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Abstract. We consider a parameter estimation problem for a diffusion with killing, start-
ing at a point in an open and bounded set. The infinitesimal killing rate function depends
on a control variable and parameters. Values of the control variable are known while pa-
rameters have unknown values which have to be estimated from data. The minimum of
three times: the maximum observation time, the first exit time from the open set, and the
killing time, is observed. Instead of the maximum likelihood estimation method we propose
and use the minimum χ2-estimation method that is based on the conditional mean of the
data observed before the maximum observation time is reached, and on the frequency of
data that are equal to the maximum observation time. We prove that the estimator exists
and is consistent and asymptotically normal. The method is illustrated by an example.
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1. Introduction

We consider the following problem. Let X = (Xt, t ≥ 0) be a diffusion in Rd given
by the Itô stochastic differential equation (SDE):

Xt = X0 +
∫ t

0

b(Xs) ds +
∫ t

0

σ(Xs) dWs, t ≥ 0. (1)

Here W = (Wt, t ≥ 0) is the d-dimensional Wiener process, b(x) is a drift function
and σ(x) is a diffusion coefficient function (see [13]). We assume that the diffusion
X is randomly killed with the infinitesimal rate function (t, x) 7→ c(z; t, x, κ) which
depends on an unknown parameter κ and a control variable z (being a function z(s),
0 ≤ s ≤ T ). In other words, there exists a random time ζ, called the killing time,
with the conditional distribution

P(ζ > t | FX) = e−
∫ t
0 c(z;s,Xs,κ) ds, t ≥ 0, (2)
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where FX is a σ-algebra generated by (Xs, s ≥ 0). Let D be an open and bounded
set in Rd such that X initially starts in D, i.e. X0 ∈ D with known distribution. Let
τD = inf{t ≥ 0 : Xt ∈ Rd \D} be the first exit time of X from D and let η be the
minimum of ζ and τD, i.e.

η = ζ ∧ τD. (3)

It is obvious that the distribution of η depends on the parameter κ and the variable
z. Our problem is to estimate the unknown parameter κ by using a sequence of
independent observations of the random variable η resulting from different values of
the control variable z, up to some prescribed deterministic time T > 0. The time
T is called the maximum observation time. Hence we have a parameter estimation
problem which is based on a sequence of censored samples that are observed with
respect to given covariate values.

The method of estimation, we propose and discuss in this paper, belongs to the
class of minimum χ2 estimation methods. It is based on the appropriate comparison
of the following model functionals with the corresponding sample ones: the con-
ditional mean of η observed before T is reached, and the probability of the event
{η ≥ T}. We prove that the estimators exist, and that are consistent and asymp-
totically normal. In this method we use only functionals of η. Let us point out
that functionals of η can be estimated more accurately by numerical methods than
the density function of η. An alternative to the proposed method is the maximum
likelihood method (ML). This method is often used. For its application we need the
density of the variable η. We also compare the proposed method with ML.

The problem we consider here naturally appears up in a problem of search for
a moving object as formulated by Mangel [11]. In Mangle’s approach, the search
problem is segmented into three parts, titled by moving object or target, searcher
and detection. The target is modeled by a diffusion, the searcher is modeled by a
deterministic path and the detection is a random variable depending on points of
the Euclidian space and a parameter which is called the effort. An estimation of
this parameter is the main object of our research.

The paper is organized in the following way. In Section 2, we state and discuss
the conditions on the model given by SDE (1), the infinitesimal killing rate function
(2) and the set D. The statistical structure is defined and the maximum likelihood
estimation method is discussed in Section 3. The χ2-estimation criterion is proposed
and specified, and the main properties of the estimators are stated and proved in
the same section. The method and its application to an estimation of search effort
is illustrated by an example in Section 4.

2. Main assumptions

Let the diffusion X of (1) and the killing time ζ of (2) be defined on a probability
space (Ω,F ,P). The set of all the possible values of the k-dimensional unknown
parameter κ is denoted by K. We assume that K is an open set in Rk with the
closure K̄. Similarly, let Z denote the set of all possible values of the variable z.
The partial differential operator with respect to κ is denoted by ∇κ. We assume the
following:
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(A1) The functions b : Rd → Rd and σ : Rd → Md are locally Lipschitz and have
a linear growth (see [13]). Moreover, there exists a constant C > 0 such that
for any x, |det σ(x)| ≥ C.

(A2) For each z ∈ Z, (t, x, κ) 7→ c(z; t, x, κ) is a nonnegative, measurable and
bounded function on [0, +∞〉 × Rd × K. For each t ≥ 0, x ∈ Rd and z ∈ Z,
c(z; t, x, ·) ∈ C(K̄)∩C1(K). ∇κc(z; ·, ·, ·) is a measurable and bounded function
on [0, +∞〉 × Rd ×K for each z ∈ Z. Moreover, for each κ ∈ K and z ∈ Z,

E[e−
∫ +∞
0 c(z;s,Xs,κ) ds] < 1. (4)

(A3) The open, bounded and connected set D is a Lipshitz domain (see e.g. [1]).

