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A note on a function associated with the statistical
limit superior®

PRATULANANDA Dast AND PRASANTA MALIK?

Abstract. We investigate the connectedness and Baire classifica-
tion of a function associated with the statistical limit superior.
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1. Introduction

The concept of statistical convergence was first introduced by Fast [1] and after the
papers of Saldt [7] and Fridy [2] it has become one of the most active areas of research
in classical analysis. The concept of statistical limit superior was introduced by
Fridy and Orhan in [4]. In this paper we consider a mapping o which corresponds
to each real sequence, its statistical limit superior and examine the connectedness
and Baire classification of the function. The motivation of such a study comes from
[6] and [9].

2. Preliminaries

We consider the set s of all real sequences a = (ay)5%; endowed with Ferchet metric
d(a,b) given by

_ 1 |ak—bk|
d(ayb)_;2k1+|ak_bk|?

where a = (a,)52; and b = (b,)22,. It is known that the metric space (s,d) is
complete and has the power of continuum .

We now recall the following definitions.
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Let A C N. Put d,(A) = 1570 xa(k) , where x4 is the characteristic function

of A. The numbers d(4) = nlirr;oinf d,(A) and d(A) = nler;osup d,(A) are called
the lower and upper asymptotic densities of A, respectively. If d(A) = d(A), then
d(A) = d(A) is called the asymptotic density of A .

Definition 1 [see [1]]. A sequence (vr)52, of real numbers is said to be sta-
tistically convergent to € € R, denoted by st — lim x= £ if for any € > 0, we have
d(A(e)) =0, where A(e) = {n € N; |z, —&| > €} .

For a real number sequence = = (x,)22 ;, let B, denote the set

B, ={be R;d({k € N;x), > b}) # 0}.

Throughout the paper d{ K} # 0 means either d{K} > 0 or the natural density
of K does not exist.

Definition 2 [see [4]]. For any x = (2,)22, € s the statistical limit superior
of x is defined by

st —limsupx = sup B,, if By # ®,
= —0Q, Zf Bw - (P.

It has been shown in [4] that if § = st — limsup z is finite, then for every ¢ > 0,
d{k € N;zi, >3 —€} #0and d{k € N;zr > 8+ €} =0. (1)

Conversely, if (1) holds for every € > 0, then 8 = st — limsup x.
We now introduce a mapping o on the set s in the following way. If a =
(an)S2; € s, then
o(a) = st — limsup a.

Clearly o is a mapping from s to [—oo, 00]. If 2,y etc. are members of s, we shall
represent them generally by = (2,)5% 1, ¥ = (yn )52, etc. Also N denotes the set
of positive integers and R denotes the set of real numbers.

It can be easily seen by taking appropriate examples that the mapping o is
surjective but not injective. Further, given any real number ¢ the set {x €s;0(z) =
t} has cardinality ¢ where ¢ is the power of continuum. In the next two sections we
examine the function o from the viewpoint of connectedness and then continuity
and Baire classification.

3. Connected properties of the mapping o

In this section we study about the connected properties of the mapping o : s —
[—00,00]. We show that o is not a connected mapping. While going to prove this
result we got an interesting allied result which we prove first.

Theorem 1. Given any connected set A in (—o0,00), there is a connected set
B in s such that o(B) = A.

Proof. We first assume that A is a bounded closed interval.



FUNCTION ASSOCIATED WITH THE STATISTICAL LIMIT SUPERIOR 131

Let A = [a,b], —00 < a < b < co. We can always find two sequences z,y € s
such that st — lim o= a and st — lim y=b. Then o(z) = a, o(y) = b. Now for
t € [0, 1], consider z(t) = (2,,)22, € s where

zn =tz + (1 —t)y, forallme N.

Then st — lim z= ta + (1 — t)b and o(2(t)) = ta + (1 — t)b. Now we define a
mapping g : [0,1] — s by g(t) = z(t). Since the mapping g is continuous and every
point of [a, b] can be expressed in the form ta + (1 — ¢)b for some ¢ € [0, 1], we have
9([0,1]) = B ( say) is connected in s with o(B) = [a, b].
If A is a bounded open or half open interval, then the modification is evident.
Now let A = [a,00), —00 < a < o0, and let m be the least positive integer
greater than a. Therefore we can write

A=la,m|Ula,m+1]U....

