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Abstract. In this paper, we estimate the third and the fourth order central moments for

the difference of the Lupag g-analogue of the Bernstein operator and the limit g-Lupas
operator. We also prove a quantitative variant of Voronovskaja’s theorem for R, 4.
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1. Introduction
Let ¢ > 0. For any n € N U {0}, the g-integer [n] = [n], is defined by
] :=14q+..+¢", [0]:=0;

and the g-factorial [n]! = [n] ! by

[n} :Z% and [Z] =0 for k> n.

In the last two decades interesting generalizations of the Bernstein polynomials
based on the g-integers were proposed by Lupas [5]

o (1) [ it =

k=0

Ry q(f, )
and by Phillips [12]
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The Phillips g-analogue of the Bernstein polynomials ( B, ,) attracted a lot of
interest and was studied widely by a number of authors, see [2]-[4], [6]-[9], [12]-
[17]. A survey of the obtained results and references on the subject can be found
in [9]. The Lupas operators (R, ) are less known, see [1, 10, 11, 18]. However,
they have an advantage of generating positive linear operators for all ¢ > 0, whereas
Phillips polynomials generate positive linear operators only if ¢ € (0,1). Lupasg [5]
investigated approximating properties of the operators R,, 4(f,z) with respect to the
uniform norm of C[0, 1]. In particular, he obtained some sufficient conditions for a
sequence { R, q(f, )} to be approximating for any function f € C[0, 1] and estimated
the rate of convergence in terms of the modulus of continuity. He also investigated
behavior of the operators R,, ,(f,z) for convex functions. In [10], several results on
convergence properties of the sequence {R,, (f, )} are presented. In particular, it
is proved that the sequence {R, 4, (f,z)} converges uniformly to f(z) on [0,1] if
and only if ¢, — 1. On the other hand, for any g > 0 fixed, ¢ # 1, the sequence
{Ry,q(f,x)} converges uniformly to f(z) if and only if f(x) = az + b for some
a,b € R. In [18], the estimates for the rate of convergence of R, ,(f,z) by the
modulus of continuity of f are obtained.

The paper is organized as follows. In Section 2, we estimate the third and the
fourth order central moments for the difference of the Lupag g-analogue of the Bern-
stein operator and the limit g-Lupag operator. In Section 3, we discuss Voronovskaja-
type theorems for the Lupag g-analogue of the Bernstein operator for arbitrary fixed
q > 0. Moreover, for the Voronovskaja’s asymptotic formula we obtain the estimate
of the remainder term.

2. Auxiliary results
It will be convenient to use the following transformations for x € [0,1)

. J . )
v(q],ac) = %, v(q,v(qj,x)) zv(qﬁl,x), j=0,1,2,....

Let 0 < ¢ < 1. We set

Rl g n—k
n qg z 2"(l—x)
b7 ; = ) 07 1 9
#(62) |:/€:| (1—24gqx)...(1 —x+ ¢ 1) €01
k(k—1) k
1—
ook (4:) 1= ¢ > (@/l-3) e 0,1).

(L= @) I+ o/ (/1 — )

It was proved in [5] and [10] that for 0 < ¢ < 1 and x € [0,1),

S bar(gia) = > boer(@sz) = 1.
k=0 k=0
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Definition 1 (See [5]). The linear operator R,, 4 : C'[0,1] — C'[0,1] defined by

Ry q(f,2) Zf<z>”kq’)

18 called the g-analogue of the Bernstein operator.

Definition 2. The linear operator defined on C'[0,1] given by

S (=) bocklgz) if xe(0,1),
k

=0
£(1) if =1
is called the limit q-Lupas operator.

ROO,q (fﬂ (E) =

It follows directly from the definition that operators R,, 4(f,z) possess the end-
point interpolation property, that is,

qu(ﬂ 0) = f(0)7 Rn,q(f7 1) = f(l)
forallg>0and alln=1,2,....

Lemma 1. We have

book (q; ) = Hv ¢,z H 1—v(qk+j,:1z)), z €10,1].
(1—61 =0

It was proved in [5] and [10] that Ry, 4 (f,2), Reo,q (f,x) reproduce linear func-
tions and R, 4 (tz, x) and R 4 (tz, CC) were explicitly evaluated. Using Lemma 1 we
may write formulas for R,, 4 (tz, x) and R 4 (t2, x) in the compact form.

