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Abstract. After having investigated the geodesic ball packings in S2×R space we consider
the analogous problem in H2×R space from among the eight Thurston geometries. In this
paper, we determine the geodesic balls of H2×R space and compute their volume, define
the notion of the geodesic ball packing and its density. Moreover, we develop a procedure
to determine the density of the geodesic ball packing for generalized Coxeter space groups
of H2×R and apply this algorithm to them. E. Molnár showed that the homogeneous
3-spaces have a unified interpretation in the projective 3-sphere PS3(V4, V 4,R). In our
work we will use this projective model of H2×R geometry and in this manner the geodesic
lines, geodesic spheres can be visualized on the Euclidean screen of computer.
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1. H2×R space groups

H2×R is one of the eight simply connected 3-dimensional maximal homogeneous
Riemannian geometries. This Seifert fibre space is derived by the direct product of
the hyperbolic plane H2 and the real line R. The points are described by (P, p),
where P ∈ H2 and p ∈ R. The complete isometry group Isom(H2×R) of H2×R can
be derived by the direct product of the isometry group Isom(H2) of the hyperbolic
plane and the isometry group Isom(R) of the real line as follows:

Isom(H2×R) := Isom(H2)× Isom(R);

Isom(H2) := {A : H2 7→ H2 : (P, p) 7→ (PA, p)} for any fixed p ∈ R.

Isom(R) := {ρ : (P, p) 7→ (P,±p + r)}, for any fixed P ∈ H2.

here the ”-” sign provides a reflection in the point
r

2
∈ R,

by the ”+” sign we get a translation of R.

(1)

The structure of discontinuous acting, so finitely generated isometry group Γ ⊂
Isom(H2×R) is the following: Γ := 〈(A1 × ρ1), . . . (An × ρn)〉, where Ai × ρi :=
Ai×(Ri, ri) := (gi, ri), (i ∈ {1, 2, . . . n} and Ai ∈ Isom(H2), Ri is either the identity
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map 1R of R or the point reflection 1R. gi := Ai×Ri is called the linear part of the
transformation (Ai × ρi) and ri is its translation part. The multiplication formula
is the following:

(A1 ×R1, r1) ◦ (A2 ×R2, r2) = ((A1A2 ×R1R2, r1R2 + r2). (2)

Definition 1. LΓ is a one-dimensional lattice on R fibres if there is a positive real
number r such that

LΓ := {kr : (P, p) 7→ (P, p + kr), ∀P ∈ H2; ∀p ∈ R | 0 < r ∈ R, k ∈ Z}.

Definition 2. A group of isometries Γ ⊂ Isom(H2×R) is called a space group if its
linear parts form a cocompact (i.e. of a compact fundamental domain in H2) group
Γ0 called the point group of Γ; moreover, the translation parts to the identity of this
point group are required to form a one-dimensional lattice LΓ of R.

Remark 1. It can be prove easily that such a space group Γ has a compact funda-
mental domain FΓ in H2×R.

Definition 3. H2×R space groups Γ1 and Γ2 are geometrically equivalent, called
equivariant, if there is a ”similarity” transformation Σ := S×σ (S ∈ Hom(H2), σ ∈
Sim(R)), such that Γ2 = Σ−1Γ1Σ, where S is a piecewise linear (i.e. PL) homeo-
morphism of H2 which deforms the fundamental domain of Γ1 into that of Γ2. Here
σ(s, t) : p → p · s + t is a similarity of R, i.e. multiplication by 0 6= s ∈ R and then
addition by t ∈ R for every p ∈ R.

The equivariance class of a hyperbolic plane group or its orbifold [4] can be
characterized by its Macbeath-signature. In 1967-69, Macbeath completed the clas-
sification of hyperbolic crystallographic plane groups, (for short NEC groups) [5].
He considered isometries containing orientation -preserving and -reversing transfor-
mations as well in the hyperbolic plane. His paper deals with NEC groups, but the
Macbeath-signature economically characterizes the Euclidean and spherical plane
groups, too. The signature of a plane group is the following

(±, g; [m1,m2, . . . , mr]; {(n11, n12, . . . , n1s1), . . . , (nk1, nk2, . . . , nksk
)}), (3)

and, with the same notations, the combinatorial measure T of the fundamental
polygon is expressed by:

Tκ = π
{ r∑

l=1

( 2
ml

− 2
)

+
k∑

i=1

(
− 2 +

si∑

j=s1

(
− 1 +

1
nij

))
+ 2χ

}
. (4)

Here χ = 2− αg (α = 1 for −, α = 2 for +, the sign ± refers to orientability), χ is
the Euler characteristic of the surface with genus g, and κ will denote the Gaussian
curvature of the realizing plane S2, E2 or H2, whenever κ > 0, κ = 0 or κ < 0,
respectively. The genus g, proper periods ml of r rotation centres and period-cycles
(ni1, ni2, . . . , nisi) of dihedral corners on ith one of the k boundary components,
together with a marked fundamental polygon with side pairing generators and a
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corresponding group presentation determine a plane group up to a well-formulated
equivariance for S2, E2 and H2, respectively [4, 5].

Similarly to the theorem proved by J.Z. Farkas in [2] for S2×R space, we obtain
the following:

Theorem 1. Let Γ be an H2×R space group, its point group Γ0 belongs to one of
the following three types:

I. GH2 × 1R, 1R : x 7→ x is the identity of R.

II. GH2 × 〈1R〉, where 1R : x 7→ −x + r is the r
2 reflection of R with some r and

〈1R〉 denotes its special linear group of two elements.

