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Abstract. The Hosoya index of a (molecular) graph is defined as the total number of the
matchings, including the empty edge set, of this graph. Let Un,d be the set of connected
unicyclic (molecular) graphs of order n with diameter d. In this paper we completely
characterize the graphs from Un,d minimizing the Hosoya index and determine the values
of corresponding indices. Moreover, the third smallest Hosoya index of unicyclic graphs is
determined.
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1. Introduction

The Hosoya index of a graph G, denoted by z(G), is a well-known topological index
in combinatorial chemistry. For a graph G, z(G) is defined as the total number
of the matchings (independent edge subsets), including the empty edge set, of the
graph. If we denote by m(G, k) the number of k−matchings, matching with k edges,
of the graph G, then z(G) can also be written as

z(G) =
bn

2 c∑

k=0

m(G, k),

where n is the order of G and bn
2 c is the integer part of n

2 . Other topological indices
of graphs can be seen in [6, 5].

The Hosoya index was introduced by Hosoya [8] in 1971. It has received much
attention since its first introduction (see [2, 15, 4, 12]). Moreover, it plays an im-
portant role in studying the relation between a molecular structure and physical
and chemical properties of certain hydrocarbon compounds. For example, it was
shown [6] that a nearly linear correlation exists between the logarithm of z(G) and
the boiling points of saturated hydrocarbon represented by the graph G. More
precisely, a better reproduction of boiling points was given in [6] by the formula
(a ln z + b)n−

1
2 + c, where a, b, c are empirical parameters.
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It is significant to determine the extremal (maximal or minimal) graphs with
respect to the Hosoya index. By now, many nice results can be found in [2, 15, 4,
12, 11, 6, 10, 3, 13, 18, 16, 17] concerning the extremal graphs with respect to the
Hosoya index. For example, trees [15], unicyclic graphs [4, 13, 18], bicyclic graphs
[2, 3, 17] and so on, are of major interest. Especially, Wagner [15] characterizes
the trees with the given maximum degree maximizing the Hosoya index. Deng et
al. [4] determine all the extremal (maximal and minimal) unicyclic graphs with
respect to the Hosoya index. Deng [2, 3] characterizes the extremal (maximal and
minimal) bicyclic graphs with respect to Hosoya index. Xu and Xu [18] characterize
all the unicyclic graphs of order n and with given maximum degree ∆ maximizing
the Hosoya index. Very recently, the present author [16] has determined the smallest
and the largest Hosoya indices of graphs with a given clique number.

All graphs considered in this paper are finite and simple. Let G be a graph with
vertex set V (G) and edge set E(G). For a subset W of V (G), let G − W be the
subgraph of G obtained by deleting the vertices of W and the edges incident with
them. Similarly, for a subset E′ of E(G), by G − E′ we denote the subgraph of G
obtained by deleting the edges of E′. If W = {v} and E′ = {xy}, the subgraphs
G − W and G − E′ will be written as G − v and G − xy for short, respectively.
For any two nonadjacent vertices x and y of a graph G, G + xy denotes the graph
obtained from G by adding an edge xy. For a vertex v ∈ V (G), we denote by NG(v)
the neighbors of v in G. dG(v) = |NG(v)| is called the degree of v in G. For a vertex
v of graph G, if dG(v) = 1 and uv ∈ E(G), then v is called a pendant vertex, and
e = uv is called a pendant edge. In the following, by Pn, Cn and Sn we always
denote the path, the cycle and the star with n vertices, respectively. For undefined
notations and terminology from graph theory, the readers are referred to [1].

Let Un,d be the set of connected unicyclic graphs of order n with diameter d.
Denote by U(n) the set of connected unicyclic graphs of order n. In Section 2, we list
or prove some lemmas which will be used in the proofs. In Section 3, we characterize
the graphs Un,d with the smallest Hosoya index and determine the corresponding
Hosoya indices. The graph from U(n) with the third smallest Hosoya index is also
determined in this section.

2. Some lemmas

To obtain our main results, we first introduce some new definitions and list or prove
some lemmas as necessary preliminaries.

Lemma 1 (see [12, 6]). Let G be a graph.

