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Abstract. We deduce an explicit representation for the coefficients in a finite expansion
of a certain class of generalized hypergeometric functions that contain multiple pairs of
numeratorial and denominatorial parameters differing by positive integers. The expansion
alluded to is given in terms of these coefficients and hypergeometric functions of lower order.
Applications to Euler and Kummer-type transformations of a subclass of the generalized
hypergeometric functions mentioned above together with an extension of the Karlsson-
Minton summation formula are provided.
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1. Introduction

In [7], the authors have deduced transformation formulas of Euler and Kummer-type
respectively for the generalized hypergeometric functions r+2Fr+1(x) and r+1Fr+1(x),
where r pairs of numeratorial and denominatorial parameters differ by positive inte-
gers. In addition, in [5, 7], certain quadratic transformations for the former function
as well as a generalization of the Karlsson-Minton summation theorem [3, 10] have
been derived. All of the transformations mentioned above are extensions of previous
results deduced in [4, 8, 6] and the latter extended summation formula [9] has been
more efficiently derived in [7] in a simpler form.

In the sequel we denote sequences a1, . . . , ap simply by (ap) and define the
Pochhamer symbol, or shifted factorial, (α)n for complex numbers α and integers n
(positive, negative and zero) by

(α)n ≡ Γ(α + n)
Γ(α)

,

where Γ(α) is the gamma function. Furthermore, we define products of Pochhammer
symbols by

((ap))n ≡ (a1)n . . . (ap)n,
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where when p = 0 the product is empty and reduces to unity. We shall adopt the
notation {n

k} for the Stirling numbers of the second kind as employed by Graham et
al. [2, Section 6]. Recall that Stirling numbers of the second kind {n

k} represent the
number of ways to partition n objects into k nonempty subsets. Thus {0

0} ≡ 1 and
{n
0} = 0 when integer n > 0.

With this notation all of the results alluded to above are consequences of the
following theorem whose proof is found in [7, Lemma 4]. This theorem enables
an r+sFr+1(x) hypergeometric function, where in the sequel s = 1, 2 and r pairs
of numeratorial and denominatorial parameters differ by positive integers, to be
expressed as a finite sum of sF1(x) functions.

Theorem 1. For a nonnegative integer s let (as) denote a parameter sequence con-
taining s elements, where when s = 0 the sequence is empty. Let (as + k) denote
the sequence when k is added to each element of (as). Let F(x) denote the gener-
alized hypergeometric function with r numeratorial and denominatorial parameters
differing by positive integers (mr), namely

F(x) ≡ r+sFr+1

(
(as),

c,
(fr + mr)

(fr)

∣∣∣∣ x

)
,

where convergence of the series representation for the latter occurs in an appropriate
domain depending on the values of s and the elements of the parameter sequence (as).
Then

F(x) =
1

A0

m∑

k=0

xkAk
((as))k

(c)k
sF1

(
(as + k)
c + k

∣∣∣∣ x

)
,

where m = m1 + · · ·+ mr, the coefficients Ak are defined by

Ak ≡
m∑

j=k

{
j
k

}
σm−j , (1)

and the σj (0 ≤ j ≤ m) are generated by the relation

(f1 + x)m1 · · · (fr + x)mr =
m∑

j=0

σm−jx
j . (2)

Although it is evident that

A0 = (f1)m1 · · · (fr)mr , Am = 1, (3)

the coefficients Ak for 0 < k < m are otherwise defined implicitly by (1) and (2).
It is the purpose of this brief communication to obtain in Section 2 an explicit
representation (Theorem 2) for the coefficients Ak (0 ≤ k ≤ m). Then in Section 3
we shall record a few of the salient results that are consequences of Theorems 1 and
2.
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2. The coefficients Ak

We prove the following.

Theorem 2. Suppose (fr) is a nonempty sequence of complex numbers and (mr) a
sequence of positive integers such that m ≡ m1 + · · ·+ mr. Suppose further that

Ak ≡
m∑

j=k

{
j
k

}
σm−j (0 ≤ k ≤ m),

where the σj (0 ≤ j ≤ m) are generated by the relation

(f1 + x)m1 · · · (fr + x)mr
=

m∑

j=0

σm−jx
j .

Then

Ak =
(−1)kA0

k! r+1Fr

( −k, (fr + mr)
(fr)

∣∣∣∣ 1
)

, (4)

where 0 ≤ k ≤ m and A0 is given by (3).

Proof. We define the monic polynomial P (x) of degree m by

P (x) ≡ (f1 + x)m1 . . . (fr + x)mr = σm + σm−1x + · · ·+ σ1x
m−1 + σ0x

m,

where σ0 = 1. It then follows that σm−j = P (j)(0)/j! (0 ≤ j ≤ m) and consequently

Ak =
m∑

j=k

{
j
k

}
P (j)(0)

j!
.

From [1, 24.1.1 (C)] and [1, 24.1.4 (C)], we have

∆kP (x) =
k∑

j=0

(−1)k−j

(
k
j

)
P (x + j) = k!

m∑

j=k

{
j
k

}
P (j)(x)

j!
,

where ∆ denotes the forward difference operator used in numerical analysis. Hence

Ak =
∆kP (0)

k!
=

1
k!

k∑

j=0

(−1)k−j

(
k
j

)
P (j).