III. If the hyperbolic group GH2 contains a normal subgroup G of index two, then
GH2G := {G× 1R} ∪ {(GH2 \G)× 1R} forms a point group.

Here GH2 is a group of hyperbolic isometries with a compact fundamental domain
FΓ.

Proof. Types I and II come up and they are not equivalent with each other. Equiv-
ariance of the hyperbolic group component would be necessary, but then type I would
be a normal subgroup in type II of index two, and this excludes the possibility of
equivariance.

The groups of type III must be compared with the groups of type II, but it is
clear that the equivarence is impossible.

The existence of further groups is excluded because if only 1R comes to the R-
component, then we obtain type I. When the R-component of the point group Γ0

includes the reflection 1R, then (Ai × 1R)(Aj × 1R)) = (AiAj × 1R) shows that
elements gk = (Ak × 1R) form a normal subgroup of index two; consequently, Γ0

lies in type II or in type III.

Definition 4. An H2×R space group Γ is called a generalized Coxeter group if
the generators gi, (i = 1, 2, . . . m) of its point group Γ0 are reflections and the
possible translation parts of all the above generators are lattice translations, i.e.
τi = 0, modLΓ (i = 1, 2, . . .m).

In this paper we deal with ”generalized Coxeter space groups” in an H2×R space
given by parameters 2 ≤ p1, p2, p3, . . . pm ∈ N where Σm

i=1
1
pi

< (m− 2), (m ≥ 3):

1. Γ1
(p1,p2,...pm) (+, 0, [ ] {(p1, p2, . . . pm)}),

Γ0 = (g1,g2, . . .gm − g2
1,g

2
2, . . .g

2
m, (g1g2)p1 , . . . (gmg1)pm),

2. Γ2
(p1,p2,...pm) (+, 0, [ ] {(p1, p2, . . . pm)}),

Γ0 = (g1,g2, . . .gm,gm+1 − g2
1,g

2
2, . . . g2

m,g2
m+1, (g1g2)p1 , . . . (gmg1)pm ,

(g1gm+1)2, (g2gm+1)2, . . . (gmgm+1)2), that means that gm+1 = 1R.

For a fundamental domain of the above space groups we can combine a fundamental
domain of a Coxeter group of the hyperbolic plan with a part of a real line segment
r or r

2 .
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2. Geodesic curve of H2×R

In [6], E. Molnár has shown that homogeneous 3-spaces have a unified interpre-
tation in the projective 3-sphere PS3(V4, V 4,R). In our work we shall use this
projective model of H2×R and the Cartesian homogeneous coordinate simplex
E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3), ({ei} ⊂ V4 with the unit point E(e = e0 + e1 +
e2 + e3)) which is distinguished by an origin E0 and by ideal points of coordinate
axes, respectively. Moreover, y = cx with 0 < c ∈ R (or c ∈ R \ {0}) defines a point
(x) = (y) of the projective 3-sphere PS3 (or that of the projective space P3 where
opposite rays (x) and (−x) are identified). The dual system {(ei)} ⊂ V 4 describes
simplex planes, especially the plane at infinity (e0) = E∞

1 E∞
2 E∞

3 , and generally,
v = u 1

c defines a plane (u) = (v) of PS3 (or that of P3). Thus 0 = xu = yv defines
the incidence of point (x) = (y) and plane (u) = (v), as (x)I(u) also denotes it.
Thus H2×R can be visualized in the affine 3-space A3 (so in E3) as well.

The points of an H2×R space, forming an open cone solid in the projective space
P3, are the following:

H2×R :=
{
X(x = xiei) ∈ P3 : −(x1)2 + (x2)2 + (x3)2 < 0 < x0, x1

}
.

In this context, E. Molnár [6] has derived the infinitesimal arc-length square at any
point of H2×R as follows

(ds)2 =
1

(−x2 + y2 + z2)2
· [(x)2 + (y)2 + (z)2](dx)2 + (5)

+2dxdy(−2xy) + 2dxdz(−2xz) + [(x)2 + (y)2 − (z)2](dy)2 +
+2dydz(2yz) + [(x)2 − (y)2 + (z)2](dz)2. (6)

This becomes simpler in the following special (cylindrical) coordinates (t, r, α), (r ≥
0, − π < α ≤ π) with the fibre coordinate t ∈ R. We describe points in our model
by the following equations:

x0 = 1, x1 = et cosh r, x2 = et sinh r cos α, x3 = et sinh r sin α. (7)

Then we have x = x1

x0 = x1, y = x2

x0 = x2, z = x3

x0 = x3, i.e. the usual Cartesian
coordinates. By [6] we obtain that in this parametrization the infinitesimal arc-
length square by (5) at any point of H2×R is as follows

(ds)2 = (dt)2 + (dr)2 + sinh2 r(dα)2. (8)

Hence we get the symmetric metric tensor field gij on H2×R by components:

gij :=




1 0 0
0 1 0
0 0 sinh2 r


 . (9)

The geodesic curves of H2×R are generally defined as having locally minimal arc
length between their any two (near enough) points. The equation systems of the