(1) If v ∈ V (G), then we have z(G) = z(G− v) +
∑

w∈NG(v)

z(G− {w, v}) ;

(2) If uv ∈ E(G), then we have z(G) = z(G− uv) + z(G− {u, v});

(3) If G1, G2, · · · , Gt are all the components of G, then we have z(G) =
t∏

k=1

z(Gk).
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Lemma 2 (see [12, 6]). Let Fn be the n − th Fibonacci number, that is, F0 = 0,
F1 = F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3. Then we have z(Pn) = Fn+1 and
z(Sn) = n.

A tree is called a d-pode (see [15]) if it contains only one vertex v of degree

d > 2. v is called the center. Denote by R(c1, c2, · · · , cd) the d-pode where
d∑

k=1

ck =

n − 1, ci is the length of the i−th ”ray” going out from the center. That is to

say, R(c1, c2, · · · , cd)− v =
d⋃

k=1

Pck
. Especially, the tree R(c1, c2, c3) will be written

as T (c1, c2, c3) in the following. If we attach two paths of length b3 and b4 to one
pendant vertex of the path Pa+1 in T (a, b1, b2), the obtained tree will be denoted
by H(a + 1; b1, b2; b3, b4). Graphs T (2, 3, 4) and H(3; 2, 1; 2, 3) are shown as two
examples in Fig. 1.

T (2, 3, 4) H(3; 2, 1; 2, 3)

Figure 1: Graphs T (2, 3, 4) and H(3; 2, 1; 2, 3)

For some positive integers k1 ≤ k2 ≤ · · · ≤ km we denote by Ck(kl1
1 , kl2

2 , · · · , klm
m )

a graph obtained by attaching l1, l2, · · · , lm paths of length k1, k2, · · · , km, respec-
tively, to one vertex of Ck. Let C

(l)
k (kl1

1 , kl2
2 , · · · , klm

m ; pq1
1 , pq2

2 , · · · , pqt

t ) be a graph
obtained by attaching l1 paths of length k1, l2 paths of length k2, · · · , lm paths of
length km to a vertex, say v0, of Ck and attaching q1 paths of length p1, q2 paths of
length p2, · · · , qt paths of length pt to another vertex in Ck at distance l from v0.
For example, the graphs C5(12, 22, 31) and C

(2)
5 (12, 31; 41) are shown in Fig. 2.

C5(12, 22, 31)
C

(2)
5 (12, 31; 41)

Figure 2: The graphs C5(12, 22, 31) and C
(2)
5 (12, 31; 41)

Lemma 3 (see [15]). Let G 6= K1 be a connected graph, v ∈ V (G). G(k, n− 1− k)
is the graph resulting from attaching at v two paths of length k and n − 1 − k,
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respectively. Let n = 4m + j, where j ∈ {1, 2, 3, 4} and m ≥ 0. Then

z(G(1, n− 2)) < z(G(3, n− 4)) < · · · < z(G(2m + 2l − 1, n− 2m− 2l))
< z(G(2m,n− 1− 2m)) < · · · < z(G(2, n− 3))
< z(G(0, n− 1)),

where l = b j−1
2 c, and G(0, n−1) can also be viewed as a graph obtained by attaching

at v ∈ V (G) a path of length n− 1.

Lemma 4 (see [2]). Let P = u0u1u2 · · ·utut+1 be a path or a cycle (if u0 = ut+1)
in a graph G, where the degrees of u1, u2, · · ·ut in G are 2, t ≥ 1. G1 denotes the
graph that results from identifying ur(0 ≤ r ≤ t) with the vertex vk of a simple path
v1v2 · · · vk, G2 = G1 − urur+1 + ur+1v1 (see Fig. 3). Then we have z(G1) < z(G2).

......................

..............

..........

.................

...............

........................
G

u0

......

u1

ur

vk−1

v1
ur+1

ut+1

u0 ur

vk−1

v1

ur+1ut+1

−→

G1 G2

..........

Figure 3: Graphs in Lemma 4

Lemma 5 (see [4]). Fn = FkFn−k+1 + Fk−1Fn−k for 1 ≤ k ≤ n.

The following lemma is important and useful to continue the next proofs.

