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A note on a function associated with the statistical
limit superior∗
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Abstract. We investigate the connectedness and Baire classifica-
tion of a function associated with the statistical limit superior.
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1. Introduction

The concept of statistical convergence was first introduced by Fast [1] and after the
papers of Sǎlát [7] and Fridy [2] it has become one of the most active areas of research
in classical analysis. The concept of statistical limit superior was introduced by
Fridy and Orhan in [4]. In this paper we consider a mapping σ which corresponds
to each real sequence, its statistical limit superior and examine the connectedness
and Baire classification of the function. The motivation of such a study comes from
[6] and [9].

2. Preliminaries

We consider the set s of all real sequences a = (an)∞n=1 endowed with Ferchet metric
d(a, b) given by

d(a, b) =
∞∑

k=1

1
2k

|ak − bk|
1 + |ak − bk| ,

where a = (an)∞n=1 and b = (bn)∞n=1. It is known that the metric space (s, d) is
complete and has the power of continuum .

We now recall the following definitions.
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Let A ⊂ N . Put dn(A) = 1
n

∑n
k=1χA(k) , where χA is the characteristic function

of A. The numbers d(A) = lim
n→∞inf dn(A) and d(A) = lim

n→∞sup dn(A) are called

the lower and upper asymptotic densities of A, respectively. If d(A) = d(A), then
d(A) = d(A) is called the asymptotic density of A .

Definition 1 [see [1]]. A sequence (xk)∞k=1 of real numbers is said to be sta-
tistically convergent to ξ ∈ R, denoted by st − lim x= ξ if for any ε > 0, we have
d(A(ε)) = 0, where A(ε) = {n ∈ N ; |xn − ξ| ≥ ε} .

For a real number sequence x = (xn)∞n=1, let Bx denote the set

Bx = {b ∈ R; d({k ∈ N ;xk > b}) 	= 0}.

Throughout the paper d{K} 	= 0 means either d{K} > 0 or the natural density
of K does not exist.

Definition 2 [see [4]]. For any x = (xn)∞n=1 ∈ s the statistical limit superior
of x is defined by

st− limsup x = sup Bx, if Bx 	= Φ,

= −∞, if Bx = Φ.

It has been shown in [4] that if β = st− limsup x is finite, then for every ε > 0,

d{k ∈ N ;xk > β − ε} 	= 0 and d{k ∈ N ;xk > β + ε} = 0. (1)

Conversely, if (1) holds for every ε > 0, then β = st− limsup x.
We now introduce a mapping σ on the set s in the following way. If a =

(an)∞n=1 ∈ s, then
σ(a) = st− limsup a.

Clearly σ is a mapping from s to [−∞,∞]. If x, y etc. are members of s, we shall
represent them generally by x = (xn)∞n=1, y = (yn)∞n=1 etc. Also N denotes the set
of positive integers and R denotes the set of real numbers.

It can be easily seen by taking appropriate examples that the mapping σ is
surjective but not injective. Further, given any real number t the set {x ∈s;σ(x) =
t} has cardinality c where c is the power of continuum. In the next two sections we
examine the function σ from the viewpoint of connectedness and then continuity
and Baire classification.

3. Connected properties of the mapping σ

In this section we study about the connected properties of the mapping σ : s →
[−∞,∞]. We show that σ is not a connected mapping. While going to prove this
result we got an interesting allied result which we prove first.

Theorem 1. Given any connected set A in (−∞,∞), there is a connected set
B in s such that σ(B) = A.

Proof. We first assume that A is a bounded closed interval.
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Let A = [a, b], −∞ < a < b < ∞. We can always find two sequences x, y ∈ s
such that st − lim x= a and st − lim y= b. Then σ(x) = a, σ(y) = b. Now for
t ∈ [0, 1], consider z(t) = (zn)∞n=1 ∈ s where

zn = txn + (1− t)yn for all n ∈ N .

Then st − lim z= ta + (1 − t)b and σ(z(t)) = ta + (1 − t)b. Now we define a
mapping g : [0, 1]→ s by g(t) = z(t). Since the mapping g is continuous and every
point of [a, b] can be expressed in the form ta+ (1− t)b for some t ∈ [0, 1], we have
g([0, 1]) = B ( say) is connected in s with σ(B) = [a, b].

If A is a bounded open or half open interval, then the modification is evident.
Now let A = [a,∞), −∞ < a < ∞, and let m be the least positive integer

greater than a. Therefore we can write

A = [a,m] ∪ [a,m+ 1] ∪ . . . .