Geodesic ball packing in H2×R space 155

1.0

1.25

1.5
0.0

0.0 1.75

0.25

0.2
0.4

0.5

0.6
2.0

0.75

1.0

1.25

0.60.40.20.0

1.0

1.25

1.5

1.75

2.0

Figure 1: H2×R geodesic curve starting from (1, 1, 0, 0), i.e. t(0) = φ(0) = θ(0) = 0 and with unit
velocity by u = π

10
, v = π

3
. The arc-length parameter τ = s runs in [0, 1]

parametrized geodesic curves γ(t(τ), r(τ), α(τ)) in our model can be determined by
the general theory of Riemann geometry:

By (9) the second order differential equation system of the H2×R geodesic curve
is the following [9]:

α̈ + 2 coth(r) ṙα̇ = 0, r̈ − sinh(r) cosh(r)α̇2 = 0, ẗ = 0, (10)

from which we first get a line as a ”geodesic hyperbola” on our model of H2 times
a component on R each running with constant velocity c and ω, respectively:

t = c · τ, α = 0, r = ω · τ, c2 + ω2 = 1. (11)

We can assume that the starting point of a geodesic curve is (1, 1, 0, 0), because we
can transform a curve into an arbitrary starting point, moreover, unit velocity with
”geographic” coordinates (u, v) can be assumed;

r(0) = α(0) = t(0) = 0; ṫ(0) = sin v, ṙ(0) = cos v cos u, α̇(0) = cos v sin u;

−π < u ≤ π, − π

2
≤ v ≤ π

2
.

Then by (7), with c = sin v, ω = cos v we get the equation systems of a geodesic
curve, visualized in Figure 1 in our Euclidean model [9]:

x(τ) = eτ sin v cosh (τ cos v),
y(τ) = eτ sin v sinh (τ cos v) cos u,

z(τ) = eτ sin v sinh (τ cos v) sin u, (12)

−π < u ≤ π, −π

2
≤ v ≤ π

2
.
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Remark 2. Thus we have also harmonized the scales along the fibre lines and that
of H2.

Definition 5. The distance d(P1, P2) between points P1 and P2 is defined by the arc
length of the geodesic curve from P1 to P2.

Definition 6. The geodesic sphere of radius ρ (denoted by SP1(ρ)) with the centre
at the point P1 is defined as the set of all points P2 in the space with the condition
d(P1, P2) = ρ. Moreover, we require that the geodesic sphere is a simply connected
surface without selfintersection in the H2×R space.

Remark 3. In this paper we consider only the usual spheres with a ”proper centre”,
i.e. P1 ∈ H2×R. If the centre of a ”sphere” lies on the absolute quadric or lies out
of our model, the notion of the ”sphere” (similarly to the hyperbolic space) can be
defined, but these cases will be studied in a forthcoming work.

Definition 7. The body of the geodesic sphere of centre P1 and of radius ρ in
H2×R space is called a geodesic ball, denoted by BP1(ρ), i.e. Q ∈ BP1(ρ) iff
0 ≤ d(P1, Q) ≤ ρ.

Remark 4. Henceforth, typically we choose (1, 1, 0, 0) as the centre of the sphere
and its ball, by the homogeneity of H2×R.

Figure 2. a shows a geodesic sphere of radius ρ = 1 with the centre at the point
(1, 1, 0, 0) and Figure 2. b shows its intersection with the (x, +z) halfplane. From
(12) it follows that S(ρ) is a simply connected surface in E3 for ρ > 0.
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2.1. The volume of a geodesic ball

Theorem 2.

V ol(B(ρ)) =
∫

V

1
(x2 − y2 − z2)3/2

dx dy dz

=
∫ ρ

0

∫ π
2

−π
2

∫ π

−π

|τ · sinh(τ cos(v))| du dv dτ

= 2π

∫ ρ

0

∫ π
2

−π
2

|τ · sinh(τ cos(v))| dv dτ. (13)

Proof. We get the above volume formula of the geodesic ball B(ρ) of radius ρ by
the usual method of the classical differential geometry. We have used the metric
tensor gij and the Jacobian of (12) and we shall apply careful numerical Maple
computation. We remark that a power series expansion (here that of function sinh
by τ cos(v)) leads towards a useful comparison of ball volumes in other Thurston
geometries as well.

5

s

1.51.251.00.750.50.250.0

15

10

0

Figure 3: The increasing function ρ 7→ V ol(B(ρ))

2.2. On H2×R prism

In H2×R, a prism is the convex hull of two congruent p-gons (p > 2) in ”parallel
planes”, (a ”plane” is one sheet of concentric two sheeted hyperboloids in our model)
related by translation along the radii joining their corresponding vertices that are
the common perpendicular lines of the two ”hyperboloid-planes”. The prism is a
polyhedron having at each vertex one hyperbolic p-gon and two ”quadrangles”. A
H2×R tiling can be generated from congruent prisms under a generalized Coxeter
spcace group.

p-gonal faces of a prism are called cover-faces and other faces are side-faces. In
these cases every face of each polyhedron meets only one face of another polyhedron.
The midpoints of the side edges form a ”hyperboloid plane” denoted by Π. It can
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be assumed that the plane Π is the reference plane: in our coordinate system (see
(2.2)) it has the fibre coordinate t = 0.

