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On the degree of approximation of continuous functions by
means of Fourier series™
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Abstract. We generalize some results on the degree of approximation of continuous func-
tions by means of Fourier series, which were obtained by Chandra ([1, 2]) and Leindler
([4]). Some applications of the main results are given.
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1. Introduction

Let f(z) be a 2r—periodic continuous function. Denote by S, (f, z) the n—th partial
sum of its Fourier series, w(d) := w(f,d) the modulus of continuity of f. Let A :=
(ank)(k,m =0,1,---) be a lower triangular infinite matrix of real numbers, that is,
ank, = 0 for all k& > n. The A—transform of {S,(f,z)} is given by

To(f) = Tul(f ) =Y annSk(f,2), n=0,1,--- .
k=0

The following theorems can be found in [1], [2]:
Theorem A. Let (ank) satisfy the following conditions:

n

ank >0 and Za"k =1, (1)
k=0

ank < Gppy1, k=0,1,--- ,n—1;n=0,1,---. (2)

Suppose w(t) is such that
/ ' t2w(t)dt = O (H(u)), (u— 0+), (3)
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where H(u) > 0 and

/O CH(u)du= O (H®). (t—04), )
Then
1T (f) = £l = O (annH (ann)) , (5)
where || - || denotes the supnorm.

Theorem B. Let (1), (2) and (3) hold. Then

ITa(f) = £ = O(w(x/n) + annH (x/n)). (6)
If, in addition, w(t) satisfies (4), then
ITu(f) = Sl = O(annH(m/n)). (7)
Theorem C. Let us assume that (1) and
ank > Gnj+1, k=0,1,---  n—1;n=0,1,--- (8)
hold. Then
n k+1
ITu() = £l = O(w(r/m) + Dk w(w/k) D an ). (9)
k=1 r=0

Theorem D. Let (1), (3), (4) and (8) hold. Then

1T5(£) = 71l = O(anoH (ann) ). (10)

Recently, Leindler [4] has showed that the monotonic condition in (2) and (8) can
be essentially relaxed. To state his results, we need some notions.

For a fixed n, ay, = {ank}52, of nonnegative numbers tending to zero is called
rest bounded variation, or briefly o, € RBV' S, if there is a constant K (o) only
depending on a,, such that

oo o0

Z |Aank| = Z |ank - an,k+1| < K(an)anm (11)

k=m k=m

for all natural numbers m.

For a fixed n, «a,, = {ank}zio of nonnegative numbers tending to zero is called
Head bounded variation, or briefly a,, € HBV S, if there is a constant K («a;,) only
depending on «,, such that

,_.

|Aank| < K an)an m (12)
k=0
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for all natural numbers m, or only for all m < I if the sequence «,, has only finite
nonzero terms, and the last nonzero term is a,n.

Leindler’s main result in [4] can be read as follows:

Theorem E. The statements of Theorem A, B, C' and D hold with (12) in place of
(2), and with (11) in place of (8), respectively; naturally maintaining all the other
assumptions.

It should be noted that in the previous theorems of Chandra and Leindler, a
sequence of sequences o, := {ani}3>, has appeared. Thus, it is natural to assume
that {K(ap)}S2, is bounded, that is, there is an absolute constant K such that
0< K(ap)<Kforn=1,2,---.

In the present paper, we further generalize Theorem E by establishing the fol-
lowing:

Theorem 1. Let (1) hold. Suppose that w(t) satisfies (3). Then
ITu(f) = £ = O(w(n/n) + > [Aan H(x/n) ), (13)
k=0
If, in addition, w(t) satisfies (4), then

HTn(f) - f” =0 (Z |Aank|H <Z |Aank|>> , (14)

k=0 k=0

ITn(f) = fll = O (Z IAankIH(W/n)> ~ (15)
k=0
Theorem 2. Let (1) hold. Then

k+1 n

ITa(h) = £l = O(wlm/m) + 3K ol /k) S e+ 3 wlw/B) Y [Aane).(16)
k=1 r=0 k=1 r=k

As an application of our results, we will show that Theorem 1 and Theorem 2
imply all the results of Theorem E, thus Theorem A-Theorem D. Also, we will
give some generalizations of Theorem A—Theorem E by applying Theorem 1 and
Theorem 2 to a more general class of sequences than RBV'S.

