3}-\varepsilon h_{12}^{4}=0$. Using the second equation in (9) and the first equation in (10), the equation $h_{11}^{3}-\varepsilon h_{12}^{4}=0$ produces the differential equation

$$
x^{\prime} z^{\prime \prime}-z^{\prime} x^{\prime \prime}+\frac{\varepsilon a b\left(x z^{\prime}-z x^{\prime}\right)}{a^{2} x^{2}+b^{2} z^{2}}=0
$$

which is expressed as

$$
\begin{equation*}
\frac{d}{d s}\left(\tan ^{-1}\left(\frac{z^{\prime}}{x^{\prime}}\right)\right)+\varepsilon \frac{d}{d s}\left(\tan ^{-1}\left(\frac{b z}{a x}\right)\right)=0 \tag{28}
\end{equation*}
$$

because of ${x^{\prime}}^{2}+{z^{\prime}}^{2}=1$. Since $\tan ^{-1}$ is an odd function, it is easily seen that the equation $a x z^{\prime}=-\varepsilon b z x^{\prime}$ which produces (27) satisfies (28). That is, the minimality condition holds.

If we put $\rho=h_{11}^{3}$, then $h_{22}^{3}=-\rho$ and $h_{12}^{4}=\varepsilon \rho$. Thus, the shape operators A_{3} and A_{4} are of the form (26). Therefore, M is minimal and its Gauss map is of pointwise 1-type of the second kind by Theorem 7. By a direct calculation it is easy to show that the Gauss map is of proper pointwise 1-type of the second kind. This completes the proof of case 2 .

Here, using (25) and (27) we give two examples of a general rotational surface in \mathbb{E}^{4} which are minimal and have proper pointwise 1-type Gauss map of the second kind.

Example 1. For $c_{1}=0$ and $c_{2}=-1$ in (25) we have the hyperbola $2 x z=1$ or equivalently $x^{2}-z^{2}=1$. Let $x=\cosh u, z=\sinh u$ be the parametrization of the right-hand branch of the hyperbola $x^{2}-z^{2}=1$. Then, the general rotational surface M defined by

$$
F(u, t)=(\cosh u \cos t, \cosh u \sin t, \sinh u \cos t, \sinh u \sin t)
$$

is minimal in \mathbb{E}^{4} with proper pointwise 1-type Gauss map of the second kind. Moreover, following the proof of Theorem 7, the Gauss map $\nu=e_{3} \wedge e_{4}$ satisfies (1) for the function $f=8 \operatorname{sech}^{3}(2 u)$ and for the constant vector $C=-\frac{1}{2} e_{1} \wedge e_{2}-\frac{1}{2} e_{3} \wedge e_{4}$ for some suitable orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on M.
Example 2. If we choose $a=1, b=2$ and $z=x^{2}$ from (27), then the general rotational surface M defined by

$$
F(x, t)=\left(x \cos t, x \sin t, x^{2} \cos 2 t, x^{2} \sin 2 t\right), x>0
$$

is minimal in \mathbb{E}^{4} with proper pointwise 1-type Gauss map of the second kind. Also, the Gauss map $\nu=e_{3} \wedge e_{4}$ satisfies (1) for the function $f=\frac{32}{\left(1+4 x^{2}\right)^{3}}$ and for the constant vector $C=\frac{1}{2} e_{1} \wedge e_{2}-\frac{1}{2} e_{3} \wedge e_{4}$ for some suitable orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on M.

Acknowledgments

This work is a part of the second author's doctoral thesis.

References

[1] K. Arslan, B. K. Bayram, B. Bulca, Y. H. Kim, C. Murathan, G. Öztürk, Rotational embeddings in \mathbb{E}^{4} with pointwise 1-type Gauss map, Turk. J. Math. 35(2011), 493-499.
[2] C. Baikoussis, D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math.J. 34(1992), 355-359.
[3] C. Baikoussis, B. Y. Chen, L. Verstraelen, Ruled surfaces and tubes with finite type Gauss map, Tokyo J. Math. 16(1993), 341-348.
[4] C. Baikoussis, B. Y. Chen, L. Verstraelen, The Chen-type of the spiral surfaces, Results in Math. 28(1995), 214-223.
[5] B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific, Singapor-New Jersey-London, 1984.
[6] B. Y. Chen, On submanifolds of finite type, Soochow J. Math. 9(1983), 65-81.
[7] B. Y. Chen, P. Piccinni, Sumanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35(1987), 161-186.
[8] B. Y. Chen, M. Choi, Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. 42(2005), 447-455.
[9] M. Сhoi, Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38(2001), 753-761.
[10] M. Choi, D. S. Kim, Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46(2009), 215-223.
[11] F. N. Cole, On rotations in space of four dimensions, Amer. J. Math. 12(1890), 191210.
[12] U. Dursun, Hypersurfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 11(2007), 1407-1416.
[13] U. Dursun, Flat surfaces in the Euclidean space E^{3} with pointwise 1-type Gauss map Bull. Malays. Math. Sci. Soc. (2) 33(2010), 469-478.
[14] U. Dursun, G. G. Arsan, Surfaces in the Euclidean space \mathbb{E}^{4} with pointwise 1-type Gauss map, Hacet. J. Math. Stat. 40(2011), 617-625.
[15] Y. H. Kim, D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34(2000), 191-205.
[16] C. L. E. Moore, Surfaces of rotation in a space of four dimensions, Ann. of Math. (2) 21(1919), 81-93.
[17] A. NiAng, Rotation Surfaces with 1-Type Gauss Map, Bull. Korean Math. Soc. 42(2005), 23-27.
[18] G. Vranceanu, Surfaces de rotation dans \mathbb{E}^{4}, Rev. Roumaine Math. Pures Appl. 22(1977), 857-862.
[19] D. W. Yoon, Rotation surfaces with finite type Gauss map in \mathbb{E}^{4}, Indian J. Pure. Appl. Math. 32(2001), 1803-1808.
[20] D. W. Yoon, Some properties of the Clifford Torus as rotational surface, Indian J. Pure. Appl. Math. 34(2003), 907-915.

[^0]: *Corresponding author. Email addresses: udursun@itu.edu.tr (U.Dursun), turgayn@itu.edu.tr (N. C. Turgay)

