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Abstract. We generalize some results on the degree of approximation of continuous func-
tions by means of Fourier series, which were obtained by Chandra ([1, 2]) and Leindler
([4]). Some applications of the main results are given.
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1. Introduction

Let f(x) be a 2π−periodic continuous function. Denote by Sn(f, x) the n−th partial
sum of its Fourier series, ω(δ) := ω(f, δ) the modulus of continuity of f . Let A :=
(ank)(k, n = 0, 1, · · · ) be a lower triangular infinite matrix of real numbers, that is,
ank = 0 for all k > n. The A−transform of {Sn(f, x)} is given by

Tn(f) := Tn(f, x) :=
n∑

k=0

ankSk(f, x), n = 0, 1, · · · .

The following theorems can be found in [1], [2]:
Theorem A. Let (ank) satisfy the following conditions:

ank ≥ 0 and
n∑

k=0

ank = 1, (1)

ank ≤ an,k+1, k = 0, 1, · · · , n− 1;n = 0, 1, · · · . (2)

Suppose ω(t) is such that
∫ π

u

t−2ω(t)dt = O (H(u)) , (u → 0+), (3)
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where H(u) ≥ 0 and
∫ t

0

H(u)du = O (tH(t)) , (t → 0+). (4)

Then

‖Tn(f)− f‖ = O (annH(ann)) , (5)

where ‖ · ‖ denotes the supnorm.
Theorem B. Let (1), (2) and (3) hold. Then

‖Tn(f)− f‖ = O
(
ω(π/n) + annH(π/n)

)
. (6)

If, in addition, ω(t) satisfies (4), then

‖Tn(f)− f‖ = O
(
annH(π/n)

)
. (7)

Theorem C. Let us assume that (1) and

ank ≥ an,k+1, k = 0, 1, · · · , n− 1;n = 0, 1, · · · (8)

hold. Then

‖Tn(f)− f‖ = O
(
ω(π/n) +

n∑

k=1

k−1ω(π/k)
k+1∑
r=0

anr

)
. (9)

Theorem D. Let (1), (3), (4) and (8) hold. Then

‖Tn(f)− f‖ = O
(
an0H(an0)

)
. (10)

Recently, Leindler [4] has showed that the monotonic condition in (2) and (8) can
be essentially relaxed. To state his results, we need some notions.

For a fixed n, αn := {ank}∞k=0 of nonnegative numbers tending to zero is called
rest bounded variation, or briefly αn ∈ RBV S, if there is a constant K(αn) only
depending on αn such that

∞∑

k=m

|∆ank| :=
∞∑

k=m

|ank − an,k+1| ≤ K(αn)anm (11)

for all natural numbers m.
For a fixed n, αn = {ank}∞k=0 of nonnegative numbers tending to zero is called

Head bounded variation, or briefly αn ∈ HBV S, if there is a constant K(αn) only
depending on αn such that

m−1∑

k=0

|∆ank| ≤ K(αn)an,m (12)
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for all natural numbers m, or only for all m ≤ N if the sequence αn has only finite
nonzero terms, and the last nonzero term is anN .

Leindler’s main result in [4] can be read as follows:
Theorem E. The statements of Theorem A, B, C and D hold with (12) in place of
(2), and with (11) in place of (8), respectively; naturally maintaining all the other
assumptions.

It should be noted that in the previous theorems of Chandra and Leindler, a
sequence of sequences αn := {ank}∞k=0 has appeared. Thus, it is natural to assume
that {K(αn)}∞n=0 is bounded, that is, there is an absolute constant K such that
0 ≤ K(αn) ≤ K for n = 1, 2, · · · .

In the present paper, we further generalize Theorem E by establishing the fol-
lowing:

Theorem 1. Let (1) hold. Suppose that ω(t) satisfies (3). Then

‖Tn(f)− f‖ = O
(
ω(π/n) +

n∑

k=0

|∆ank|H(π/n)
)
, (13)

If, in addition, ω(t) satisfies (4), then

‖Tn(f)− f‖ = O

(
n∑

k=0

|∆ank|H
(

n∑

k=0

|∆ank|
))

, (14)

‖Tn(f)− f‖ = O

(
n∑

k=0

|∆ank|H (π/n)

)
. (15)

Theorem 2. Let (1) hold. Then

‖Tn(f)− f‖ = O
(
ω(π/n) +

n∑

k=1

k−1ω(π/k)
k+1∑
r=0

anr +
n∑

k=1

ω(π/k)
n∑

r=k

|∆anr|
)
.(16)

As an application of our results, we will show that Theorem 1 and Theorem 2
imply all the results of Theorem E, thus Theorem A-Theorem D. Also, we will
give some generalizations of Theorem A–Theorem E by applying Theorem 1 and
Theorem 2 to a more general class of sequences than RBV S.

2. Proofs of theorems

We need some Lemmas.