2. Proofs of theorems

We need some Lemmas.

Lemma 1 (see [1]). If (3)and (4) hold, then
T/n
/o w(t)dt = O(n"?H(m/n)). (17)
Lemma 2 (see [1]). If (3)and (4) hold, then

/T t T w(t)dt = O(rH(r)), r—0+. (18)
0
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Lemma 3. For any lower triangular infinite matriz (ank), k,n = 0,1,2,--- of
nonnegative numbers, it holds uniformly in 0 <t <, that

n . 1 T 1 n
Zanksnl <k+2>t_0<zanr+tZ|Aanr|> ) (19)
k=0 r=0 r=T7
where T denotes the integer part of w/t. It also holds that
zn:anksin k+ 1 t=0 lzn:\Aam\ ) (20)
k=0 2 ¢ r=0

Proof. Since (a,) is a lower triangular infinite matrix, that is, an; = 0 for k& > n,
then

Anm S Z ‘Aank‘ (21)
k=m
for m =0,1,2,--- ,n. It is elementary to deduce that for arbitrary A, > 0 and for
n>m>0,
n 1 " 1 n—1
Z Ak sin (k+2>tsin2 < 5 <)\m+ Z |A)\k|+/\n> (22)
k=m k=m
holds.

By (21) and (22), assuming that n > 7, we have
zn:anksin k—&—l t| < ianr—&— En:anksin k—i—} t
2 - 2
k=0 r=0 =T
T 1 n—1
< Z_:Oanr +0 (t (anr + Z |Aank| + ann))

r=1

=0 (i A + % i |Aam|) ,
r=0 r=T

which completes (19).
Similarly, we have

- 1
Za"k sin <k+ 2) t
k=0

n—1
1
=0 (t (ano + 7;0 |Aank| + a,m))
=0 12”: |Aan:|
- t TZO nr b

hence, (20) is finished. O
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Proof of Theorem 1. We will follow the ideas of Chandra ([1,2]) and Leindler
([4))-
Write

O, (1) =5 (flz+1) + flz —1) = 2f(x)).

N

Then

T, (f,z) — f(z) = 727/077 (@z(t) <2 sin ;) - éank sin (k + ;) t) dt.  (23)

Proof of (13). By (23), we have

w/n T
|HMﬁ—fH<i<A +/>>:=h+b. (24)

By (1) and the inequality |sint| < ¢, we have for 0 <t < 7/n,

kzzoank sin <k‘ + 2) t| = O(nt).
Therefore,
m/n
I = O(n) /O w(t)dt = 0wl /n)). (25)

By (20) and (3),

I,=0 (i: Aank> /7r t2w(t)dt = O <Z |Aank|H(7r/n)> . (26)
k=0 m/n k=0

We complete (13) by combining (24)-(26).
Proof of (14). By (23) again, and

n n
Z [Aani] < 2Zank =2<m,
k=0 k=0

we get

i [Aank| s
R — T+ . 1)
T \Jo > [Aan

By (1), we have

<1

- 1
Zank sin (k + 2) t
k=0




216 B.R. WEr AND D. S. YU
Hence, by (18), we have
S [Aanl

Ji = 0(1) /OM tw(t)dt = O <§n: | Aayi| H (f: |Aank|>> . (28)

k=0 k=0
By (20) and (3), we have

Jo =0 (i |Adyr : tzw(t)dt)
k=0
=0 < | Aani|H (Z |Aank|>> . (29)

0 k=0

=
i

We finish (14) by combining (27)-(29).
Proof of (15). Note that a,, = 0 for & > n, we deduce that

n n
Gnj < Z ‘Aank| < Z ‘Aank‘
h—j k=0

for j =0,1, - ,n, which implies that

or in other words,
i 1
E A > —.
|Adnk| = 2n
k=0

Hence, by (17), we obtain that

I,=0 (;H(W/n)> =0 (Z |Aank|H(ﬂ'/n)> . (30)
k=0
Altogether by (24), (26) and (30), (15) is proved. O

Proof of Theorem 2. By (19) and the monotonicity of w(t), we deduce that (see
(24) for I)