Due to (A1), the diffusion X = (Xt, t ≥ 0) in Rd exists, it is continuous, pathwise
unique and it is a strong solution to SDE (1) (see [13]). Assumption (A2) enables
a correct definition of ζ by using (2) and ensures that the probability of the event
{ζ = +∞} is strictly less then 1.

For given z ∈ Z and κ ∈ K, let us denote by

F (z)(t|κ) := 1− P(z)
κ (η > t), t ≥ 0 (5)

the cumulative distribution function (cdf) of ζ §. The absolute continuity and strict
monotonicity of (5) is granted by (A3) as proved in [7]. On the other hand, since
τD is a stopping time, it follows from (2) that

P(z)
κ (η > t) = E[1{τD>t} · e−

∫ t
0 c(z;s,Xs,κ) ds]. (6)

Let E(z)
κ [η | η < T ] and Var(z)

κ [η | η < T ] denote the conditional expectation and
variance of η respectively, given {η < T}.
Theorem 1. Let the conditions (A1)− (A3) be satisfied. Then for any fixed T > 0
and z ∈ Z the following holds:

(i) κ 7→ F (z)(T |κ) is continuous on K̄, continuously differentiable on K and

∇κF (z)(T |κ) = E[1{τD>T}

∫ T

0

∇κc(s,Xs, κ, z)ds e−
∫ T
0 c(z;s,Xs,κ) ds]. (7)

(ii) κ 7→ E(z)
κ [η | η < T ] is continuous on K̄ and continuously differentiable on K.

(iii) κ 7→ Var(z)
κ [η | η < T ] is strictly positive and continuous on K̄.

Proof. Equation (7), and the statements about the continuity and differentiability
of both, (5) and (7), with respect to κ, follow directly from (A2) and (6) by the
dominated convergence theorem. Hence the statement (i) follows. By using (6),
the Fubini theorem, and then the dominated convergence theorem one can conclude
that the statement (ii) and the continuity of κ 7→ Var(z)

κ [η | η < T ] follow from (A2)
and (i). The strict positivity of the conditional variance follows from the fact that
the cdf (5) is a strictly increasing function.

§To emphasize that the distribution of η depends on κ and z, the probability of event {η > t} is

denoted by P(z)
κ (η > t) and the expectation and variance with respect to P(z)

κ are denoted by E(z)
κ

and Var
(z)
κ , respectively.
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3. Estimation methods

Let Z = {z1, z2, . . . , zl} consist of l different values of the control variable z. The
data set consists of those outcomes of the random variable η which are recorded up
to the maximum observational time T . Otherwise, the value of T is recorded. In
other words, we record outcomes of the censored random variable ηT = η ∧ T . The
cumulative distribution function of ηT (for given κ and z) has the form

F
(z)
T (t|κ) = 1{t<T}F (z)(t|κ) + 1{t≥T}, t ∈ R, (8)

where F (z)(·|κ) is the cdf of η given in (5). Thus the family of cdfs

{F
(zi)
T (·|κ) : i = 1, 2, . . . , l; κ ∈ K}, (9)

is the statistical structure of ηT . Let

ηT
i1, η

T
i2, . . . , η

T
ini

(10)

be a random sample of size ni from the distribution with cdf F
(zi)
T (·|κ). A random

sample from (9) (of size
∑l

i=1 ni) consists of independent samples (10) for i =
1, 2, . . . , l.

3.1. Maximum likelihood estimation

Let f (z)(·|κ) be a density function of cdf F (z)(·|κ). Then the function

t 7→ f
(z)
T (t|κ) = 1{t<T}f (z)(t|κ) + 1{t≥T}(1− F (z)(T |κ)) (11)

is the probability density function (pdf) of F
(z)
T (·|κ) with respect to the measure

consisting of the Lebesgue measure on 〈−∞, T 〉 and the Dirac measure at T (see
[9]). Let I

(i)
ni be the number of values in the sample (10) equal to T (i.e. the number

of censored values), 1 ≤ i ≤ l. The log-likelihood function (LLF) for (9) has the
form

`(κ) =
l∑

i=1


 ∑

ηT
ij<T

log f (zi)(ηT
ij |κ) + I(i)

ni
log(1− F (zi)(T |κ))


 .