Figure 4. b shows such a prism, a fundamental domain of the space group Γ1
(3,7,2)

generated by the four reflections gi ∈ Isom(H2) (i = 1, 2, 3), g4 ∈ 1R. The prism
and its images by the above space group generate a tiling in H2×R space. Figure
4. a shows the above prism with ”reference plane” Π. By the properties of the H2×R

2

B
1

P - “reference plane”

1

C

C

0

A

2

A

A

B

B

B

2

0

0

1

C
1

2 p/7

p/2

p/3

Figure 4: a, b

geometry (see Section 1) we obtain the following

Theorem 3. The volume of an H2×R p-gonal prism PB0B1B2...Bp−1C0C1C2...Cp−1

(see Fig. 4.a-b) can be computed by the following formula:

V ol(P) = A · h, (14)

where A is the area of the hyperbolic p-gon A0A1A2 . . . Ap−1 in the reference plane
Π and h = B0C0 is the height of the prism.

Remark 5. It is clear that the orthogonal projection of the cover-faces on the plane
Π form a hyperbolic Coxeter tiling where the tiles are hyperbolic p-gons.

3. Ball packings

By Remark 1, it follows that an H2×R space group Γ has a compact fundamental
domain. Usually the shape of the fundamental domain of a crystallographic group of
H2 is not determined uniquely but the area of the domain is finite and determined
uniquely by the group on the base of its combinatorial measure (see formula (4)).
Of course, the R-component provides a parameter for the fundamental prism by its
height. But this height will be chosen appropriate-optimally as a diameter of the
optimal circle inscribed in the fundamental polygon in H2 to its prism in H2×R.

In the following, let Γ be a fixed generalized Coxeter group (see Definition 4) of
H2×R. We will denote by d(X, Y ) the distance of two points X, Y by Definition 5.
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Definition 8. We say that the point set

D(K) = {X ∈ H2×R : d(K, X) ≤ d(Kg, X) for all g ∈ Γ}

is the Dirichlet–Voronoi cell (D-V cell) to Γ around the kernel point K ∈ H2×R.

Definition 9. We say that

ΓX = {g ∈ Γ : Xg = X}

is the stabilizer subgroup of X ∈ H2×R in Γ.

Definition 10. Assume that the stabilizer ΓK = I, i.e. Γ acts simply transitively
on the orbit of a point K. Then let BK denote the greatest ball of centre K inside
the D-V cell D(K); moreover, let ρ(K) denote the radius of BK . It is easy to see
that

ρ(K) = min
g∈Γ\I

1
2
ρ(K,Kg).

Definition 11. If the stabilizer ΓK 6= I, then Γ acts multiply transitively on the
orbit of a point K. Then the greatest ball radius of BK is

ρ(K) = min
g∈Γ\ΓK

1
2
ρ(K, Kg),

where K belongs to a 0- 1- or 2-dimensional region (vertices, axes, reflection planes).

In both cases, the Γ-images of BK form a ball packing BΓ
K with centre points

KG.

Definition 12. The density of ball packing BΓ
K is

δ(K) =
V ol(BK)
V olD(K)

.

It is clear that the orbit KΓ and the ball packing BΓ
K have the same symmetry

group; moreover, this group contains the starting crystallographic group Γ:

SymKΓ = SymBΓ
K ≥ Γ.

Definition 13. We say that the orbit KΓ and the ball packing BΓ
K is characteristic

if SymKΓ = Γ, else the orbit is not characteristic (n. char).

Remark 6. The Dirichlet-Voronoi cell belonging to a generalized Coxeter group Γ
in the H2×R space (see Definition 4) is a prism (see Figure 4).
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3.1. Simply transitive ball packings

Our problem is to find a point K ∈ H2×R and the orbit KΓ for Γ such that ΓK = I
and the density δ(K) of the corresponding ball packing BΓ(K) is maximal. In this
case the ball packing BΓ(K) is said to be optimal.

Our aim is to determine the maximal radius ρ(K) of the balls, and the maximal
density δ(K). The lattice of the considered space groups has a free parameter, we
have to find the densest ball packing for fixed parameters p(Γ), then we have to vary
them to get the optimal ball packing

δ(Γ) = max
K, p(Γ)

(δ(K)). (15)

Let Γ be a fixed generalized Coxeter group. The stabiliser of the possible kernel
points is ΓK = I, i.e. we are looking for the optimal kernel point in a 3-dimensional
region, inside a fundamental domain of Γ which is a prism with a free fibre parameter
p(Γ).

It can be assumed by the homogeneity of H2×R, that the fibre coordinate of
the center of the optimal ball is zero. It is clear that the optimal ball BK has to
touch all faces of the D-V cell to Γ around the kernel point K. Thus the height of
the prism is 2ρ(K), where ρ(K) is the radius of the inscribed circle of the hyperbolic
p-gon A0A1A2, . . . Ap−1. By Theorems 2 and 3, Definitions 10 and 12 and Theorem
4 of Z. Lučić and E. Molnár (cited from [4] as Lemma of V. S. Makarov), we have
determined the data (radii, densities and volumes of optimal balls) of the optimal
simply transitive ball packings to some generalized Coxeter group in the H2×R
space which are summarized in Tables 1-11.

Theorem 4. Among all convex polygons in S2 or in H2 with given angles α1, α2,
. . . αm, (m ≥ 3) there exists up to an isometry respecting the order of angles, exactly
one circumscribing a circle.