Lemma 6 (see [9]). Let n = 4s + r, where n, s and r are nonnegative integers with
0 ≤ r ≤ 3.

(1) If r ∈ {0, 1}, then

F1Fn+1 > F3Fn−1 > F5Fn−3 > · · ·F2s+1F2s+r+1 > F2sF2s+r+2

> F2s−2F2s+r+4 > · · · > F4Fn−2 > F2Fn;

(2) If r ∈ {2, 3}, then

F1Fn+1 > F3Fn−1 > F5Fn−3 > · · ·F2s+1F2s+r+1 > F2s+2F2s+r

> F2sF2s+r+2 > · · · > F4Fn−2 > F2Fn.

From Lemma 6, it is not difficult to deduce the following result.

Corollary 1. The sequence {FkFn−k} reaches its minimum at k = 2 or k = n− 2.
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Lemma 7 (see [18]). For two positive integers k and m, we have

FkFm − Fk−1Fm+1 =
{

(−1)k−1Fm−k+1 if k ≤ m;
(−1)m−1Fk−m−1 if k > m.

Corollary 2. For a positive integer k, we have F 2
k − Fk−1Fk+1 = (−1)k−1.

If positive integers b1, b2, b3, b4 are fixed and a > 2 is an integer, the Hosoya index
z(H(a; b1, b2; b3, b4)) will be written as za for short.

Lemma 8 (see [15]). For four given positive integers b1, b2, b3, b4 and an integer
a > 2, we have za = za−1 + za−2.

Corollary 3. For every integer n > 2, we have zn = Fn−1z2 + Fn−2z1.

Proof. First we prove an equality below analogously to that in Lemma 6.

zn = Fkzn−k+1 + Fk−1zn−k (∗)
We prove equality (∗) by induction on k.
From Lemma 8, we have zn = F2zn−1 + F1zn−2, which means that equality (∗)

holds for k = 2.
Assume that zn = Fk−1zn−k+2 + Fk−2zn−k+1. Then, by Lemma 8, we have

zn = Fk−1(zn−k+1 + zn−k) + Fk−2zn−k+1

= (Fk−1 + Fk−2)zn−k+1 + Fk−1zn−k

= Fkzn−k+1 + Fk−1zn−k.

Thus equality (∗) holds immediately. By choosing k = n − 1 in equality (∗), the
result in this lemma is obtained.

Lemma 9 (see [10]). Let H, X, Y be three connected, pairwise disjoint graphs. Sup-
pose that u, v are two vertices of H, v′ is a vertex of X, u′ is a vertex of Y . Let G be
the graph obtained from H,X, Y by identifying v with v′ and u with u′, respectively.
Let G∗1 be the graph obtained from H, X, Y by identifying vertices v, v′, u′, and G∗2
be the graph obtained from H, X, Y by identifying vertices u, u′, v′ as shown in Fig.
4. Then we have

z(G∗1) < z(G) or z(G∗2) < z(G).

H H HX X X

G G∗1 G∗2

Figure 4: Graphs G, G∗1 and G∗2 in Lemma 9

Y
Y

Y

If H1, H2 are two graphs with V (H1)
⋂

V (H2) = {v}, then G = H1vH2 is defined
as a new graph with V (G) = V (H1)

⋃
V (H2) and E(G) = E(H1)

⋃
E(H2).
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Lemma 10 (see [11]). Let H be a graph and Tl a tree of order l ≥ 2 with V (H)
⋂

V (Tl)
= {v}. Then we have z(HvTl) ≥ z(HvSl). And the equality holds if and only if
HvTl

∼= HvSl, where v is identified with the center of the star Sl in HvSl.

Lemma 11 (see [17]). Let G1 and G2 be two graphs and vi a vertex of Gi for
i = 1, 2. If both z(G1) ≤ z(G2) and z(G1 − v1) ≤ z(G2 − v2), and at least one of
the inequalities is strict, then we have z(G1v1Tl) < z(G2v2Tl), where Tl is a tree of
order l ≥ 2 and there is a vertex v in Tl such that v is identified with the vertex v1

in G1 when G1v1Tl is formed, and with v2 in G2 when G2v2Tl is formed.