As in the preceding case we can find a nonempty connected set B1 (say) in s
(corresponding to statistically convergent sequences only) such that σ(B1) = [a,m].
Again taking a member x ∈ B1 with σ(x) = m and another y from s ( corresponding
to a statistically convergent sequence) with σ(y) = m + 1, we can construct a
connected set B′

2 such that σ(B′
2) = [m,m+1] and x ∈ B1∩B′

2. Let B2 = B1∪B′
2.

Then B2 is connected and σ(B2) = [a,m + 1]. Repeating this process we obtain
a sequence of nonempty connected sets (Bi)∞i=1, in s with σ(Bi) = [a,m+ (i − 1)]
and Bi ⊂ Bi+1 for all i ∈ N . Then clearly B = ∪∞

i=1Bi, is connected in s and
σ(B) = [a,∞) = A. Similarly, we can prove the result if A is any other type of an
unbounded interval. Hence the proof. ✷

From the next theorem it follows that σ is not a connected mapping. To prove
the theorem we first prove the lemma.

Lemma 1. For a ∈ (0,∞), let Ba = {x ∈ s; there exists j (even) such that
xj+1 = a, xn = (−1)n−1a for all n > j + 1, except a set A ⊂ {j + 1, j + 2, ...} of
density zero }. Then Ba is a connected set in s and σ(Ba) = {a}.

Proof. It is clear that Ba is nonvoid, because, for example the sequence α =
{x1, x2, a,−a, a,−a, ...} is a member of Ba, where x1, x2 are real numbers. Let
x = (xn)∞n=1 ∈ Ba. By definition there exists j ( even) such that xj+1 = a and
xn = (−1)n−1a for all n ∈ {j + 1, j + 2, ...} \ A, where A is a set of density zero.
Since the set of odd integers has density 1

2 and it remains the same even if we delete
a set of density zero, so evidently σ(x) = st − limsup x = a. (However, it should
be noted that the superior limit of x may be different from a). Let t ∈ [0, 1]. We
construct a sequence b(t) = (bn)∞n=1 as follows,

bn = txn + (−1)n−1a, for n ≤ j or n ∈ A,

= a, for n = j + 1,
= (−1)n−1a, for n > j + 1, n /∈ A.

Then b(t) ∈ Ba for each t ∈ [0, 1]. If we consider the mapping gx : [0, 1] → s defined
by gx(t) = b(t), then gx is continuous on [0, 1] and so gx[0, 1] is a connected set in s.
Also gx[0, 1] ⊂ Ba. This inclusion holds for each x ∈ Ba. So

⋃
x∈Ba

gx[0, 1] ⊂ Ba.
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Again,

gx(0) = b(0) = (−1)n−1a, for n ≤ j or n ∈ A,

= a, for n = j + 1,
= (−1)n−1a, for n > j + 1, n /∈ A.

So for each x ∈ Ba, the above sequence is in gx[0, 1]. Hence
⋂

x∈Ba
gx[0, 1] 	= φ.

So
⋃

x∈Ba
gx[0, 1] is connected and the proof will be complete if we can show that

Ba ⊂ ⋃
x∈Ba

gx[0, 1].
Let α ∈ Ba. Then α = (αn)∞n=1 is of the form

αn = xn, for n ≤ j(even),
= a, for n = j + 1,
= (−1)n−1a, for n > j + 1, n /∈ B,

= yn for n ∈ B,

where B is a subset of {n ∈ N ;n > j + 1} which has natural density zero and
xn, yn are real numbers. We show that α ∈ gz[0, 1] for some z ∈ Ba. For this let
z = (zn)∞n=1 be defined by

zn = xn + (−1)na, for n ≤ j(even),
= a, for n = j + 1,
= (−1)n−1a, for n > j + 1, n /∈ B,

= yn + (−1)na, for n ∈ B.

Then z ∈ Ba and gz(1) = α. So α ∈ gz[0, 1]. Thus Ba =
⋃

x∈Ba
gx[0, 1] and so Ba

is connected and σ(Ba) = {a}. This proves the theorem. ✷

Theorem 2. Let A be an arbitrary nonvoid subset of (0,∞). Then there exists
a connected set B ⊂ s such that σ(B) = A.

