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On the stability of linear mappings between essential Banach
modules
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Abstract. We establish the generalized Hyers-Ulam-Rassias stability of the linear map-
pings between essential Banach modules over Banach algebras with bounded approximate
identity and over C'*-algebras.
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1. Introduction

The stability problem of functional equations appeared by Ulam [16] in 1940. In the
next year, Hyers [10] solved a version of this problem for additive mappings between
Banach spaces. Since then the topic of stability of functional equations was studied
in several ways by some mathematicians like: Aoki, Bourgin, Rassias, Gavruta, Forti
and Park (see [6, 11, 14]). The stability of R-linear mapping between Banach spaces
was given by Rassias [15] in 1978.

Let E; and E> be Banach spaces. Suppose that f : F; — FEs is a mapping such
that for each fixed x € Fy, the mapping ¢t — f(tx) is continuous on R and let there
exist € > 0 and p € [0,1) such that

1f (@ +y) = f(@) = F)Il < e[zl + [lyl”) (1)
for all z,y € F;. Then there exists a unique R-linear mapping T : Fy, — FEs such
that

2¢

[f(z) = T(x)]| < mllml\”

for all x € Ej.
In 1994, Gavruta [9] generalized the Rassias’ result by replacing the bound e(||z||P 4+
ly||?) in (1) by a general control function ¢ : Ey x E; — [0, 00) satisfying

Z 272"z, 2" y) < oo,
n=0
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for all z,y € F;. This result is significant in the development of what we now call
generalized Hyers-Ulam-Rassias stability of functional equations.

Park [13] provided a generalization of Gavruta’s result to show the generalized Hyers-
Ulam-Rassias stability of the linear mappings between unit linked Banach modules
over a unital Banach algebra. The results of Park imply the stability of C-linear
mappings in complex Banach spaces.

Recently, the stability of functional equations in Banach algebras with approx-
imate identity has been investigated in several papers (for example, see [1, 2, 8]).
In this paper, we establish the generalized Hyers-Ulam-Rassias stability of linear
mappings between essential Banach modules over Banach algebras with bounded
approximate identity and over C*-algebras.

Let B be a Banach algebra with a bounded left approximate identity (ex)aea
and X a left Banach B-module. Then X is said to be essential if eyx — x for all
x € X. It is known that if X is an essential left Banach B-module, then for every
bounded left approximate identity (f,) in B, eyz — « for all z € X (see [7]).

Also let Y be a left Banach B-module. The mapping f : X — Y is said to be
B-linear if for all a,b € B and x,y € X, f(ax + by) = af(z) + bf(y).

2. Main results

Let B be a Banach algebra with a bounded left approximate identity, M; an essential
left Banach B-module and M a left Banach B-module. Our first result can be
regarded as a generalization of [13, Theorem 2.1].

Theorem 1. Let o € C\ {0}. Suppose that f : My — My is a mapping for which
there exist two functions ¢ : My — [0,00) and ¢ : My x My — [0,00) such that

o(x) =Y la|"¢(a"z) < oo, (1)
n=0
Jim_Jal " 0(a"a,a%y) = 0, ©)
la™" f(az) = f(2)]| < é(2), 3)
[f(az + ay) — af(z) —af(y)l| < ¥(z,y) (4)

forall xz,y € My and all a € By := {x € B : ||z|| = 1}. Then there exists a unique
B-linear mapping F : M1 — Ms such that

1F () = ()] < é(x) (5)
for all x € M.

Proof. By Proposition 1 of [4], for every x € M, F(x) := lim,,_.~ f(z:x) exists and

F : My — My is a unique function with ||[F(z) — f(z)|| < ¢(z) and F(az) = aF(z)
for all z € M;.
Putting z = y in (4) and replacing x by o™z, we get

If(2a"azx) = 2af(a"2)|| < P(a”z, o),
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and so,

[feres) g, s

an

1
‘ < Wz/}(a";m a™x)

foralln € N and x € M; and a € Bj.
By taking the limit as n — oo, it follows from (2) that

F(2az) = 2aF (x) (6)

for all x € M7 and all a € Bj.

Let € T := {u € C: |u] = 1} and x € M;. Since B is a Banach algebra
with a bounded left approximate identity and Mj is essential, it follows from Cohen
factorization theorem [7, Theorem 16.1] that there exist ¢ € B and z; € M; such
that = cx;. Since ﬁ” 7€ By, by (6) we have

C
F( ||0|x1>=2ﬂF(IICIx1)-
Tl B
Thus

F(2) = F(20c00) = F (205l )
2075 F(lellen) = F (205l
_ BF(22). (7)
Replacing z by £ in (7), we get
F(Br) = BF(z) (BeT,zeMy) (%)
Replacing z,y by a”z, a™y respectively, in (4), we get
I (@"az + aMay) — af(a™s) — af(amy)| < Blamz,a"y),

and so,

1
< — (e, ay)

o

flomar +aray) f(a"z)  fla"y)

for all n € N and x,y € M7 and a € By. Taking the limit as n — oo, we obtain
F(ax + ay) = aF(x) + aF(y) (9)

for all x,y € My and all a € B;.
Putting 8 = —1 and = = 0 in (8), we get F'(0) = 0. Now putting y = 0 in (9),
we have

F(axz) = aF(z) (a € By,x € My). (10)
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Let x,y € My. By [7, Theorem 17.1], there exist b € B and x1,y1 € M; such that
x = bxy and y = by;. Hence it follows from (9) and (10) that

b
= F(z) + F(y).