Corollary 4. Let G be a graph and v1, v2 two vertices of G such that z(G− v1) <
z(G − v2). Suppose that Tl is a tree of order l ≥ 2 and v1, v2 in Tl represent the
same vertex in it. Then we have z(Gv1Tl) < z(Gv2Tl).

In the following lemma the values of the Hosoya indices of the two graphs defined
above are determined.

Lemma 12.

z(T (a, b, c)) = Fa+c+2Fb+1 + Fa+1Fc+1Fb,

z(C(k)
2k (1l,m1; h1)) = Fh+1F2k+m+1 + FhFkFk+m+1

+Fm+1[Fh+1(lF2k + F2k−1) + FhFk(lFk + Fk−1)].

Proof. Using Lemma 1 (1) to the unique vertex of degree 3 in graph T (a, b, c), and
from Lemma 1 (3) and Lemmas 2, 5, we have

z(T (a, b, c)) = Fa+1Fb+1Fc+1 + FaFb+1Fc+1 + Fa+1FbFc+1 + Fa+1Fb+1Fc

= Fa+2Fb+1Fc+1 + Fa+1FbFc+1 + Fa+1Fb+1Fc

= Fa+c+2Fb+1 + Fa+1Fc+1Fb.

Now we start to determine the value of z(C(k)
2k (1l,m1; h1)). Set

A = z(C(k)
2k (1l, m1; h1)).

Considering the formula of z(T (a, b, c)), applying Lemma 1 (1) to the vertex of
degree 1+l+2=l+3 in graph C

(k)
2k (1l,m1;h1), similarly we get

A = z(Pm)z(T (k − 1, k − 1, h)) + lz(Pm)z(T (k − 1, k − 1, h))
+z(Pm−1)z(T (k − 1, k − 1, h)) + 2z(Pm)z(T (k − 2, k − 1, h))

= [(l + 1)Fm+1 + Fm](Fh+1F2k + FhF 2
k ) + 2Fm+1(Fh+1F2k−1 + FhFkFk−1)

= Fh+1Fm+1(lF2k + F2k+1 + F2k−1) + FmFh+1F2k

+FhFk[Fm+1((l + 1)Fk + 2Fk−1) + FmFk]
= Fh+1F2k+m+1 + Fm+1Fh+1(lF2k + F2k−1)

+FhFk[Fm+1(lFk + Fk+1 + Fk−1) + FmFk]
= Fh+1F2k+m+1+Fm+1Fh+1(lF2k + F2k−1)+FhFk[Fm+k+1+Fm+1(lFk + Fk−1)]
= Fh+1F2k+m+1+FhFkFk+m+1+Fm+1[Fh+1(lF2k + F2k−1)+FhFk(lFk + Fk−1)].

Therefore the proof of this lemma is completed.
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Lemma 13 (see [14]). Let G be a connected graph with v1v2 ∈ E(G) such that
G − v1v2 = G1

⋃
G2 and vi ∈ V (Gi) for i = 1, 2. Denote by G′ the graph obtained

from G by deleting the edge v1v2 and identifying v1 with v2 to form a new vertex v
and attaching a pendent vertex w to v. Then we have z(G′) < z(G).

3. Main results

In this section we will determine the graphs from Un,d minimizing the Hosoya index
for all the possible values of d. If n = 3, there is only one unicyclic graph C3,
and so there is nothing to prove. When n = 4, there are exactly two connected
unicyclic graphs C4 and C3(11). From Lemmas 1 and 2, it is easy to find that
z(C3(11)) < z(C4), which finishes our proof for n = 4. If d = n − 1, there exists
only one graph, i.e. a path Pn, but it does not belong to Un,d. For d = 1, any two
vertices in a graph of this form are all adjacent, so it is the complete graph Kn, but
it is not a unicyclic graph when n > 4. Therefore, we always assume that n > 4 and
1 < d < n− 1 in the following.

For any graph G ∈ Un,d, a path with length d of G is called the main path of G,
the only cycle of G is called a unique cycle of G. Note that the number of main paths
in G ∈ Un,d is possibly more than one. The following lemma presents a property of
graphs from Un,d with the smallest Hosoya index.