As in the preceding case we can find a nonempty connected set By (say) in s
(corresponding to statistically convergent sequences only) such that o(By) = [a, m].
Again taking a member x € By with o(z) = m and another y from s ( corresponding
to a statistically convergent sequence) with o(y) = m + 1, we can construct a
connected set B} such that o(Bj) = [m,m+1] and x € ByNB}. Let By = By UBS.
Then Bs is connected and o(Bz) = [a,m + 1]. Repeating this process we obtain
a sequence of nonempty connected sets (B;)2,, in s with o(B;) = [a,m + (i — 1)]
and B; C B;y; for all ¢ € N. Then clearly B = U2, B;, is connected in s and
o(B) = [a,00) = A. Similarly, we can prove the result if A is any other type of an
unbounded interval. Hence the proof. O

From the next theorem it follows that ¢ is not a connected mapping. To prove
the theorem we first prove the lemma.

Lemma 1. For a € (0,00), let B, = {x € s; there exists j (even) such that
Tit1 = a,x, = (=1)"ta for alln > j+1, except a set A C {j+1,j+2,..} of
density zero }. Then B, is a connected set in s and o(B,) = {a}.

Proof. It is clear that B, is nonvoid, because, for example the sequence a =
{x1,22,a,—a,a,—a,...} is a member of B,, where x1, x5 are real numbers. Let
z = (xn)52, € B, By definition there exists j ( even) such that z;{; = a and
z, = (—1)"laforalln e {j+1,j+2,..} \ A, where A is a set of density zero.
Since the set of odd integers has density % and it remains the same even if we delete
a set of density zero, so evidently o(x) = st — limsup x = a. (However, it should
be noted that the superior limit of x may be different from a). Let ¢ € [0,1]. We
construct a sequence b(t) = (b,)5; as follows,

n=1

by = ton, +(=1)""ta, forn<j orn¢€A,
= a, form=j3+1,
= (=1)""'a, form>j+1,né¢ A
Then b(t) € B, for each t € [0, 1]. If we consider the mapping g, : [0,1] — s defined

by g.(t) = b(t), then g, is continuous on [0, 1] and so ¢,[0, 1] is a connected set in s.
Also g.[0,1] C B,. This inclusion holds for each = € By. So | ¢p, 9:10,1] C Ba.
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Again,
9:(0) =b(0) = (=1)""'a, forn<j orneA,
=a, forn=j+1,
= (-1)""'a, form>j+1,n¢A

So for each z € B, the above sequence is in g,[0,1]. Hence (,cp g.[0,1] # ¢.
So U,ep, 92[0,1] is connected and the proof will be complete if we can show that
Ba € U,ep, 9200, 1].

Let o € B,. Then o = (a0 )22 is of the form

Qp = T, for n < j(even),
= a, forn=j4+1,
= (-1D)"ta, forn>j+1,n¢B,
= Un for ne B,

where B is a subset of {n € N;n > j + 1} which has natural density zero and
T, Yn are real numbers. We show that a € ¢,[0,1] for some z € B,. For this let
z = (2n)5%2 be defined by

zZn = Tn + (=1)"a, for n < j(even),
= a, forn=j+1,
=(-1)"ta, forn>j+1,n¢B,
=yn+(—1)"a, forneB.

Then z € B, and g.(1) = a. So a € g.[0,1]. Thus B, = U,¢p,9:[0,1] and so B,
is connected and o(B,) = {a}. This proves the theorem. O

Theorem 2. Let A be an arbitrary nonvoid subset of (0,00). Then there exists
a connected set B C s such that o(B) = A.