Here αi = π
pi

(i = 1, . . . , m) will be the characteristic angles after Definition 4
for the given Coxeter group. The trigonometric formula

cos
αi

2
= cosh r sin

βi

2

determines an angle βi for fixed r in a barycentric rectangular triangle of the m-gon.
Then Σm

i=1βi = 2π determines the optimal radius r of the circle inscribed into the
m-gon. It turns out that r is independent of the cyclic order of αi’s, of course, but
the isomorphism class of Γ depends on that order, in general.

3.2. Multiply transitive ball packings for ”triangle groups”

Similarly to the simply transitive case we have to find a kernel point K ∈ H2×
R and the orbit KΓ for Γ such that the density δ(K) of the corresponding ball
packing BΓ(K) is maximal, but here ΓK 6= I. This ball packing is called BΓ(K)
optimal, too. In this multiply transitive case we are looking for the optimal kernel
point K in different 0- 1- or 2-dimensional regions L: Our aim is to determine the
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Figure 5: Multiply transitive ball packing to H2×R space groups Γ(3,7,2) where K ∈ EB2C2 .
a. Optimal ball with its D-V cell. b. Optimal ball and its D-V cell with parallel ”hyperboloid
planes” in the model

maximal radius ρ(K) of the balls, and the maximal density δ(K). Figure 5.a shows
a fundamental domain (prism) of the space group Γ1

(3,7,2) generated by the four
reflections gi ∈ IsomH2 (i = 1, 2, 3), g4 ∈ 〈1R〉:

1. K is an inner point of the ”side faces”: K ∈ SB1C1C2B2 (Table 12), K ∈
SB0C0C2B2 (Table 13), K ∈ SB0C0C1B1 (Table 14).

2. K is an inner point of the ”edges of the cover faces”: K ∈ EB0B1 , K ∈ EB1B2 ,
K ∈ EB2B0 or K ∈ EC0C1 , K ∈ EC1C2 , K ∈ EC2C0 , but in these cases the
results coincide with the correspondig results of case 1.

3. K is an inner point of the ”side edges”: K ∈ EB0C0 (Table 15), K ∈ EB1C1

(Table 16), K ∈ EB2C2 (Table 17).

4. K lies in the vertices B0, B1, B2, C0, C1, C2, but in these cases we have
obtained the same results as in case 3.

Let Γ be a fixed generalized Coxeter group. The stabiliser of the possible kernel
points is ΓK 6= I. The lattice of a considered space group can have a free parameter
p(Γ), then we have to find the densest ball packing for fixed parameters, and we
have to vary them to get the optimal ball packing.

δ(Γ) = max
K∈L, p(Γ)

(δ(K)) (16)

In this multiply transitive case it is sufficient to consider only problems 1 and 3
It can be assumed by the homogeneity of H2×R, that the fibre coordinate of the
center of the optimal ball is zero. It is clear that the optimal ball BK has to touch all
faces of the D-V cell to Γ around the kernel point K. Thus the height of the prism
is 2ρ(K), where ρ(K) is the radius of the inscribed circle of a hyperbolic triangle.
By Theorems 2 and 3, Definitions 10 and 12 and the projective interpretation of
hyperbolic geometry we have determined the data (radii, densities and volumes of
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optimal balls) of the optimal multiply transitive ball packings to some generalized
Coxeter group in H2×R space. These are summarized in Tables 12-17. In Tables
1-17 we have denoted the space groups (given in Section 1.) by their parameters
(p1, p2, . . . pm).

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 7, 2) ≈ 0.10443046 ≈ 0.00477404 ≈ 0.30558225
(3, 8, 2) ≈ 0.13475670 ≈ 0.01026279 ≈ 0.29090180

...
...

...
...

(3, 12, 2) ≈ 0.17801237 ≈ 0.02367862 ≈ 0.25404325
...

...
...

...
(3, 20, 2) ≈ 0.19698480 ≈ 0.03210037 ≈ 0.22230571

...
...

...
...

(3, p2 →∞, 2) ≈ 0.20703226 ≈ 0.03727721 ≈ 0.17193994

Table 1: Simply transitive cases

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(4, 5, 2) ≈ 0.15950373 ≈ 0.01702698 ≈ 0.33979495
(4, 6, 2) ≈ 0.20074534 ≈ 0.03397751 ≈ 0.32325666

...
...

...
...

(4, 12, 2) ≈ 0.25967637 ≈ 0.07367796 ≈ 0.27094215
...

...
...

...
(4, 20, 2) ≈ 0.27116548 ≈ 0.08393054 ≈ 0.24630642

...
...

...
...

(4, p2 →∞, 2) ≈ 0.27750901 ≈ 0.08998058 ≈ 0.20642001

Table 2: Simply transitive cases
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(p1, p2, p3) ρ V ol(BK(ρ)) δ

(5, 4, 2) ≈ 0.15950373 ≈ 0.01702698 ≈ 0.33979495
(5, 5, 2) ≈ 0.22080679 ≈ 0.04524152 ≈ 0.32609556

...
...

...
...

(5, 12, 2) ≈ 0.29573355 ≈ 0.10897365 ≈ 0.27067550
...

...
...

...
(5, 20, 2) ≈ 0.30511539 ≈ 0.11972233 ≈ 0.24979927

...
...

...
...