Lemma 14. Suppose that G ∈ Un,d has the smallest Hosoya index. Let C be a
unique cycle of G. Then there exists a main path P of G such that V (P )

⋂
V (C) 6=

Φ.

Proof. Let P = v1v2 · · · vdvd+1. To the contrary, there exists a vertex u0 ∈ V (C)
such that the vertices u0 and vj (where j ∈ {2, 3, · · · , d}) are linked by a unique
path P0 = u0u1u2 · · ·ul−1ul, where ul = vj . Assume that in G a subtree T i

mi
(with

the vertex ui included) of order mi is attached at ui for i ∈ {0, 1, · · · , l − 1, l}, and

l∑

i=0

mi = m + l.

Now we construct a new graph G′ as shown in Fig. 5, which is obtained from G by

..................... .............

......... ...........

.........
.. ........

v1 v2 u0 = u = vj

vd

vd+1

1 2 l
m

Figure 5: Main path and unique cycle in graph G′

replacing all subtrees T i
mi

by stars Smi with ui as its center for i ∈ {0, 1, · · · , l−1, l},
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and then deleting all the edges u0u1, · · · , uiui+1, · · · , ul−1ul and identifying these
vertices u0, u1, · · · , ul−1, ul to form a new vertex u(= u0) and attaching l pendant
vertices to the vertex u(= u0). Note that G′ ∈ Un,d. Applying repeatedly Lemma 13
and considering Lemma 10, we have z(G′) < z(G). This is a contradiction to the
choice of G, which completes the proof of this lemma.

Next we will look for the graph from Un,d with the smallest Hosoya index. To
do it, we first introduce two subsets of Un,d. Let

U (1)
n,d = {G : G ∈ Un,d, the main path of G and the unique cycle of G have exactly

one vertex in common}
and

U (2)
n,d = {G : G ∈ Un,d, the main path of G and the unique cycle of G have at least

two vertices in common}.
From Lemma 14, to determine the graph from Un,d with the smallest Hosoya index,
it suffices to find the graph from U (i)

n,d with minimal the Hosoya index for i = 1, 2,
respectively.

Theorem 1. For any graph G ∈ U (1)
n,d, we have z(G) ≥ 2(n − d)Fd + 2Fd+1. The

equality holds if and only if G ∼= C3(1n−d−2, (d− 1)1).

Proof. Suppose that G0 ∈ U (1)
n,d has the smallest Hosoya index. By the definition of

U (1)
n,d, we assume that P = v1v2 · · · vdvd+1 and Ck is the main path and the unique

cycle of G, respectively, and V (P )
⋂

V (Ck) = {vj}, where j ∈ {2, 3, · · · , d}.
Note that the subgraph of G0 induced by V (P )

⋃
V (Ck) is just

Ck((j − 1)1, (d + 1− j)1) ∼= GM .

Set x = n − |V (P )
⋃

V (Ck)|, by Lemmas 9, 10, we find that either G0
∼= GMvjSx,

or G0
∼= GMutSx, where ut ∈ V (Ck) \ {vj}.

Now we claim that k = 3, that is, the length of Ck in GM is 3. Otherwise, we
have k ≥ 4. If G0

∼= GMvjSx, after decreasing the length of Ck by 1 and attaching
a pendant edge to vertex vj in G0, by Lemma 4, the obtained graph has a smaller
Hosoya index than G0. If G0

∼= GMutSx, then, similarly, G0 can be changed into G′0
with z(G′0) < z(G0) by decreasing the length of Ck by 1 and attaching a pendant
edge to ut in G0. These are two contradictions to the choice of G0, which complete
the proof of this claim.

Let
GC

∼= C3((j − 1)1, (d + 1− j)1)

and y = n − d − 3. By now we have found that G0 ∈ {GCvjSy, GCviSy, GCutSy},
where j, i are defined as above and t ∈ {1, 2}. Graphs GCvjSy, GCviSy, GCu1Sy

are shown as three examples in Fig. 6. By Lemma 9, we claim that GCviSy and
GCutSy with t = 1, 2 cannot have the smallest Hosoya index. Thus we find that G0

must be of the form GCvjSy.
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.............. .........