T T 1 n
I = 0(1)/ () (Z et 7 D IAam|> dt
™ r=0 r=T

/n

n—1 w/k T n
= 0(1) Z/ ) (Z Uy + % > Aam|> dt
r=0 r=T7

i1 In/ (k1)
k+1 n

=0 (Z k_lw(ﬂ'/k)Zam+Zw(ﬂ/k)Z|Aam.|> . (31)
k=1 r=0 k=1 r=k

Altogether by (24), (25) and (31), we obtain (16). O
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3. Applications of Theorems

Application 1. We remark that Theorem 1 implies Theorem E, and thus Theo-
rem A-Theorem D. In fact, if {a,x} € HBV'S, then

n n—1
Z ‘Aa/nk:‘ = Z |Aank| + ann S (K<an) + 1) Ann-
k=0 k=0

Thus, (14), (13) and (15) imply (5), (6) and (7), respectively.
If {anr} € RBVS, then

n n—1
Z |Aank| S Z |Aank| + apn
k=0 k=0
n—1
<2 Z |Aank| + ano
k=0
< 2(K(an) + 1) ano, (32)

hence, (14) implies (10). Also, we derive from (15) and (13) that
ITn(f) = fll = O (anoH(m/n)),
and
ITn(f) = fll = O (w(w/n) + anoH (r/n)),

which are new results not stated in Theorem A-Theorem E.
Finally, we prove that (16) implies (9) if {anr} € RBVS. In fact, since {anx} €
RBV S, then, similarly to (32), we get

> Aan,| < (2K (o) + 1) an. (33)
r=k

By using the definition of RBV'S, we have

k—1
Ank S Z |Aafn7'| + Anj S (2K(0¢'rb) + 1) Un j

r=j

for j =[k/2] + 1, -, k, which implies that

1 k 1 k+1
an =0 | 2 > aw| | =0 (k > |am|> : (34)

r=[k/2]+1 r=0

By (33) and (34), we have

n k+1
Z |Aanr| =0 (]::‘ Z |anr|> )
r=k r=0
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which shows that (16) implies (9).

Application 2. We can apply theorems to some A—transform with {a,x}3>, may

have lacunary terms for 0 < k < n, which is impossible for {a,x}72, € HBVS or

{ank}32, € RBVS.

Application 3. Very recently, Leindler [5] has extended the definition of RBV'S to

the so-called YRBV'S. In our case, we can state the definition of yYRBV' S as follows:
For a fixed n, let 7, := {1 }72, be a nonnegative sequence. If a null-sequence

oy = {ank 172 of real numbers has the property

k=m

for every positive integer m, then we call the sequence v, := {ani}72, a YRBV'S,
briefly denoted by «,, € YRBV'S.

If v, = ap, then yRBV S = RBVS.

Similarly, we can introduce a new kind of sequences yH BV S as follows:

For a fixed n, let 7, := {1 }72, be a nonnegative sequence. If a null-sequence
oy = {ank 172 of real numbers has the property

m—1

Z |Aank| S K(an)’}/nm
k=0

for every positive integer m, then we call the sequence a, = {ant}%>, a YHBVS,
briefly denoted by «a,, € YHBV'S.

By a discussion similar to Application 1, Theorem 1 and Theorem 2, we have
the following generalizations of Theorem E:

Theorem 3. Let (ani) satisfy (1). Suppose that w(t) satisfies (3), then
(i) If {ank ;o € YHBV'S. Then

ITa(f) = £Il = O(w(r/m) + Yun H (x/m))
If, in addition, w(t) satisfies (4), then
I70(F) = Il = O (unH (),
and
ITa(£) = £1l = O(YunH (x/n) ).
(i) If {ank}32 o € YRBV'S, then
ITu(F) = £l = O(w(m/m) + Yo H (x/m)).
If, in addition, w(t) satisfies (4), then

HTn(f) - f” =0 (’YnOH (’YnO)) )
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Theorem 4. If (ank) satisfies (1) and {ank}3>, € YRBV'S, then

k+1 n

ITa(f) = £Il = O(w(r/m) + Dk w(m/k) Y anr + D /b))
k=1 r=0 k=1
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