(5, p2 →∞, 2) ≈ 0.31034450 ≈ 0.12601089 ≈ 0.21540854

Table 3: Simply transitive cases

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(p1 →∞, p2 →∞, 2) ≈ 0.36949897 0.21324491 ≈ 0.18370271

Table 4: Simply transitive cases

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 4, 3) ≈ 0.21791658 ≈ 0.04348445 ≈ 0.38110542
(3, 5, 3) ≈ 0.26830879 ≈ 0.08129745 ≈ 0.36167909

...
...

...
...

(3, 12, 3) ≈ 0.33362572 ≈ 0.15670690 ≈ 0.29902584
...

...
...

...
(3, 20, 3) ≈ 0.34193509 0.16877298 ≈ 0.27725648

...
...

...
...

(3, p2 →∞, 3) ≈ 0.34657359 ≈ 0.17577239 ≈ 0.24215675

Table 5: Simply transitive cases
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(p1, p2, p3) ρ V ol(BK(ρ)) δ

(4, 3, 3) ≈ 0.21791658 ≈ 0.04348445 ≈ 0.38110542
(4, 4, 3) ≈ 0.30172805 ≈ 0.11576317 ≈ 0.36637522

...
...

...
...

(4, 12, 3) ≈ 0.38650702 ≈ 0.24427719 ≈ 0.30176364
...

...
...

...
(4, 20, 3) ≈ 0.39307307 0.25702692 ≈ 0.28382721

...
...

...
...

(4, p2 →∞, 3) ≈ 0.39675878 ≈ 0.26437631 ≈ 0.25452320

Table 6: Simply transitive cases

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(p1 →∞, p2 →∞, 3) ≈ 0.46359870 0.42338117 ≈ 0.21802221
(p1 →∞, p2 →∞, 4) ≈ 0.49977446 ≈ 0.53165992 ≈ 0.22574530

...
...

...
...

(p1 →∞, p2 →∞, p3 →∞) ≈ 0.54930614 ≈ 0.70836263 ≈ 0.20523967

Table 7: Simply transitive cases

(p1, p2, p3, p4) ρ V ol(BK(ρ)) δ

(4, 4, 4, 5) ≈ 0.27518467 ≈ 0.08773099 ≈ 0.50739820
(3, 4, 5, 5) ≈ 0.15700198 ≈ 0.01623744 ≈ 0.49380312
(4, 4, 4, 6) ≈ 0.34869757 ≈ 0.17904152 ≈ 0.49031615

...
...

...
...

(4, 12, 3, 5) ≈ 0.40164021 ≈ 0.27432610 ≈ 0.40764427
...

...
...

...
(6, 6, 6, 6) ≈ 0.65847895 1.23095533 ≈ 0.44628448

...
...

...
...

(4, 4, 4, p4 →∞) ≈ 0.49110102 ≈ 0.50416883 ≈ 0.32677986
(p1 →∞, p2 →∞,

p3 →∞, p4 →∞)
≈ 0.88137359 ≈ 3.01979277 ≈ 0.27265109

Table 8: Simply transitive cases
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(p1, p2, p3, p4, p5) ρ V ol(BK(ρ)) δ

(3, 3, 4, 4, 4) ≈ 0.36949897 ≈ 0.21324491 ≈ 0.55110814
(3, 3, 3, 4, 5) ≈ 0.28377770 ≈ 0.09623966 ≈ 0.53975411
(4, 4, 4, 4, 4) ≈ 0.62686966 ≈ 1.05919677 ≈ 0.53783557

...
...

...
...

(4, 12, 3, 5, 6) ≈ 0.78351114 ≈ 2.09868039 ≈ 0.45675624
...

...
...

...
(6, 6, 6, 6, 6) ≈ 0.93821462 3.66753885 ≈ 0.46660987

...
...

...
...

(4, 4, 4, 4, p5 →∞) ≈ 0.77149663 ≈ 2.00112887 ≈ 0.41282041
(p1 →∞, p2 →∞,

p3 →∞, p4 →∞, p5 →∞)
≈ 1.12417722 ≈ 6.47089771 ≈ 0.30537159

Table 9: Simply transitive cases

(p1, p2, p3, p4, p5, p6) ρ V ol(BK(ρ)) δ

(3, 3, 3, 3, 3, 4) ≈ 0.38108663 ≈ 0.23407853 ≈ 0.58655570
(3, 3, 3, 3, 4, 4) ≈ 0.53063753 ≈ 0.63771121 ≈ 0.57380916
(4, 4, 4, 4, 4, 4) ≈ 0.88137359 ≈ 3.01979277 ≈ 0.54530219
(4, 4, 4, 4, 4, 5) ≈ 0.91523420 ≈ 3.39501468 ≈ 0.53670651

...
...

...
...

(4, 12, 3, 4, 6, 5) ≈ 0.98663354 ≈ 4.29151405 ≈ 0.48297827
...

...
...

...
(6, 6, 6, 6, 6, 6) ≈ 1.14621583 6.88161777 ≈ 0.47776494

...
...

...
...