The corresponding Fisher information matrix is equal to: ¶

I(κ) =
l∑

i=1

(∫ T

0

∇τ
κ∇κf (zi)(t|κ)
f (zi)(t|κ)

dt +
∇τ

κ∇κF (zi)(T |κ)
1− F (zi)(T |κ)

)
. (12)

If the maximum likelihood estimator (MLE) exists, then it has the usual good prop-
erties such as the consistency, asymptotic efficiency and normality. More precisely,
let us assume that (A4) holds (see the next subsection) and additionally that the

¶∇τ
κ∇κg denotes matrix (∇κg)τ · ∇κg.
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killing rate function c is two-times differentiable with respect to κ and that the sec-
ond derivative ∇2

κc has the same properties as assumed for ∇κc by (A2). Then by
using similar arguments as in the proof of Theorem 1 it can be proved that model
(9) is regular enough so that MLE has the mentioned asymptotic properties by e.g.
Theorems 17 and 18 in [6]. The proof is based on the following representation of
the density of η that is obtained from (6) by using the Markov property and the
dominated convergence theorem:

f (z)(t|κ) = E[1{τD>t}(c(z; t,Xt, κ) + g(Xt, 0+))e−
∫ t
0 c(z;s,Xs,κ) ds].

Here g(x, ·) is the density of τD in case X0 = x ∈ D.
In order to solve the likelihood estimation problem, the density functions f (z)(·|κ)

must be available. Since f (z)(·|κ) could be obtained in a closed form only in few
cases, it is necessary to calculate it numerically. Two possibilities are at our disposal:
distribution functions F (z)(·|κ) could be estimated either by a Monte Carlo method
or by using a deterministic numerical method that consists of solving an appropriate
initial value problem and then by applying an appropriate integration formula to
the obtained solution. In either cases, in order to estimate f (z)(t|κ), the numerical
differentiation with respect to t must be used. Precisely, let 0 = t0 < t1 < · · · <
tR = T be a subdivision of the time interval [0, T ], and let

Nir = #{j : ηT
ij ∈ [tr−1, tr〉},

be frequencies of the intervals [tr−1, tr〉, r = 1, . . . , R, with respect to the data (10),
for i = 1, 2,..., l. Note that

∑R
r=1 Nir = ni − I

(i)
ni for each i. Then the criterion

function for estimating the parameter κ, that is based on such an approximation,
has the form:

`R(κ) =
l∑

i=1

(
R∑

r=1

Nir log ∆rF
i + I(i)

ni
log(1− F (zi)(T |κ))

)
, (13)

where ∆rF
i ≡ F (zi)(tr|κ)− F (zi)(tr−1|κ) for any i and r. A point of the maximum

of the function `R, whenever it exists, will be called an approximate MLE. When
the lengths |tr−tr−1| of some of the intervals [tr−1, tr〉 with Nir 6= 0, r = 1, 2, . . . , R,
are near zero, an instability of the numerical differentiation implies an instability of
the criterion function `R(κ).

On the other hand, the function κ 7→ `R(κ) of (13) is actually the exact log-
likelihood function for the parameter κ with respect to the multinomial statistical
model which is based on the interval frequencies: ({Nir : r = 1, . . . , R}∪{I(i)

ni }, i =
1, . . . , l). The corresponding Fisher information matrix is defined by expression:

IR(κ) =
l∑

i=1

(
R∑

r=1

∇τ
κ∇κ∆rF

i

∆rF i
+
∇τ

κ∇κF (zi)(T |κ)
1− F (zi)(T |κ)

)
. (14)

It is obvious that matrix (14) is an approximation of the information matrix I(κ) of
the model (9).
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In the multinomial model the matrix IR(κ) of (14) is the inverse of the asymptotic
covariance matrices of both estimators of κ, the first one being the approximate MLE,
and the second one being the minimum χ2-estimator based on Pearson’s χ2-criterion
function:

Hn(κ) =
l∑

i=1

(
R∑

r=1

(Nir − ni∆rF
i)2

ni∆rF i
+

(I(i)
ni − ni(1− F (zi)(T |κ)))2

ni(1− F (zi)(T |κ))

)
. (15)

More precisely, according to Ferguson in [6] (Section 23), if some regularity con-
ditions are satisfied (see Remark 1 in the next subsection), the mentioned two es-
timators have the same asymptotic distributions. Hence, we can say that these
estimators are asymptotically nearly efficient. Note that if the lengths of the subdi-
vision intervals are not small, both estimating functions, `R of (13) and Hn of (15),
are stable in the previously described sense. In this case, both estimators are ac-
ceptable choices for estimating the parameter κ by using only cdfs F (z)(·|κ), z ∈ Z.
However, in the case when the data set (10) is relatively small for each value of the
control variable (in a way that the number of subdivision intervals R is small), an
alternative minimum χ2-estimation method could be more efficient. The purpose of
this paper is to propose and analyze such an alternative. Moreover, the proposed
method solves the parametric estimation problem based on a censored sample when
the data are summarized in the following way. For each value of the control variable
we are supplied with the sample conditional mean of the non-censored searching
times and the number of the censored searching times.