Lemma 1 (see [1]). If (3)and (4) hold, then
∫ π/n

0

ω(t)dt = O
(
n−2H(π/n)

)
. (17)

Lemma 2 (see [1]). If (3)and (4) hold, then
∫ r

0

t−1ω(t)dt = O
(
rH(r)

)
, r → 0 + . (18)
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Lemma 3. For any lower triangular infinite matrix (ank), k, n = 0, 1, 2, · · · of
nonnegative numbers, it holds uniformly in 0 < t ≤ π, that

n∑

k=0

ank sin
(

k +
1
2

)
t = O

(
τ∑

r=0

anr +
1
t

n∑
r=τ

|∆anr|
)

, (19)

where τ denotes the integer part of π/t. It also holds that

n∑

k=0

ank sin
(

k +
1
2

)
t = O

(
1
t

n∑
r=0

|∆anr|
)

. (20)

Proof. Since (ank) is a lower triangular infinite matrix, that is, ank = 0 for k > n,
then

anm ≤
n∑

k=m

|∆ank| (21)

for m = 0, 1, 2, · · · , n. It is elementary to deduce that for arbitrary λn ≥ 0 and for
n ≥ m ≥ 0,

∣∣∣∣∣
n∑

k=m

λk sin
(

k +
1
2

)
t sin

t

2

∣∣∣∣∣ ≤
1
2

(
λm +

n−1∑

k=m

|∆λk|+ λn

)
(22)

holds.
By (21) and (22), assuming that n ≥ τ , we have

∣∣∣∣∣
n∑

k=0

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ ≤
τ∑

r=0

anr +

∣∣∣∣∣
n∑

r=τ

ank sin
(

k +
1
2

)
t

∣∣∣∣∣

≤
τ∑

r=0

anr + O

(
1
t

(
anτ +

n−1∑
r=τ

|∆ank|+ ann

))

= O

(
τ∑

r=0

anr +
1
t

n∑
r=τ

|∆anr|
)

,

which completes (19).
Similarly, we have

∣∣∣∣∣
n∑

k=0

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ = O

(
1
t

(
an0 +

n−1∑
r=0

|∆ank|+ ann

))

= O

(
1
t

n∑
r=0

|∆anr|
)

,

hence, (20) is finished.
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Proof of Theorem 1. We will follow the ideas of Chandra ([1,2]) and Leindler
([4]).

Write

Φx(t) :=
1
2

(f(x + t) + f(x− t)− 2f(x)) .

Then

Tn(f, x)− f(x) =
2
π

∫ π

0

(
Φx(t)

(
2 sin

t

2

)−1 n∑

k=0

ank sin
(

k +
1
2

)
t

)
dt. (23)

Proof of (13). By (23), we have

‖Tn(f)− f‖ ≤ 2
π

(∫ π/n

0

+
∫ π

π/n

)
:= I1 + I2. (24)

By (1) and the inequality | sin t| ≤ t, we have for 0 ≤ t ≤ π/n,
∣∣∣∣∣

n∑

k=0

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ = O(nt).

Therefore,

I1 = O(n)
∫ π/n

0

ω(t)dt = O
(
ω(π/n)

)
. (25)

By (20) and (3),

I2 = O

(
n∑

k=0

|∆ank|
)∫ π

π/n

t−2ω(t)dt = O

(
n∑

k=0

|∆ank|H(π/n)

)
. (26)

We complete (13) by combining (24)-(26).
Proof of (14). By (23) again, and

n∑

k=0

|∆ank| ≤ 2
n∑

k=0

ank = 2 < π,

we get

‖Tn(f)− f‖ ≤ 2
π




∫ n∑
k=0

|∆ank|

0

+
∫ π

n∑
k=0

|∆ank|


 := J1 + J2. (27)

By (1), we have ∣∣∣∣∣
n∑

k=0

ank sin
(

k +
1
2

)
t

∣∣∣∣∣ ≤ 1.
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Hence, by (18), we have

J1 = O(1)
∫ n∑

k=0
|∆ank|

0

t−1ω(t)dt = O

(
n∑

k=0

|∆ank|H
(

n∑

k=0

|∆ank|
))

. (28)

By (20) and (3), we have

J2 = O




n∑

k=0

|∆ank|
∫ π

n∑
k=0

|∆ank|
t−2ω(t)dt




= O

(
n∑

k=0

|∆ank|H
(

n∑

k=0

|∆ank|
))

. (29)

We finish (14) by combining (27)-(29).
Proof of (15). Note that ank = 0 for k > n, we deduce that

anj ≤
n∑

k=j

|∆ank| ≤
n∑

k=0

|∆ank|

for j = 0, 1, · · · , n, which implies that

1 =
n∑

j=0

anj ≤ (n + 1)
n∑

k=0

|∆ank|,

or in other words,
n∑

k=0

|∆ank| ≥ 1
2n

.

Hence, by (17), we obtain that

I1 = O

(
1
n

H(π/n)
)

= O

(
n∑

k=0

|∆ank|H(π/n)

)
. (30)

Altogether by (24), (26) and (30), (15) is proved.