Proof. Let B,, a € A has the same meaning as in the preceding lemma. Let
B = J,eaBa- Then o(B) = A. We only show that B is connected, for this we
prove that no two of the sets {B,,a € A} are separated. Let a1,a2 € A, a1 # as.
Let ¢ = (2,)22, € B,, and let € > 0 be given. Now from the definition of B,,,
there is a j (even) such that

Tj41 = ai,
z, = (=1)" a1, forn>j+1,n¢P,

where P C {j +1,j + 2,...} is a set of density zero. Choose an even i € N such
that >, ., 2 < €. Now we construct y = (y,)32; € s as follows

Yk = Tk, for k <i(even),
= ao, fork=1i4+1,
= (1) Lay, fork>i+1,k¢Q,

where Q C {i + 1,4+ 2,...} is a set of density zero. Then y € B,, and we have
d(xz,y) < e. This shows that every e-ball of z contains a member of B,,, which
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implies that € B,,. Thus B,, C B,,. Similarly, B,, C B,,. This completes the
proof of the theorem. O

Remark 1. It should be noted that the connected sets B, or B in the preceding
results are much larger than the corresponding sets which were used to prove the
same property for infinite series [6].

4. Baire classification of o

We first prove the following result.

Lemma 2. Leta = (a,)52, € s and § > 0. Then o(B(a,d)) = [—00, 0], where
B(a,d) = {z € s;d(a,x) < 0}.

The proof is parallel to the proof of lemma 3 [6] and so is omitted.

Before going to the next theorem we state, as a convention that any ray line
x > a, where a is a real number, is to be treated as a neighbourhood of +ooc.
similarly for —oo.

Theorem 3. The function o is discontinuous everywhere in s.

Proof. Let a € s and suppose that —oo < o(a) < oo. Then by Lemma 2,
given € > 0 there is no § > 0 such that ¢(B(a,d)) C (c(a) — €,0(a) +€). So o is
discontinuous at a . If o(a) = +o00 (or — ), a similar argument shows that o is
discontinuous at a. O

Since o is discontinuous everywhere in s it cannot belong to zero or the first
Baire class. Next we show that o belongs to the second Baire class when considered
on a restricted domain.

Let I C N be a set with natural density zero. Let s(I) be the class of all real
sequences (a, )5 for which

st — lim sup an, = lim sup ay,,.
n—oo n—oo
where (ay, )52 ; is the subsequence of (a,,)5 ; corresponding to the index set N \ I.
For the next result we consider the function o defined on s(I) endowed with the
Frechet metric.
Theorem 4. The function o is of the second Baire class on s(I).
Proof. Let a = (a,)32; € s(I). Then o(a) = nlLH;osup a,, , where (ag, )02 is

the subsequence of (a,)22; corresponding to the index set N \ I. Let
om(a) = sup{an;n € {mm+1,.3\1)}, m=1,2,3,...

Then o(a) = lim o, (a).
We put further

omxk(a) = maz{an;n € {m,m+1,... , m+k}\I)}, mk=1,2,3,...,
=0, if ({mym+1,...,m+k}\I)=¢.

Then
o(a) = lim lim op, k(a). (2)

m—ook— 00

We shall now show that for fixed m, k the function oy, : s(I) — R is continuous
at a, and the theorem then follows from (2).
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If {m,m+1,...}\ I = ¢, then there is nothing to prove. Otherwise let ¢ > 0
be given. Choose § > 0 such that 25 = e and let b = (b,)°, € B(a, zm%) Then

d(a,b) < 52,

b
e, B =bil for j=1,2,...,m+k,
L+ aj — byl
which implies that
) .
|aj—bj|<ﬁ:e for j =1,2,....m-+k,

and obviously
la; — b <e forle{mm+1,... m+Ek}\LI

If 0y k(a) = a;, where i € {mym +1,....,m + k} \ I and o, x(b) = b, where
p € {mm+1,..,m+ k}\ I, then because of a;,b, being maximum values we
obtain

Omi(b) =by, >b; > a; —e=opmi(a) —€
and
O'm,k(a) =a;>ap >b,—e= Um,k(b) — €.

Hence we get |0 k(a) — om k()| < €. Hence the proof. O

Remark 2. From the above theorem it immediately follows that the wusual
limsup function is exactly a function of the second Baire class on s. However,
whether the function o also belongs to the second Baire class or not when consid-
ered on the whole space s is not clear. Therefore the Baire classification of the
function o remains open.
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