3.2. Proposed minimum χ2-estimation method

Let the following two statistics be available for each i:

X(i)
ni

:=

∑
ηT

ij<T ηT
ij

ni − I
(i)
ni

· 1{I(i)
ni

<ni}, Y (i)
ni

:=
I
(i)
ni

ni
, (16)

let n := min1≤i≤l ni and let Zn be a 2l-dimensional statistic defined by

Zn := (X(1)
n1

, Y (1)
n1

, X(2)
n2

, Y (2)
n2

, . . . , X(l)
nl

, Y (l)
nl

)τ . (17)

Then by the strong law of large numbers (SLLN) (see [6]) we have:

Zn
a.s.−→ A(κ), n → +∞, (18)

where

A(κ) = (E(z1)
κ [η | η < T ],P(z1)

κ (η ≥ T ), . . . ,E(zl)
κ [η | η < T ],P(zl)

κ (η ≥ T ))τ . (19)

Without loos of generality, we can assume n = n1 = · · · = nl, i.e. that the
subsamples (10) have the same sizes.

Theorem 2. For κ ∈ K, the following asymptotics is valid:

√
n(Zn −A(κ)) D→ N(0,Σ(κ)), n → +∞,
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where Σ(κ) is a diagonal matrix of the form:

Σ(κ) = diag

(
Var(z1)

κ [η | η < T ]

P(z1)
κ (η < T )

,P(z1)
κ (η < T )P(z1)

κ (η ≥ T ), . . .

. . . ,
Var(zl)

κ [η | η < T ]

P(zl)
κ (η < T )

,P(zl)
κ (η < T )P(zl)

κ (η ≥ T )

)
. (20)

Proof. Because the samples (10) for i = 1, 2, . . . , l are independent, it is sufficient to
prove the theorem for l = 1. In this case the statement of the theorem is equivalent
to the following statement (see [6]):

(∀v ∈ R2) (
√

n(Zn −A(κ)) | v) D→ N(0, (Σ(κ)v | v)), n → +∞. (21)

Let In ≡ I
(1)
n , Xn ≡ X

(1)
n , Yn ≡ Y

(1)
n , ηT

j ≡ ηT
ij (1 ≤ j ≤ n) and e ≡ E(z1)

κ [η | η < T ],

v ≡ Var(z1)
κ [η | η < T ], p ≡ P(z1)

κ (η < T ), q = 1 − p. Let v = (α, β)τ be any vector
in R2. Then for n ∈ N such that In < n, we have:

(
√

n(Zn −A(κ)) | v) = α
√

n(Xn − e) +
√

nβ(Yn − q)

=
1

1− In

n

(
1√
n

n∑

j=1

(
α1 〈0,T 〉(ηT

j )(ηT
j − e) + βp(1{T}(ηT

j )− q)
)

− 1
1− In

n

β√
n

(In − nq)(Yn − q)). (22)

Since Var[α1 〈0,T 〉(ηT )(ηT − e)+βp(1{T}(ηT )− q)] = α2vp+β2p3q < +∞, it follows
that

1√
n

n∑

j=1

(
α1 〈0,T 〉(ηT

j )(ηT
j − e) + βp(1{T}(ηT

j )− q)
) D→ N(0, α2vp + β2p3q) (23)

by the central limit theorem (CLT) (see [6]). In addition, limn In/n = limn Yn = q
a.s. by SLLN, and the random variables (In−nq)/

√
n are bounded in probability by

CLT. These facts imply that the random variable given by expression (22) converges
to 0 in probability. Finally, SLLN and statement (23) imply (21).

In accordance with Theorem 1, the functions κ 7→ A(κ) and κ 7→ Σ(κ) can be
continuously extended to K̄, and the matrix Σ(κ) is regular for each κ ∈ K̄.

Now, we can define the minimum χ2-criterion function. Let M(κ) be the matrix
inverse of Σ(κ), κ ∈ K̄. Let for any κ ∈ K̄ the χ2-function be defined by the
expression

Qn(κ) := n(M(κ)(Zn −A(κ)) | Zn −A(κ)) (24)

=
l∑

i=1

ni

(
P(zi)

κ (η < T )
(X(zi)

n −E(zi)
κ [η | η < T ])2

Var(zi)
κ [η | η < T ]

+
(Y (zi)

n −P(zi)
κ (η ≥ T ))2

P(zi)
κ (η < T )P(zi)

κ (η ≥ T )

)
.
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Then a sequence of estimators (κ̂n, n ∈ N) such that

Qn(κ̂n)− inf
κ∈K

Qn(κ) P→ 0, n → +∞, (25)

is called a sequence of minimum χ2-estimators.
To prove the existence, consistency and asymptotic normality of the minimum

χ2-estimators with respect to (24) we need some technical assumptions. Let Ȧ(κ)
be the derivative of A(κ) with respect to κ.

(A4) The parameter space K is a relatively compact set in Rk.

(A5) The function κ 7→ A(κ) is one-to-one on K̄ and for any κ ∈ K the rank of
Ȧ(κ) is equal to k.

It is implicitly assumed in (A5) that the number l of values of the control variable
satisfies the condition 2l ≥ k.

Theorem 3. Let the assumptions (A4) and (A5) be satisfied and let κ0 ∈ K be the
true value of the parameter.