Proof. Let Ba, a ∈ A has the same meaning as in the preceding lemma. Let
B =

⋃
a∈ABa. Then σ(B) = A. We only show that B is connected, for this we

prove that no two of the sets {Ba, a ∈ A} are separated. Let a1, a2 ∈ A, a1 	= a2.
Let x = (xn)∞n=1 ∈ Ba1 and let ε > 0 be given. Now from the definition of Ba1 ,
there is a j (even) such that

xj+1 = a1,

xn = (−1)n−1a1, for n > j + 1, n /∈ P,

where P ⊂ {j + 1, j + 2, ...} is a set of density zero. Choose an even i ∈ N such
that

∑
k>i

1
2k < ε. Now we construct y = (yn)∞n=1 ∈ s as follows

yk = xk, for k ≤ i(even),
= a2, for k = i+ 1,
= (−1)k−i−1a2, for k > i+ 1, k /∈ Q,

where Q ⊂ {i + 1, i + 2, ...} is a set of density zero. Then y ∈ Ba2 and we have
d(x, y) < ε. This shows that every ε-ball of x contains a member of Ba2 , which
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implies that x ∈ Ba2 . Thus Ba1 ⊂ Ba2 . Similarly, Ba2 ⊂ Ba1 . This completes the
proof of the theorem. ✷

Remark 1. It should be noted that the connected sets Ba or B in the preceding
results are much larger than the corresponding sets which were used to prove the
same property for infinite series [6].

4. Baire classification of σ

We first prove the following result.
Lemma 2. Let a = (an)∞n=1 ∈ s and δ > 0. Then σ(B(a, δ)) = [−∞,∞], where

B(a, δ) = {x ∈ s; d(a, x) < δ}.
The proof is parallel to the proof of lemma 3 [6] and so is omitted.
Before going to the next theorem we state, as a convention that any ray line

x > a, where a is a real number, is to be treated as a neighbourhood of +∞.
similarly for −∞.

Theorem 3. The function σ is discontinuous everywhere in s.
Proof. Let a ∈ s and suppose that −∞ < σ(a) < ∞. Then by Lemma 2,

given ε > 0 there is no δ > 0 such that σ(B(a, δ)) ⊂ (σ(a) − ε, σ(a) + ε). So σ is
discontinuous at a . If σ(a) = +∞ (or −∞), a similar argument shows that σ is
discontinuous at a. ✷

Since σ is discontinuous everywhere in s it cannot belong to zero or the first
Baire class. Next we show that σ belongs to the second Baire class when considered
on a restricted domain.

Let I ⊂ N be a set with natural density zero. Let s(I) be the class of all real
sequences (an)∞n=1 for which

st − lim
n→∞sup an = lim

n→∞sup akn .

where (akn)∞n=1 is the subsequence of (an)∞n=1 corresponding to the index set N \ I.
For the next result we consider the function σ defined on s(I) endowed with the
Frechet metric.

Theorem 4. The function σ is of the second Baire class on s(I).
Proof. Let a = (an)∞n=1 ∈ s(I). Then σ(a) = lim

n→∞sup akn , where (akn)
∞
n=1 is

the subsequence of (an)∞n=1 corresponding to the index set N \ I. Let

σm(a) = sup{an;n ∈ ({m,m+ 1, ...} \ I)}, m = 1, 2, 3, . . .

Then σ(a) = lim
m→∞σm(a).

We put further

σm,k(a) = max{an;n ∈ ({m,m+ 1, . . . ,m+ k} \ I)}, m, k = 1, 2, 3, . . . ,
= 0, if ({m,m+ 1, . . . ,m+ k} \ I) = φ.

Then
σ(a) = lim

m→∞ lim
k→∞

σm,k(a). (2)

We shall now show that for fixed m, k the function σm,k : s(I) → R is continuous
at a, and the theorem then follows from (2).
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If {m,m+ 1, . . . } \ I = φ, then there is nothing to prove. Otherwise let ε > 0
be given. Choose δ > 0 such that δ

1−δ = ε and let b = (bn)∞n=1 ∈ B
(
a, δ

2m+k

)
. Then

d(a, b) < δ
2m+k ,

i.e.
|aj − bj|

1 + |aj − bj | < δ for j = 1, 2, . . . ,m+ k,

which implies that

|aj − bj | < δ

1− δ
= ε for j = 1, 2, ...,m+ k,

and obviously

|al − bl| < ε for l ∈ {m,m+ 1, . . . ,m+ k} \ I.

If σm,k(a) = ai, where i ∈ {m,m + 1, ...,m + k} \ I and σm,k(b) = bp where
p ∈ {m,m + 1, ...,m + k} \ I, then because of ai, bp being maximum values we
obtain

σm,k(b) = bp ≥ bi ≥ ai − ε = σm,k(a)− ε

and

σm,k(a) = ai ≥ ap ≥ bp − ε = σm,k(b)− ε.

Hence we get |σm,k(a)− σm,k(b)| < ε. Hence the proof. ✷

Remark 2. From the above theorem it immediately follows that the usual
limsup function is exactly a function of the second Baire class on s. However,
whether the function σ also belongs to the second Baire class or not when consid-
ered on the whole space s is not clear. Therefore the Baire classification of the
function σ remains open.
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