(4, 4, 4, 4, 4, p6 →∞) ≈ 0.97848676 ≈ 4.18165765 ≈ 0.45344268
(p1 →∞, p2 →∞,

p3 →∞, p4 →∞,

p5 →∞, p6 →∞)
≈ 1.31695790 ≈ 10.73024209 ≈ 0.32418862

Table 10: Simply transitive cases
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(p1, p2, . . . pm) ρ V ol(BK(ρ)) δ

(3, 3, 3, 3, 3, 3, 3) ≈ 0.54527483 ≈ 0.69267774 ≈ 0.60653681
(4, 4, 4, 4, 4, 4, 4) ≈ 1.07040486 ≈ 5.54276533 ≈ 0.54942358

(3, 3, 3, 3, 3, 3, 3, 3) ≈ 0.76428546 ≈ 1.94411027 ≈ 0.60726281
(4, 4, 4, 4, 4, 4, 4, 4) ≈ 1.22422622 ≈ 8.48710517 ≈ 0.55168102

(3, 3, 3, 3, 3, 3, 3, 3, 3) ≈ 0.92753857 ≈ 3.53909395 ≈ 0.60726779
(4, 4, 4, 4, 4, 4, 4, 4, 4) ≈ 0.98964795 ≈ 4.33267383 ≈ 0.59723962

Table 11: Simply transitive cases

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 7, 2) ≈ 0.13146725 ≈ 0.00952888 ≈ 0.24224986
(3, 8, 2) ≈ 0.16885130 ≈ 0.02020353 ≈ 0.22851997
(4, 5, 2) ≈ 0.22080679 ≈ 0.04524152 ≈ 0.32609556
(4, 6, 2) ≈ 0.27465307 ≈ 0.08722184 ≈ 0.30325794
(5, 5, 2) ≈ 0.31755015 ≈ 0.13503419 ≈ 0.33839314
(3, 4, 3) ≈ 0.31648716 ≈ 0.13367665 ≈ 0.40333958
(3, 5, 3) ≈ 0.38359861 ≈ 0.23876852 ≈ 0.37149369
(4, 4, 3) ≈ 0.45572276 ≈ 0.40197393 ≈ 0.42115169

...
...

...
...

(3, p2 →∞, 2) ≈ 0.25541281 ≈ 0.07009787 ≈ 0.13103989
(4, p2 →∞, 2) ≈ 0.36949897 ≈ 0.21324491 ≈ 0.18370271
(3, p2 →∞, 3) ≈ 0.48121183 ≈ 0.47401773 ≈ 0.23516338
(4, q →∞, 3) ≈ 0.57466052 ≈ 0.81258528 ≈ 0.27005920

...
...

...
...

(p1 →∞, p2 →∞, p3 →∞) ≈ 0.88137359 ≈ 3.01979277 ≈ 0.27265109

Table 12: Multiply transitive cases, K ∈ SB1C1C2B2
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(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 7, 2) ≈ 0.18221438 ≈ 0.02539789 ≈ 0.46585899
(3, 8, 2) ≈ 0.23630516 ≈ 0.05547848 ≈ 0.44838670
(4, 5, 2) ≈ 0.27518467 ≈ 0.08773099 ≈ 0.50739820
(4, 6, 2) ≈ 0.34869757 ≈ 0.17904152 ≈ 0.49031615
(5, 5, 2) ≈ 0.38359861 ≈ 0.23876852 ≈ 0.49532492
(3, 4, 3) ≈ 0.33923144 ≈ 0.16478092 ≈ 0.46385497
(3, 5, 3) ≈ 0.42573116 ≈ 0.32714332 ≈ 0.45862108
(4, 4, 3) ≈ 0.48121183 ≈ 0.47401773 ≈ 0.47032675

...
...

...
...

(3, p2 →∞, 2) ≈ 0.36949897 ≈ 0.21324491 ≈ 0.27555407
(4, p2 →∞, 2) ≈ 0.49110102 ≈ 0.50416883 ≈ 0.32677986
(3, q →∞, 3) ≈ 0.57141510 ≈ 0.79869814 ≈ 0.33368935
(4, q →∞, 3) ≈ 0.65847895 ≈ 1.23095533 ≈ 0.35702759

...
...

...
...

(p1 →∞, p2 →∞, p3 →∞) ≈ 0.88137359 ≈ 3.01979277 ≈ 0.27265109

Table 13: Multiply transitive cases, K ∈ SB0C0C2B2

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 7, 2) ≈ 0.16719759 ≈ 0.01961498 ≈ 0.39210043
(3, 8, 2) ≈ 0.21791658 ≈ 0.04348445 ≈ 0.38110542
(4, 5, 2) ≈ 0.23446232 ≈ 0.05418749 ≈ 0.36782909
(4, 6, 2) ≈ 0.30172805 ≈ 0.11576317 ≈ 0.36637522
(5, 5, 2) ≈ 0.31755015 ≈ 0.13503419 ≈ 0.33839314
(3, 4, 3) ≈ 0.33923144 ≈ 0.16478092 ≈ 0.46385497
(3, 5, 3) ≈ 0.42573116 ≈ 0.32714332 ≈ 0.45862108
(4, 4, 3) ≈ 0.45572276 ≈ 0.40197393 ≈ 0.42115169

...
...

...
...

(3, p2 →∞, 2) ≈ 0.34657359 ≈ 0.17577239 ≈ 0.24215674
(4, p2 →∞, 2) ≈ 0.44068679 ≈ 0.36315860 ≈ 0.26231095
(3, p2 →∞, 3) ≈ 0.57141510 ≈ 0.79869814 ≈ 0.33368935
(4, p2 →∞, 3) ≈ 0.63504553 ≈ 1.10193775 ≈ 0.33140082

...
...

...
...