........... ...............

................ ................. .............. .......... ..............
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vj

........u1 u2 u1
u1 u2u2 .................

vi vj

1 2 y 1 2 y

1
2
y

GCvjSy

vj

GCviSy

GCu1Sy

Figure 6: Graphs GCvjSy, GCviSy and GCu1Sy

Note that
GCvjSy

∼= C3(1y, (j − 1)1, (d + 1− j)1).

From Lemma 3, we have

z(GCvjSy) ≥ z(C3(1n−d−2, (d− 1)1))

with equality holding if and only GCvjSy
∼= C3(1n−d−2, (d− 1)1). By Lemmas 1, 2,

it is not difficult to obtain

z(C3(1n−d−2, (d− 1)1)) = 2(n− d)Fd + 2Fd+1,

which completes the proof of this theorem.

To determine the graph from U (2)
n,d with the smallest Hosoya index, we divide this

set into two subsets:
U (2)

n,d = U (2)1
n,d

⋃
U (2)2

n,d ,

where
U (2)1

n,d = {G : G ∈ U (2)
n,d, g(G) = 3}

and
U (2)2

n,d = {G : G ∈ U (2)
n,d, g(G) > 3}.

The following theorem presents the graph from U (2)1
n,d with the minimal Hosoya index.

Theorem 2. For any graph G ∈ U (2)1
n,d , we have

z(G) ≥ (n− d + 1)Fd+1.

The equality holds if and only if G ∼= C
(1)
3 (1n−d−1; (d− 2)1).

Proof. Suppose that G0 ∈ U (2)1
n,d has the minimal Hosoya index. Let P = v1v2 · · ·

vdvd+1 and Ck be the main path and the unique cycle of G, respectively. From the
definition of the set U (2)1

n,d , it is easy to see that Ck = C3, and there exist two vertices
vj , vj+1, where j ∈ {2, 3, · · · , d−1} from V (P ) and another vertex, say v0, such that
C3 = vjvj+1v0vj . Denote by GC the subgraph of G0 induced by V (P )

⋃{v0}, that
is to say,

GC
∼= C

(1)
3 ((j − 1)1; (d− j)1).
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Let y = n− d− 2. In a similar way to that in the proof of Theorem 1, we claim that
G0 must be of the form GCv0Sy, or of the form GCvtSy, where t ∈ {j, j + 1}, or of
the form GCviSy, where i ∈ {2, 3, · · · , d− 1} \ {j, j + 1}.

Now we claim that G0 is of the form GCvtSy, where t ∈ {j, j + 1} or GCv2Sy

with j > 2. If not, G0 must be of the form GCv0Sy, or of the form GCviSy, where
i ∈ {2, 3, · · · , d− 1} \ {j, j + 1}. If G0 is of the form GCv0Sy, we construct a graph
G′0 by deleting the path Pj attached at vj of GC and attaching a path Pj to the
vertex v0. Note that G′0 ∼= GCvjSy, by Lemma 9, we have

z(G′0) = z(GCvjSy) < z(GCv0Sy),

this is impossible because of the minimality of z(GCv0Sy). If G0 is of the form
GCviSy, where i ∈ {2, 3, · · · , d−1}\{j, j +1}, without loss of generality, we assume
that i ∈ {2, 3, · · · , j − 1}. From Lemmas 1, 2 and 5, we have

z(GC − vj) = FjFd+3−j ,

z(GC − vi) = Fiz(C(1)
3 ((j − i− 1)1,

(d− j)1)) = Fi(Fd−i+3 + Fj−iFd−j+1).

When j is fixed, from Corollary 1, z(GC − vi) reaches its minimum at i = 2, and its
minimum is Fd+1 + Fj−2Fd−j+1. Thus we have

z(GC − vi)− z(GC − vj)≥Fd+1 + Fj−2Fd−j+1 − FjFd+3−j

= FjFd+2−j + Fj−1Fd+1−j + Fj−2Fd−j+1−FjFd+3−j = 0.

By Lemma 11, we have z(GCvjSy) < z(GCviSy) when i > 2. Therefore this claim
holds immediately.