Lemma 2. We have

Rn,q (1, Z‘) =1, Rn,q (t,x) =, Roo7q (1,.13) = 17R<>o,q (t,l‘) =7,

Rn,q (tQ,;p) = xv (q,x) + W,
Roog (2.2) = 20(g,2) + (1 — @)z (1 — v (¢,2)) = & — gz (1 — v (¢, 2))..
Now define

Ly g(fi2) = Ry g(f, @) — Roo g (f, )

Theorem 1. The following recurrence formulae hold

Rug (t7,2) = Rog (t7,2) — (1 — ) [”[;]SJR (™ v (q.2)), (1)
ROO#I (tm+1ax) = Roo ( 71') (1 7I) ooq(tmav(%z))a (2)
Lo a(E™,2) = Lo g(t,2) + (1 - 2)

A PR
(- Pt @) - P L () 0
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Proof. First we prove (1). We write explicitly

Ry (t™ T 2) = i

[k}m+1 k—1 n—k—1
k=0 j=

n” " mjﬂo”(qj’x) II 0-v@@m) @

7=0

and rewrite the first two factors in the following form:

e ] () [
W) et W[ -

) W™ -1 |k

Finally, if we substitute (5) in (4) we get (1):

Next we prove (3)
Lng(t™h ) = Ry g (1" 2) — Ro g (1™, 2)
=R, ,(t"2)—(1—2x) B
—Reo,q "™ 2) + (1 —2) Roo ¢ (t™, v (g, x))
=L,,t" z)+(1—2)
X <(1 — W)qu ™, v (q,z))fuLn_Lq ™, v (q,x))).

[n]™ [n]"™
Formula (2) can be obtained from (1), by taking the limit as n — oco. O

Moments R, 4 (t", ), Roo,q (", ) are of particular importance in the theory of
approximation by positive operators. In what follows we need explicit formulas for
moments R, 4 (t3, :U), Ry g (t?’,x).

Lemma 3. We have
z(1—v(qzx n—1][n — 2] ¢?
oy (12) = aw(a, ) + T B AT (1w ) (09).
n n

R q (t?’,x) =zv(q,z)+ (1 — q)2x (1-v(gz)—¢*z(1—v(gx))v (qz,x) .
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Proof. Note that explicit formulas for R,, , (", %), Rooq (t™,x), m = 0,1,2 were
proved in [5, 10]. Now we prove an explicit formula for R,, ; (¢3,2) , since the formula
for Reo,q (t3,2) can be obtained by taking limit as n — oo. The proof is based on
the recurrence formula (1). Indeed,

R, (t3,x) =Ry, (tz,x) —(1—-2) [n[;];] Ro_1,4 (t2,v (q,x))
=av(q,z) + z(l[:)l](q,x)) —(1-2) [n[n];]v(q,x)v (qQ,x)

[”[n‘]g” v(g.2)+ (1 - )

Using the identity (1 —z)v (¢,x) = gz (1 — v (g, z)) we obtain

32 = ou (o) o EL—0@) [ gln—1]
R (t0) = a0 o)+ gt (1 £ )

(In =1 =1gz (1 -v(g2)v (e )

-(1-=x)

= av(q,x) + z@ _[:]2((1’17)) — - 1][7[32_ 24 z(1—-v(g,z))v (qQ,x) )

O

In order to prove the Voronovskaja type theorem for R, 4 (f,z) we also need
explicit formulas and inequalities for L, 4 (t™,z), m = 2,3, 4.

Lemma 4. Let 0 < g < 1. Then

n

[%]m (1-v(g ), (6)

n

Lyg(®,2) = q—]gxa —v(g,))

Ln,q(tQ, x) =

[n
X [Q—q”—i—[n—l] (I+quw qQ,m)—i-[n]qv (qQ,x)], (7)
Ly (th z) = [Z?x (1—-v(g,x)M (q,v (qQ,x) v (qg,x)) , (8)

where M is a function of (q,v (qz,x) , U (qg,x)).

Proof. First we find a formula for L,, 4 (t3 ,a:). To do this we use the recurrence
formula (3):

L,, (tS,LE) =1L,, (t2,x) +(1-2)

2 2
) [(l S ) R (B0 (q.) = 20l L (200 0)

[n
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-1 2
}2 [(1_Q)U(Q,$)+qv (q,x)v(q ,x)}

= Lo(l-v(ga)+ (-2 (1—

[n—1% ¢!

[n

7(]‘71') [TL]2 [n_l]v(qvx) (17{1}((1271’))
q’I’L
= —z(l—-v(gzx
L ( (¢:x))
x |[n] + ([n] ;n[nl— 1 ) (1-gq+qu(s2))—[n—1](1-v(¢*x))
qn
= ——z(l-v(gx
i (1-v(g,2))

X [[n]+1fq”71+lfq”+[nfl] (1+q)v(q2,x) + [n] qu (q2,x) f[nfl]]
ol st (l=v(g2) [2=¢"+[n-1](1+q) v (¢ ) + [n]qu (¢* z)] .