(i) For each sequence of the minimum χ2-estimators (κ̂n, n ∈ N) with respect to the
χ2-function (24) the following holds when n → +∞:

κ̂n
P−→ κ0, (26)

√
n(κ̂n − κ0)

D−→ N(0, (Ȧ(κ0)τM(κ0)Ȧ(κ0))−1), (27)

Qn(κ̂n) D−→ χ2(2l − k). (28)

(ii) There exists a sequence of estimators (κ̂n, n ∈ N) such that a.s.

(∃N ∈ N)(∀n ≥ N) Qn(κ̂n) = min
κ∈K

Qn(κ). (29)

The proof of Theorem 3 is based on the following lemma.

Lemma 1. If the conditions (A4) and (A5) hold, then the function κ 7→ A(κ) is
bicontinuous in K̄ (see [6]) and all the diagonal entries of the function κ 7→ M(κ)
are bounded from below, and away from 0, uniformly with respect to κ ∈ K̄.

Proof. The conditions (A4) and (A5) imply that the function κ 7→ A(κ) is an
immersion and one-to-one on the compact set K̄. Hence, by Theorem 4.5.3 in [3], it
is a homeomorphism onto its image, implying the bicontinuity of A : K → R2l. The
second statement of Lemma is a consequence of the positivity and continuity of the
diagonal entries on the compact set K̄.

Proof of Theorem 3. The statements of part (i) are direct consequences of The-
orem 2 and Lemma 1 by Theorems 23 and 24 in [6].

Let us prove statement (ii). Since K̄ is a compact set and the function Qn de-
pends continuously on both, the statistic Zn and the parameter κ, there exists a
random variable κ̃n with values in K̄ such that Qn(κ̃n) = minκ∈K̄Qn(κ) by e.g.
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Theorem 6.10 in [14]. Now, in order to finish the proof of (ii) it is sufficient to prove
that a.s. there exists N ∈ N such that for all n ≥ N , κ̃n ∈ K. Let us assume that
this is not true. Then there exists a subsequence (κ̃nm

) of (κ̃n) at the border ∂K
of K that converges to some point κ∗ ∈ ∂K on an event of the positive probability.
For any κ ∈ K̄, limn(Qn(κ)/n) = (M(κ)(A(κ0)−A(κ))|(A(κ0)−A(κ))) =: Q0(κ)
a.s. by SLLN. Q0(κ) = 0 iff κ = κ0 by (A5). Hence ε := inf Q0|∂K > 0 since
Q0 is continuous and ∂K is a compact set. By the assumption and SLLN it
follows that limm(Qnm(κ̃nm)/nm) = Q0(κ∗) on an event of positive probability,
since A and M are continuous on K̄. Moreover, on the same event we have that
Qnm(κ0)/nm ≥ minκ∈K̄Qnm(κ)/nm = Qnm(κ̃nm)/nm by the assumption. Hence
0 = limm Qnm(κ0)/nm ≥ limm Qnm(κ̃nm)/nm = Q0(κ∗) ≥ ε, which is a contradic-
tion.

Remark 1. If we assume that the vector function

κ 7→ (∆1F
1, ∆2F

1, .., ∆RF 1, 1−F (z1)(T |κ), . . . , ∆1F
l, ∆2F

l, .., ∆RF l, 1−F (zl)(T |κ))τ

satisfies Assumption (A5), then the statements of Theorem 3 hold for a sequence of
the minimum χ2-estimators obtained by the Pearson’s χ2-criterion function (15).

In order to compare the matrix Ȧ(κ)τM(κ)Ȧ(κ) and the information matrix I(κ)
of (12) we define the following objects. For a k-dimensional vector v, the density
f (zi)(t|κ) and the function

g(zi)(t|κ) = (∇κ log f (zi)(t|κ)|v)

we consider f i(t) ≡ f (zi)(t|κ) and gi(t) ≡ g(zi)(t|κ), i = 1, 2, . . . , l. Then the
inequality

(I(κ)v|v)− (Ȧ(κ)τM(κ)Ȧ(κ)v|v)

=
l∑

i=1

∫ T

0
f idt

∫ T

0
tf idt

∫ T

0
gif idt∫ T

0
tf idt

∫ T

0
t2f idt

∫ T

0
tgif idt∫ T

0
gif idt

∫ T

0
tgif idt

∫ T

0
(gi)2f idt

·
∫ T

0
f idt

∫ T

0
tf idt∫ T

0
tf idt

∫ T

0
t2f idt

−1

≥ 0 (30)

with an arbitrary v has the meaning I(κ) ≥ Ȧ(κ)τM(κ)Ȧ(κ). From Theorem 5.1
of [12] we get that (Ȧ(κ)τM(κ)Ȧ(κ))−1 ≥ (I(κ))−1, implying that the proposed
method of estimation is not generally asymptotically efficient. In cases that the
densities f (z)(·|κ) satisfy the equations of the form ∇κ log f (z) = a + bt, for some
vectors a = a(κ, z) and b = b(κ, z), inequality (30) turns into an equation meaning
that the method is asymptotically efficient. For instance, this is fulfilled when the
function c from Expression (2) does not depend on state x and time t, and τD = +∞
a.s.