Denote by G
(j)
2 the graph GCv2Sy with j ≥ 3. Let Gj be the graph GCvjSy with

j ∈ {2, 3, · · · , d − 1}. Applying Lemma 1 (1) to the vertex of maximum degree in
Gj and G

(j)
2 , respectively, by Lemmas 2, 5, we have

z(Gj) = (y + 1)FjFd+3−j + Fj−1Fd+3−j + FjFd+2−j + FjFd+1−j

= yFjFd+3−j + 2FjFd+3−j + Fj−1Fd+3−j

= yFjFd+3−j + Fj+2Fd+3−j ,

z(G(j)
2 ) = (y + 2)(Fd+1 + Fj−2Fd−j+1) + z(C(1)

3 ((j − 4)1; (d− j)1)
= (y + 2)(Fd+1 + Fj−2Fd−j+1) + Fd + Fj−3Fd−j+1.

Note that a simple calculation shows the validity of z(G(j)
2 ) for j = 3 or 4. In view

of Corollary 1, the minimum of z(Gj) is attained at j = 2, and its minimum is
(y + 3)Fd+1. Moreover, considering y = n− d− 2 and d < n− 1, we have

z(G(j)
2 )− (y + 3)Fd+1 = (y + 2)Fj−2Fd−j+1 + Fd + Fj−3Fd−j+1 − Fd+1

= (n− d)Fj−2Fd−j+1 + Fj−3Fd−j+1 − Fd−1

≥ 2Fj−2Fd−j+1 + Fj−3Fd−j+1 − Fd−1

= FjFd−j+1 − Fd−1 > F2Fd−1 − Fd−1 = 0.
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Note that the last inequality holds since in G
(j)
2 , j ≥ 3. Therefore we find that each

graph G
(j)
2 for j ≥ 3 has a larger Hosoya index than Gj (which is just GCvjSy) with

j = 2, which has the smallest Hosoya index in the set {GCvjSy : j = 2, 3, · · · , d−1}.
We have now proven that C

(1)
3 (1n−d−1; (d− 2)1) from U (2)1

n,d has the minimal Hosoya
index (n− d + 1)Fd+1, which completes the proof of this theorem.

Let

G0 = {C(k)
2k (m1, 1y;h1) : y = n− d− k, k ≥ 2,m ≥ 0, h ≥ 0, and m + h ≥ 1}.

Before determining the minimal Hosoya index of graphs from U (2)2
n,d , we first prove

the following lemma.

Lemma 15. Suppose that G0 ∈ U (2)2
n,d has the minimal Hosoya index. Then G0 ∈ G0.

Proof. From the definition of U (2)2
n,d , by Lemmas 9, 10, we find that G0 must be

a graph obtained by attaching x = n − m − l − h pendant edges to one of the
non-pendant vertices of C

(k)
l (m1; h1) with l ≥ 2k and k + m + h = d, that is,

G0
∼= C

(k)
l (m1; h1)v0Sx, where v0 is a non-pendant vertex of C

(k)
l (m1; h1).

Now we claim that in C
(k)
l (m1; h1)v0Sx, l = 2k. Assume that, to the contrary,

l − k + 1 > k. Considering the structure of C
(k)
l (m1, ; h1)v0Sx, after decreasing the

length of path Pl−k+1 (which is on the cycle Cl in G0, but not on the main path
of G0) by 1 and attaching a pendant edge to one vertex of resulting path Pl−k, by
Lemma 4, the obtained graph has a smaller Hosoya index. This is a contradiction to
the choice of G0, which completes the proof of this claim. Let y = n−d−k. Note that
C

(k)
2k (m1; h1) in G0 is a graph as shown in Fig. 7. Therefore G0 must be in the set

G0 of the type C
(k)
2k (m1; h1)viSy, where i ∈ {2, 3, · · · ,m,m+k+2,m+k+3, · · · , d},

or of the type C
(k)
2k (m1; h1)ujSy, where j ∈ {1, 2, · · · , k − 1}.

.............. ...............
............... ...............

................
......................