Now since
P (j) = (f1 + j)m1 . . . (fr + j)mr

and (α + j)p = (α)p (α + p)j/(α)j for positive integers p, we obtain

Ak =
(−1)k

k!
(f1)m1 . . . (fr)mr

k∑

j=0

(−1)j

(
k
j

)
(f1 + m1)j

(f1)j
. . .

(fr + mr)j

(fr)j
,

or
Ak

A0
=

(−1)k

k!

k∑

j=0

(−k)j

j!
((fr + mr))j

((fr))j

which evidently completes the proof.



208 A.R.Miller and R.B. Paris

Corollary 1. Let (fr) and (mr) be sequences as in Theorem 2. Then

r+1Fr

(−m, (fr + mr)
(fr)

∣∣∣∣ 1
)

=
(−1)m m!

(f1)m1 . . . (fr)mr

, (5)

where m = m1 + · · ·+ mr.

Proof. In (4) set k = m and then use (3).

We remark that Karlsson [3] proved (5) by employing other methods.

3. Transformation and summation formulas

Theorem 2 allows us to state in a somewhat simplified and more elegant form several
results obtained in [7] by use of Theorem 1. Thus, for example, we have the following
theorem that provides transformation formulas of Euler and Kummer-type respec-
tively for the generalized hypergeometric functions r+2Fr+1(x) and r+1Fr+1(x), in
which r pairs of numeratorial and denominatorial parameters differ by positive in-
tegers.

Theorem 3. Let (mr) be a nonempty sequence of positive integers such that m =
m1 + · · ·+ mr. Then if b 6= fj (1 ≤ j ≤ r), (λ)m 6= 0, where λ ≡ c− b−m, we have
the transformation formulas

r+2Fr+1

(
a, b,
c,

(fr + mr)
(fr)

∣∣∣∣ x

)
= (1− x)−a

m+2Fm+1

(
a, λ,

c,
(ξm + 1)

(ξm)

∣∣∣∣
x

x− 1

)
,

where |x| < 1, Rex < 1
2 , and

r+1Fr+1

(
b,
c,

(fr + mr)
(fr)

∣∣∣∣ x

)
= ex

m+1Fm+1

(
λ,
c,

(ξm + 1)
(ξm)

∣∣∣∣− x

)
,

where |x| < ∞. The (ξm) are the nonvanishing zeros of the associated parametric
polynomial Qm(t) of degree m defined by

Qm(t) ≡
m∑

k=0

Ak(b)k(t)k(λ− t)m−k,

where the Ak (0 ≤ k ≤ m) are given by (4).

The Karlsson-Minton summation formula [3, 10], which is also a consequence of
Theorem 1 as shown in [7], states that for Re (−a) > m− 1

r+1Fr

(
a, b,

b + 1,
(fr + mr)

(fr)

∣∣∣∣ 1
)

=
Γ(1 + b)Γ(1− a)

Γ(1 + b− a)
(f1 − b)m1 . . . (fr − b)mr

(f1)m1 . . . (fr)mr

. (6)

An elegant extension of this summation theorem may be obtained directly from
Theorem 1 by setting x = 1 and s = 2 in the latter, employing the Gauss summation
theorem for 2F1(1) and utilization of Theorem 2. Thus we obtain the following.
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Theorem 4. Suppose (mr) is a sequence of positive integers such that m = m1 +
· · ·+ mr. Then, provided that Re (c− a− b) > m we have

r+2Fr+1

(
a, b,
c,

(fr + mr)
(fr)

∣∣∣∣ 1
)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

m∑

k=0

r+1Fr

(−k, (fr + mr)
(fr)

∣∣∣∣ 1
)

(a)k(b)k

(1 + a + b− c)k k!
. (7)

If in (7) we set c = b, the right-hand side of the latter vanishes and we have the
following.

Corollary 2. Suppose (mr) is a sequence of positive integers such that m = m1 +
· · ·+ mr. Then

r+1Fr

(
a, (fr + mr)

(fr)

∣∣∣∣ 1
)

= 0, Re (−a) > m. (8)

This last result was also obtained by Karlsson [3] who used other methods.
If c = b + 1, then (7) reduces to

r+1Fr

(
a, b,

b + 1,
(fr + mr)

(fr)

∣∣∣∣ 1
)

=
Γ(1 + b)Γ(1− a)

Γ(1 + b− a)

m∑

k=0

r+1Fr

(−k, (fr + mr)
(fr)

∣∣∣∣ 1
)

(b)k

k!
,

where Re (−a) > m− 1. Then upon employing (6) and (8) we obtain the following.

Corollary 3. Suppose (mr) is a sequence of positive integers. Then

∞∑

k=0

r+1Fr

(−k, (fr + mr)
(fr)

∣∣∣∣ 1
)

(b)k

k!
=

(f1 − b)m1 . . . (fr − b)mr

(f1)m1 . . . (fr)mr

.

When fj = f , mj = m (1 ≤ j ≤ r), we find

∞∑

k=0

r+1Fr

(−k, f + m,
f,

. . . ,

. . . ,
f + m

f

∣∣∣∣ 1
)

(b)k

k!
=

(
(f − b)m

(f)m

)r

,

which is a generalization of the Vandermonde-Chu convolution theorem; see [11,
pp. 30–31].
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