The proof of equation (8) is also elementary, but tedious and complicated. Just
notice that we use the recurrence formula for L, 4 (t*,2) and clearly each term of

n

the formula contains [Z?a: (1—-v(q,x)). O

Lemma 5. We have

Lug ((t=0)%2) = 5e (0= vla,2), ©)
Log ((t=2)°,2) = [f?m —0(q.2)) (10)

x[2=¢"+n—1(1+q)v (¢ 2)+ [nqv(¢® z) —3[n] ],

Lna ((t =)' 2) < K1 (@) {15 (1= v(g.0), (11)

where Kj (q) is a positive constant which depends on q.

Proof. Proofs of (10) and (11) are based on (7), (8) and on the following identities:

q ((t - x)g ,x)

wa (=)' )

L, =Ln,q (t3,x) —3xLn 4 ((t — x)2 ,x) ,
L =Ly, (t',2) —4zL,, ((t —z)° ,9:) —62° L, ((t —z)? ,:17) .

)
n7

O
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3. Voronovskaja type results

Theorem 2. Let 0 < g < 1, f € C?[0,1]. Then there exists a positive constant K (q)
such that

Bl (Rualf,2) = B (£,2)) = L4200 (1= v (q,2))|
<K(g)x(1-v(gz)w(f",[n]?). (12)

Proof. Let = € (0,1) be fixed. We set

o) = £ = (5@ + F@)e -0+ T e - 2).

It is known that (see [5]) if the function h is convex on [0, 1], then
R, 4(h,z) > Rpj1,4(h,z) > ... > Roo q(h, ),

and therefore,
L, q(h,z) =Ry, 4(h,z) — Roo q(h,z) > 0.

Thus L, 4 is positive on the set of convex functions on [0, 1]. But in general L,, , is
not positive on C'[0, 1].
Simple calculation gives
qTL fl/(x)

Ly.q (g,ac) = (Rn’q(fv .’L’) - ROO,Q(f7x)) T

2 z(1—v(qx)).

In order to prove the theorem, we need to estimate L, ,(g,z). To do this, it is
enough to choose a function S (t) such that functions S (¢) + ¢ (t) are convex on
[0,1]). Then L, 4 (S £ g,z) > 0, and therefore,

[Ln,q (9(),2)| < Lyg (S(t), ).

So the first thing to do is to find such function S (¢). Using the well-known inequality
w(f,Ad) < (1+ A2)w(f,d) (A, 8 > 0), we get

lg" (O] = [f"(t) = f" (@) < w(f” |t —zl)
= w( ,,7L[n]é |t;z;|> <w (f”, 1 ) (1+[n] (tfx)z)).

Define S (t) = w (f [n]—%) [L(t—2)% + & [n] (t — 2)4]. Then

"

/0] < g (77 007E) (- P+ 5 e -2)') =",

t

Hence functions S(t) £ g(¢) are convex on [0, 1], and therefore,

[ Lng (9(t), 2)| < Lnq (S(t), ),
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and
3q"

Lnq(St),z) = Gv <f”, [n]_%) ([n]x (1—v(q,))+ % [n] Ln,q ((t — x)4,x)> )

Since by formula (11)

n

Lna ((t=)'2) S Ki(0) 2z (1= v(0.2)), (13)
we have
L (8(6),2) < goo (£, )
x (3[";“1 )+ 5 K () e (1 v(q,m») ()
By (13) and (14), we obtain (12). The theorem is proved. O

When ¢ > 1, the following relations (see [10], Theorem 3) allow us to reduce to
the case ¢ € (0,1).
Rn,q (fax) = Rn,% (97 1- CIJ) )

where g () = f (1 — z). For ¢ > 1, the limit ¢g-Lupag operator is defined by

Zzozof (1/qk) book:(l/qal —.’IJ) if xe (07 1]a

R‘”"’(f’”“"):{ £ (0) it z=0.

Corollary 1. Let ¢ > 1, f € C?[0,1]. Then there exists a positive constant K (q)
such that

0" ]y (g (£2) — Roog () ~ 20" (g 2 (1~ )

< K(g)v(g,z) (1 -z)w(¢",[n],7).
Remark 1. For the function f(t) = t2, the exact equality

[Z}f (qu(tQ,m) - Roo,q(t2,$)) =z(1-v(gx)), 0<g<1,

q" [0 (Bng(t?,2) = Roog(t,7)) = v(g2) (1=2), q>1,

takes place without passing to the limit, but in contrast to the Phillips q-analogue of
the Bernstein polynomials, the right-hand side depends on q. In contrast to classical
Bernstein polynomials and the Phillips q-analogue of the Bernstein polynomials, the
exact equality
1
0] (Bn,g(t* 2) —2°) = (2?) 2 (1 —2) /2

does not hold for the Lupas q-analogue of the Bernstein polynomials.
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