When we have to estimate the statistical structure (9) numerically, it is more
appropriate to compare Ȧ(κ)τM(κ)Ȧ(κ) with the approximate information matrix
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IR(κ) of (14). Let v be any k-dimensional non-null vector. Then

(IR(κ)v|v)− (Ȧ(κ)τM(κ)Ȧ(κ)v|v)

=
l∑

i=1

1
F i




∑
r<s




√
∆sF i

∆rF i
(∇κ∆rF

i|v)−
√

∆rF i

∆sF i
(∇κ∆sF

i|v)




2

−
∫ T

0
f idt

∫ T

0
tf idt∫ T

0
tf idt

∫ T

0
t2f idt

−1

·
∫ T

0
f idt

∫ T

0
tf idt∫ T

0
gif idt

∫ T

0
tgif idt

2)

by using the same notations as in (14) and (30). If there exists i such that v is not
orthogonal to ∇κ log f i(t) for all t ∈ [0, T ], then for R = 1 we have (IR(κ)v|v) −
(Ȧ(κ)τM(κ)Ȧ(κ)v|v) < 0, impying (Ȧ(κ)τM(κ)Ȧ(κ))−1 < (I1(κ))−1. Therefore,
the proposed method is more efficient than the approximate maximum likelihood
method when R = 1. We can expect that the same result holds when R (i.e.
the number of points in time interval subdivision) is small. This does not have
to be the case for larger R because IR(κ) → I(κ) when R → ∞ in a way that
supr(tr − tr−1) → 0.

4. Example

Let a moving object be modeled by the two-dimensional scaled Brownian motion

Xt = X0 + σWt, t > 0, (31)

with σ2 = 0.5 and the initial position X0 = x0 = (0.5, 0.5). We consider this process
until its first exit time from the open square D = 〈0, 1〉 × 〈0, 1〉. A searcher tries
to detect the target Xt by using one of five different paths zi (i = 1, 2, . . . , 5) in D,
defined by

zi(t) =

{
xi0 + tv

(1)
i , 0 ≤ t ≤ αT,

zi(αT ) + (t− αT )v(2)
i , αT < t ≤ T,

t ≥ 0,

where α = 13/24. The initial positions xi0 and the velocities v
(1)
i and v

(2)
i (i =

1, 2, . . . , 5) are illustrated in Figure 1. The detection time is modeled by the killing
time ζ with the infinitesimal killing rate (the rate function of detection) equal to:

c(z; t, x, κ) = 10κ1{|x−z(t)|<√0.025}.

This function depends on one-dimensional parameter κ which is called the search
effort. We assume that the value of the parameter κ belongs to the interval K =
〈0.25, 1.75〉. The maximum observation (or search) time is T = 1.2.

In the example of this section the diffusion tensor is constant, drift is omitted,
and the domain is a square. However, the function c is not a continuous function of
t, thus supplying the example with an essential property of the proposed method.

Obviously, the model of the example satisfies Assumptions (A1), (A3), and (A4).
Regarding Assumption (A2) the measurability, continuity and differentiability are



Estimation of killing rate parameter 181

Figure 1: The initial positions (a bullet) and the velocity directions of zi, i = 1, 2, . . . , 5, over
D = 〈0, 1〉 × 〈0, 1〉

also obvious. It remains to prove inequality (4) of Assumption (A2) for each κ ∈ K
and i = 1, . . . , 5. Let ε =

√
0.025. It turns out that (4) follows from the statement

that for any t > 0, P(|Xt−zi(t)| < ε) > 0, being a consequence of the fact that X is a
Brownian motion. Moreover, since for each i = 1, . . . , 5, the function κ 7→ F (zi)(T |κ)
is strictly increasing and differentiable on the interval K, the model also satisfies
Assumption (A5). The strict monotonicity of F (zi)(T |·) is a consequence of the
strict positivity of ∂

∂κF (zi)(T |κ) which can be proved by analyzing Expression (7)
from Theorem 1. More precisely, if we assume that ∂

∂κF (z)(T |κ) = 0 for some κ and
z = zi, then it follows from (7) that

0 = E[1{τD>T}

∫ T

0

1{|Xt−z(t)|<ε} dt] =
∫ T

0

P(τD > T, |Xt − z(t)| < ε) dt. (32)

On the other hand, let [t0, t1] ⊂ [0, T ] be such an interval that t0 < t1 and the balls
K(z(t), ε) ⊂ D for all t ∈ [t0, t1], and let z0 be such a continuous function that
z0(0) = x0, z0|[t0,t1] = z|[t0,t1] and K(z0(t), ε) ⊂ D for all t ∈ [0, T ]. Notice that z
is continuous. By the support theorem (see Theorem I.(6.6) in [1]) there exists a
constant c0 > 0 such that P(sup0≤t≤T |Xt − z0(t)| < ε) > c0. This implies that