Therefore, F' is an additive mapping. Since the additive mapping F satisfies (8), by
[5, Lemma 2.4] we get

F(\r) = AF(z) (A€ C,z € My). (11)

Finally, let ¢ € B. Then by (10) and (11), we obtain

F(cx) = (” i c||ac> = HF(HCH@ =cF(x) (z € My, ce B). (12)

Therefore, F' is a unique B-linear mapping satisfying (5). O

Remark 1. We note that in Theorem 1, the result has been obtained without the
assumption that the mapping f(tx) is continuous in t € R for each fized x € My;
(compare [18, Theorem 2.1]).

Corollary 1. Let f : My — M be a mapping satisfying

flaz +ay) = af(z) +af(y)
for all a € By and all x,y € My. Then, f is a B-linear mapping.
Proof. Let a =1, ¢ =0, ¢ =0 and apply Theorem 1. O

Now, we investigate the generalized Hyers-Ulam-Rassias stability of linear map-
pings between essential Banach modules over a C*-algebra. In the following theorem,
A is a C*-algebra, M is an essential left Banach A-module and M5 is a left Banach
A-module. Also, by AT we denote the set of all positive elements in C*-algebra A
and suppose Ay ={x € A: ||z|| = 1}.

Theorem 2. Let « € C\ R. Suppose f : My — My is a mapping for which there
exist functions ¢ : My — [0,00) and ¥ : My x My — [0,00) satisfying (1), (2) and
(3) such that

1f(az + ay) — af(x) — af(y)| < P(z,y) (13)

for all x,y € My and all a € Ay (VAT. If for each fivred x € My, the mapping
t — f(tx) is continuous in t € R, then there exists a unique A-linear mapping
F : My — My such that

IF(2) - f(2)] < é(x) (14)
for all x € M.
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Proof. By the same reasoning as Theorem 1, the function F' : M; — Ms defined
by F(z) = lim,_, o f(g,,,m) (x € My) is unique function that F(az) = aF(zx) for
all z € My and satisfies (14).

By the same method as in the proof of Theorem 1, it is obtained that

F(ax + ay) = aF(z) + aF(y) (x,y € My,a € A4 ﬂA+). (15)

Since @ # 1 and F(ax) = aF(x) for all z € My, we have F(0) = 0. Putting y =0
in (15), we obtain

F(ax) = aF(z) (xEMl,aEAlﬂA+). (16)

Now we prove that the mapping F' is additive.

Let x,y € M;. Since M; is an essential left Banach A-module, by [7, Theorem
17.1] there exist ¢ € A and x1,y; € M; such that z = cx; and y = cy;.
We claim that there exist a € A1 and b € A such that ¢ = ab. To see this, it is known
that C*-algebra A has a bounded approximate identity (ex)aea, where ey € A7 for
all A € A [12, Theorem 3.1.1]. By Cohen factorization theorem, there exist a,b € A
such that ¢ = ab. By the proof of Cohen factorization theorem (see the proof of [3,
Theorem 10.11]), there exist a real number 0 < v < 1 and a sequence (A,,) in A such
that

oo
a= Z Y1 —y)" ey, .
n=1

Hence a € AT since the sum of two positive elements in C*-algebra A is a positive
element and A7 is closed in A (see [12]).
Therefore, there exist a € AT, b € A and zy,y1 € M; such that x = abz; and
y = aby;. Now, by (15) and (16) we get

a a
F(zx+vy) = F(abzy + abyr) = F <m”||a|bx1 + |M”||a|byl)
a a
= WF(IIaHbfm) + HCT”F(HaIIbyl) = F(abx1) + F(aby1)
= F(z)+ F(y).

Thus, F is an additive mapping. Hence by the same reasoning as in the proof
of Rassias Theorem [15], the mapping F' is R-linear and so F is C-linear since
F(az) = aF(x).

Now it is clear that

F(az) = aF(z) (v € My,a€ AT),
and by the same method as the proof of [13, Theorem 2.2], one can obtain that
F(ax +by) = aF(z) + bF(y) (a,be€ A,x,y € My).

Thus F' is an A-linear mapping, as desired. O
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Remark 2. In Theorem 2, one can replace the condition that f satisfies (13) for
all a € A (A" by the condition that f satisfies (13) for all a € Ay ((iA1). The
proof is similar to the proof of Theorem 2.

Finally, let E; and E> be complex Banach spaces. In [13], the stability of C-
linear mappings has been obtained by the assumption that the mapping f : £y — Es
satisfies

1f Az + Ay) = Af(z) = Af (W)l < o(a,y) (17)

for A=1,4 and all x,y € E;. In the following result, we apply Remark 2 and prove
the stability of C-linear mappings in the case that f : Ey — Es satisfies (17), only
for A =i.

Corollary 2. Let f : E1 — Fy be a mapping for which there exists a function
v : FEy X By — [0,00) such that
(oo}
Bx,y) =D 27"p(2"x,2"y) < oo, (18)
n=0

| f(iz +iy) —if(x) —if (Yl < o(z,y)

for all x,y € Ey. If the mapping t — f(tzx) is continuous for each fivred x € E1, then
there exists a unique C-linear mapping F : Fh — Es satisfying

1F(@) ~ F@) < 3 327" p((20)", (20)")
n=0

for all x € E.

Proof. It is easy to see that the mapping ¢ satisfying (18) satisfies
D 27mp((20)", (20)"y) < o0
n=0

for all z,y € E;. Let a = 2i, ¢(x) = %go(x,x) and Y(z,y) = ¢(z,y). Now apply
Remark 2. O
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