Proof of Theorem 2. By (19) and the monotonicity of ω(t), we deduce that (see
(24) for I2)

I2 = O(1)
∫ π

π/n

t−1ω(t)

(
τ∑

r=0

anr +
1
t

n∑
r=τ

|∆anr|
)

dt

= O(1)
n−1∑

k=1

∫ π/k

π/(k+1)

t−1ω(t)

(
τ∑

r=0

anr +
1
t

n∑
r=τ

|∆anr|
)

dt

= O

(
n∑

k=1

k−1ω(π/k)
k+1∑
r=0

anr +
n∑

k=1

ω(π/k)
n∑

r=k

|∆anr|
)

. (31)

Altogether by (24), (25) and (31), we obtain (16).
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3. Applications of Theorems

Application 1. We remark that Theorem 1 implies Theorem E, and thus Theo-
rem A–Theorem D. In fact, if {ank} ∈ HBV S, then

n∑

k=0

|∆ank| =
n−1∑

k=0

|∆ank|+ ann ≤ (K(αn) + 1) ann.

Thus, (14), (13) and (15) imply (5), (6) and (7), respectively.
If {ank} ∈ RBV S, then

n∑

k=0

|∆ank| ≤
n−1∑

k=0

|∆ank|+ ann

≤ 2
n−1∑

k=0

|∆ank|+ an0

≤ 2 (K(αn) + 1) an0, (32)

hence, (14) implies (10). Also, we derive from (15) and (13) that

‖Tn(f)− f‖ = O (an0H(π/n)) ,

and

‖Tn(f)− f‖ = O (ω(π/n) + an0H(π/n)) ,

which are new results not stated in Theorem A-Theorem E.
Finally, we prove that (16) implies (9) if {ank} ∈ RBV S. In fact, since {ank} ∈

RBV S, then, similarly to (32), we get

n∑

r=k

|∆anr| ≤ (2K(αn) + 1) ank. (33)

By using the definition of RBV S, we have

ank ≤
k−1∑

r=j

|∆anr|+ anj ≤ (2K(αn) + 1) anj

for j = [k/2] + 1, · · · , k, which implies that

ank = O


1

k

k∑

r=[k/2]+1

|anr|

 = O

(
1
k

k+1∑
r=0

|anr|
)

. (34)

By (33) and (34), we have

n∑

r=k

|∆anr| = O

(
1
k

k+1∑
r=0

|anr|
)

,
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which shows that (16) implies (9).
Application 2. We can apply theorems to some A−transform with {ank}∞k=0 may
have lacunary terms for 0 ≤ k ≤ n, which is impossible for {ank}∞k=0 ∈ HBV S or
{ank}∞k=0 ∈ RBV S.
Application 3. Very recently, Leindler [5] has extended the definition of RBV S to
the so-called γRBV S. In our case, we can state the definition of γRBV S as follows:

For a fixed n, let γn := {γnk}∞k=0 be a nonnegative sequence. If a null-sequence
αn := {ank}∞k=0 of real numbers has the property

∞∑

k=m

|∆ank| ≤ K(αn)γnm

for every positive integer m, then we call the sequence αn := {ank}∞k=0 a γRBV S,
briefly denoted by αn ∈ γRBV S.

If γn = αn, then γRBV S ≡ RBV S.
Similarly, we can introduce a new kind of sequences γHBV S as follows:
For a fixed n, let γn := {γnk}∞k=0 be a nonnegative sequence. If a null-sequence

αn := {ank}∞k=0 of real numbers has the property

m−1∑

k=0

|∆ank| ≤ K(αn)γnm

for every positive integer m, then we call the sequence αn := {ank}∞k=0 a γHBV S,
briefly denoted by αn ∈ γHBV S.

By a discussion similar to Application 1, Theorem 1 and Theorem 2, we have
the following generalizations of Theorem E:

Theorem 3. Let (ank) satisfy (1). Suppose that ω(t) satisfies (3), then
(i) If {ank}∞k=0 ∈ γHBV S. Then

‖Tn(f)− f‖ = O
(
ω(π/n) + γnnH(π/n)

)
.

If, in addition, ω(t) satisfies (4), then

‖Tn(f)− f‖ = O
(
γnnH(γn)

)
,

and

‖Tn(f)− f‖ = O
(
γnnH(π/n)

)
.

(ii) If {ank}∞k=0 ∈ γRBV S, then

‖Tn(f)− f‖ = O
(
ω(π/n) + γn0H(π/n)

)
.

If, in addition, ω(t) satisfies (4), then

‖Tn(f)− f‖ = O (γn0H (γn0)) ,

‖Tn(f)− f‖ = O (γn0H (π/n)) .
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Theorem 4. If (ank) satisfies (1) and {ank}∞k=0 ∈ γRBV S, then

‖Tn(f)− f‖ = O
(
ω(π/n) +

n∑

k=1

k−1ω(π/k)
k+1∑
r=0

anr +
n∑

k=1

ω(π/k)γnk

)
.
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