∫ T

0

P(τD > T, |Xt − z(t)| < ε) dt ≥
∫ t1

t0

P( sup
0≤t≤T

|Xt − z0(t)| < ε) > c0(t1 − t0) > 0

which contradicts (32).
Since the statistical structure (9) of this example cannot be obtained in a closed

form, we have to estimate it numerically. For given zi and κ, the process obtained by
killing X at the detection time ζ, up to the first exit time τD from D, has a family of
one-dimensional pdfs that are denoted by p(t, ·), t ≥ 0. The function (t, x) 7→ p(t, x)
is a solution of the initial value problem for the 2nd-order parabolic system:

(
∂

∂t
− σ2

2
∆ + c(zi; ·, ·, κ)

)
p(t, x) = 0, t > 0, x ∈ D,

p(t, x) = 0, t > 0, x ∈ ∂D,
p(0, x) = δx0(x).

(33)

Then F (zi)(t|κ) = 1 − ∫
D

p(t, x) dx (see [7]). Numerical solutions to p(t, x) are
obtained by using the numerical procedure described in [10]. First, the problem
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(33) is approximated on a grid by an ODE. We use homogenous and rectangular
grids in D defined by the grid-steps ∆x1 = ∆x2. The refinement of grid-steps and
time-steps is stopped at ∆x1 = ∆x2 = 0.0125 and ∆t = 1.25 · 10−4. For this
value of grid-step the first four digits of numerically evaluated E(zi)

κ [η|η < T ] were
unchanged when compared to the values obtained in the previous approximation.
The obtained numerical solutions to (33) are used for numerical approximations of
the cdf F (zi)(·|κ), and its functionals E(zi)

κ [η|η < T ] and Var(zi)
κ [η|η < T ].

A numerical approximation of the density function of η can be obtained by
a numerical differentiation. In the case of a one-dimensional searching problem,
numerical differentiation can be easily carried out and results illustrated. For this
purpose we consider the set D = 〈0, 1〉 ⊂ R, a scaled Brownian motion in R starting
at x = 0.5, and an infinitesimal killing rate defined as in the two-dimensional case
in terms of the indicator of an interval. Only one path t 7→ z(t) is considered. The
corresponding graphs of cdf and pdf of η are illustrated in Figure 2. The figure
demonstrates an instability of the process of numerical differentiation. Therefore,
in the case analyzed here the maximum likelihood method of estimation can be
inappropriate.

Figure 2: Plot of estimated pdf (solid line) and cdf (dotted line) of η for κ = 1 and one-dimensional
search

Samples of the data (10) for the example are obtained by simulations. Outcomes
of both random variables, ζ and τD, depend on the sample paths of the diffusion
X until the observation time T . The simulation of the killing time ζ is based on
the fact that ζ ≤ t if and only if

∫ t

0
c(z; s,Xs, κ) ds ≥ ξ, where ξ is an exponentially

distributed random variable with the expectation equal to 1, and independent of X
(see e.g. [2]). The diffusion X is approximated by a process with discrete times,
which is denoted by X∆ = (X∆

k ; k = 0, 1, . . .K) and which is obtained by applying
the Euler scheme to (31) with the time increment ∆ = T/K = 0.00125 (see e.g.
[8]). The paths of X are approximated by the paths of this time-discrete process.
Thus, an outcome of ζ is approximated by the first discrete time tk = k∆ ∈ [0, T ],
which satisfies the condition ∆

∑k
i=0 c(z; i∆, X∆

i , κ) ≥ ξ. An outcome of τD is
approximated by the first discrete time tk = k∆ ∈ [0, T ] for which X∆

k /∈ D. We
choose κ = 1 for the true value of the parameter.
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n ˆstd[κ̂n]
ˆbias[κ̂n]

(95% CI)
q̂.025

(95% CI)
q̂.975

(95% CI)

20 0.23 −0.029
(−0.043,−0.014)

−0.4000
(−0.4250,−0.3875)

0.5000
(0.5000, 0.5000)

50 0.16 −0.005
(−0.015, 0.005)

−0.2625
(−0.2875,−0.2625)

0.3500
(0.3125, 0.4000)

100 0.12
−0.004

(−0.011, 0.003)
−0.2000

(−0.2125,−0.1875)
0.2375

(0.2250, 0.2875)

1000 0.04
0.002

(−0.001, 0.004)
−0.0625

(−0.0750,−0.0625)
0.0750

(0.0750, 0.0875)