(p1 →∞, p2 →∞, p3 →∞) ≈ 0.88137359 ≈ 3.01979277 ≈ 0.27265109

Table 14: Multiply transitive cases, K ∈ SB0C0C1B1
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(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 7, 2) ≈ 0.54527483 ≈ 0.69267774 ≈ 0.60653681
(3, 8, 2) ≈ 0.76428546 ≈ 1.94411027 ≈ 0.60726281
(4, 5, 2) ≈ 0.62686966 ≈ 1.05919677 ≈ 0.53783557
(4, 6, 2) ≈ 0.88137359 ≈ 3.01979277 ≈ 0.54530219
(5, 5, 2) ≈ 0.84248208 ≈ 2.62573931 ≈ 0.49603356
(3, 4, 3) ≈ 0.76428546 ≈ 1.94411027 ≈ 0.60726281
(3, 5, 3) ≈ 1.06127506 ≈ 5.39521435 ≈ 0.60682315
(4, 4, 3) ≈ 1.03171853 ≈ 4.93669090 ≈ 0.57115778

...
...

...
...

(3, 2 · 107, 2) ≈ 15.66651295 ≈ 1.93578975 · 108 ≈ 0.29498326
(4, 2 · 107, 2) ≈ 16.00652388 ≈ 2.77505630 · 108 ≈ 0.27349210
(3, 2 · 107, 3) ≈ 16.35966035 ≈ 3.96059077 · 108 ≈ 0.28897958
(4, 2 · 107, 3) ≈ 16.54788653 ≈ 4.80961661 · 108 ≈ 0.27754880

...
...

...
...

(2 · 107, 2 · 107, 2 · 107) ≈ 17.05280712 ≈ 8.09527681 · 108 ≈ 0.18888437

Table 15: Multiply transitive cases, K ∈ EB0C0

(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 7, 2) ≈ 0.24599664 ≈ 0.06260769 ≈ 0.42531231
(3, 8, 2) ≈ 0.31648716 ≈ 0.13367665 ≈ 0.40333958
(4, 5, 2) ≈ 0.38359861 ≈ 0.23876852 ≈ 0.49532492
(4, 6, 2) ≈ 0.48121183 ≈ 0.47401773 ≈ 0.47032675
(5, 5, 2) ≈ 0.53063753 ≈ 0.63771121 ≈ 0.47817430
(3, 4, 3) ≈ 0.64164528 ≈ 1.13728811 ≈ 0.56419031
(3, 5, 3) ≈ 0.78136831 ≈ 2.08104580 ≈ 0.52985372
(4, 4, 3) ≈ 0.88137359 ≈ 3.01979277 ≈ 0.54530219

...
...

...
...

(3, p2 →∞, 2) ≈ 0.48121183 ≈ 0.47401773 ≈ 0.23516338
(4, p2 →∞, 2) ≈ 0.65847895 ≈ 1.23095533 ≈ 0.29752299
(3, p2 →∞, 3) ≈ 0.98664696 ≈ 4.29169668 ≈ 0.34614445
(4, p2 →∞, 3) ≈ 1.13440039 ≈ 6.65916531 ≈ 0.37370900

...
...

...
...

(2 · 107, 2 · 107, 2 · 107) ≈ 17.05280712 ≈ 8.09527681 · 108 ≈ 0.18888437

Table 16: Multiply transitive cases, K ∈ EB1C1
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(p1, p2, p3) ρ V ol(BK(ρ)) δ

(3, 7, 2) ≈ 0.28312815 ≈ 0.09557797 ≈ 0.37609098
(3, 8, 2) ≈ 0.36351992 ≈ 0.20300040 ≈ 0.35550752
(4, 5, 2) ≈ 0.53063753 ≈ 0.63771121 ≈ 0.47817430
(4, 6, 2) ≈ 0.65847895 ≈ 1.23095533 ≈ 0.44628448
(5, 5, 2) ≈ 0.84248208 ≈ 2.62573931 ≈ 0.49603356
(3, 4, 3) ≈ 0.64164528 ≈ 1.13728811 ≈ 0.56419031
(3, 5, 3) ≈ 0.78136831 ≈ 2.08104580 ≈ 0.52985372
(4, 4, 3) ≈ 1.03171853 ≈ 4.93669090 ≈ 0.57115778

...
...

...
...

(3, p2 →∞, 2) ≈ 0.54930614 ≈ 0.70836263 ≈ 0.20523967
(4, p2 →∞, 2) ≈ 0.88137359 ≈ 3.01979277 ≈ 0.27265109
(3, p2 →∞, 3) ≈ 0.98664696 ≈ 4.29169668 ≈ 0.34614445
(4, p2 →∞, 3) ≈ 1.30441812 ≈ 10.40418124 ≈ 0.38083116

...
...

...
...

(2 · 107, 2 · 107, 2 · 107) ≈ 17.05280712 ≈ 8.09527681 · 108 ≈ 0.18888437

Table 17: Multiply transitive cases, K ∈ EB2C2

It is interesting to consider further locally densest (optimal) ball packings in the
3-dimensional Thurston geometries, because important information of the ”crystal
structures” are included by the local optimal ball arrangements. It is timely to rise
the above question for further space groups in H2×R.

In this paper we have mentioned only some problems in discrete geometry of the
H2×R space, but we hope that from these it can be seen that our projective method
suits to study and solve similar problems.
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