Table 1: Monte Carlo estimates of the distribution of κ̂n for κ = 1. The bias bias[κ̂n], the standard
deviation std[κ̂n] and the quantiles q.025 and q.975 of κ̂n − κ, are estimated. The sampling 95%
confidence intervals of the bias and the quantiles are also calculated
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Figure 3: Histograms (A1-4) and normal QQ-plots (B1-4) of the simulated distributions of κ̂n − κ
for κ = 1 and n = 20 (A1, B1); n = 50 (A2, B2); n = 100 (A3, B3); n = 1000 (A4, B4)
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In order to obtain an estimate of κ̂n the χ2-function (24) is minimized over a
discrete set {0.25 + j · 0.0125 : j = 0, 1, . . . , 120} ⊂ K̄ for the given sample of length
5n from (9).

n = 20
κ̂n

ˆstd[κ̂∗n] ˆbias[κ̂∗n] q̂∗.025 q̂∗.975 95% CI for κ
0.7375 0.17 −0.014 −0.2375‡ 0.3750‡ (0.3625, 0.9750)?

1.3000 0.25 −0.105† −0.5750‡ 0.2000‡ (1.1000, 1.8750)?

1.0875 0.25 −0.045‡ −0.4500† 0.4125‡ (0.6750, 1.5375)
0.8125 0.19 −0.019 −0.3125‡ 0.4625‡ (0.3500, 1.1250)
0.8375 0.20 −0.017 −0.3250‡ 0.5000 (0.3375, 1.1625)

n = 50
κ̂n

ˆstd[κ̂∗n] ˆbias[κ̂∗n] q̂∗.025 q̂∗.975 95% CI for κ
0.8625 0.13 −0.011 −0.2375† 0.2875† (0.5750, 1.1000)
0.8000 0.12 −0.011 −0.2125‡ 0.2500‡ (0.5500, 1.0125)
0.8500 0.13 0.002 −0.2125‡ 0.3125 (0.5375, 1.0625)
0.7750 0.11 −0.003 −0.1875‡ 0.2500‡ (0.5250, 0.9625)?

0.9750 0.17 −0.003 −0.2750 0.3875 (0.5875, 1.2500)
n = 100

κ̂n
ˆstd[κ̂∗n] ˆbias[κ̂∗n] q̂∗.025 q̂∗.975 95% CI for κ

0.8750 0.09 −0.000 −0.1625‡ 0.2125‡ (0.6600, 1.0375)
1.0375 0.12 −0.001 −0.2125 0.2750 (0.7625, 1.2500)
0.9500 0.10 −0.005 −0.1875 0.2000† (0.7500, 1.1375)
1.2250 0.14 −0.020 −0.2750‡ 0.2750 (0.9500, 1.5000)

n = 1000
κ̂n

ˆstd[κ̂∗n] ˆbias[κ̂∗n] q̂∗.025 q̂∗.975 95% CI for κ
0.9875 0.04 0.002 −0.0625 0.0750 (0.9125, 1.0500)
0.9750 0.03 0.001 −0.0625 0.0750 (0.9000, 1.0375)
1.0375 0.04 0.002 −0.0625 0.0750 (0.9500, 1.1000)
0.9625 0.04 0.004 −0.0625 0.0750 (0.8875, 1.0250)

Table 2: Monte Carlo estimates of the bootstrap distribution of κ̂n − κ. The numbers marked by †
are not in the corresponding CI from Table 1; the same holds for the numbers marked by ‡ and,
in addition, their sampling CI and the corresponding CI from Table 1 have an empty intersection.
The CIs marked by ? do not contain the true value κ = 1

The distribution of κ̂n is estimated by Monte Carlo methods. Precisely, for n =
20, 50, 100 and 1000 we simulate samples of κ̂n − κ of length M = 1001 by using
the simulated samples (10) with the true value of the parameter κ = 1. Their
histograms are presented in Figure 3. From such simulated data we estimated the
bias, the standard deviation of κ̂n, as well as the 0.025 and the 0.975 quantiles of
κ̂n − κ. The results are presented in Table 1. In order to get an insight into the
speed of convergence of the estimators κ̂n to the normal distribution, we show the
normal QQ-plots of the simulated samples in Figure 3.

Since the true value of the parameter κ is generally unknown, the distribution
of κ̂n is usually approximated by the bootstrap methods. For n = 20, 50, 100 and
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1000 we chose several estimates κ̂n of the unknown parameter. The estimates are
obtained from independently simulated samples of the model (9) for κ = 1. For
each chosen estimate we simulate a bootstrap sample of κ̂n − κ of length M = 1001
by using the parametric bootstrap method (see [5]). From such simulated data we
estimated approximations to the bias and the standard deviation of κ̂n, as well as
the 95% confidence intervals (CI) of κ. Some of the results are presented in Table 2.
From the comparison of results in Table 1 and Table 2 the following can be drawn.
The bootstrap was satisfactory in estimating the standard deviation and the bias of
κ̂n for each chosen n. The bootstrap was also satisfactory in estimating the CI of κ
for n = 50, 100 and 1000.

The sensitivity of the proposed minimum χ2-estimation method with respect to
the applied numerical method is discussed in [4].
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