..............

v1 v2

vi

vm

u0

u1

u′1

u2

u′2

uj

u′j

uk−1

u′k−1

uk

vm+k+2

vd vd+1

Figure 7: The graph C
(k)
2k (m1; h1) in G0

If G0 is in the set G0, we are done. In the following we use GC to denote
C

(k)
2k (m1; h1). If G0 is of the type C

(k)
2k (m1; h1)viSy, where i ∈ {2, 3, · · · ,m, m +

k + 2,m + k + 3, · · · , d + 1}, without loss of generality, we assume that G0
∼=

C
(k)
2k (m1; h1)viSy with i ∈ {2, 3, · · · ,m}. Set A = z(GC − vi) − z(GC − u0), by

Lemmas 1, 2, 5 and 12, we have

z(GC − u0) = Fm+1(F2kFh+1 + (Fk)2Fh),
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z(GC − vi) = Fiz(C(k)
2k ((m− i)1;h1))

= Fi[(Fm−i+1 + Fm−i)z(T (h, k − 1, k − 1))
+2Fm−i+1z(T (h, k − 1, k − 2))]

= Fi[Fm−i+2(F2kFh+1 + (Fk)2Fh)
+2Fm−i+1(F2k−1Fh+1 + FkFk−1Fh)],

and

A = (FiFm−i+2−Fm+1)(F2kFh+1+(Fk)2Fh)+2FiFm−i+1(F2k−1Fh+1+FkFk−1Fh)
= 2FiFm−i+1(F2k−1Fh+1 + FkFk−1Fh)− Fi−1Fm−i+1(F2kFh+1 + (Fk)2Fh)
= Fh+1Fm−i+1(Fi2F2k−1 − Fi−1F2k) + FkFhFm−i+1(Fi2Fk−1 − Fi−1Fk) > 0.

Note that the last inequality holds since 2F2k−1 > F2k and 2Fk−1 ≥ Fk if k ≥ 2.
By Lemma 11, we have z(GCu0Sy) < z(GCviSy) for i ∈ {2, 3, · · · , m}. This is
impossible because of the minimality of z(G0) = z(GCviSy).

Next we will prove that for any graph G′ of the type C
(k)
2k (m1; h1)ujSy with

j ∈ {1, 2, · · · , k − 1}, there exists a graph G′′ ∈ G0 such that z(G′′) < z(G′). Set
j = k1 + 1 and k − j = k2 + 1, i.e., k1 + k2 = k − 2. To do this, we distinguish the
following two cases.

Case 1. k is odd.
Let G′C = GC − {v1, v2, · · · , vm} and T

(0)
m+y be a tree as shown in Fig. 8. Note

that GCu0Sy
∼= G′Cu0T

(0)
m+y. By Lemma 9, we have z(GCu0Sy) < z(GCujSy) or

z(G′CujT
(0)
m+y) < z(GCujSy), where G′CujT

(0)
m+y is a graph obtained by identifying

uj of G′C with the vertex of maximum degree in T
(0)
m+y. If the former holds, we

are done for this case. If not, we will compare the values of z(G′Cu0T
(0)
m+y) and

..................

..................
vm vm−1

v2

v1

1
2 y

Figure 8: The tree T
(0)
m+y

z(G′CujT
(0)
m+y). From Lemma 12, we have

z(G′C − u0) = F2kFh+1 + (Fk)2Fh,

z(G′C − uj) = Fh+1Fk+k1+1+k2+1 + FhFk+k1+1Fk2+1

= Fh+1F2k + FhFk+k1+1Fk2+1,

and
z(G′C − u0)− z(G′C − uj) = Fh((Fk)2 − Fk+k1+1Fk2+1).

Since k is odd and k1 + k2 = k − 2, one of k1 and k2 is even. If k2 is even,
From Lemma 6, we have Fk+k1+1Fk2+1 > (Fk)2, that is to say, z(G′C − u0) <
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z(G′C − uj). By Lemma 11, we have z(G′Cu0T
(0)
m+y) = z(GCu0Sy) < z(G′CujTm+y).

Therefore z(GCu0Sy) < z(G′CujT
(0)
m+y) < z(GCujSy). When k1 is even, similarly,

z(GCukSy) < z(GCujSy), which finishes the proof for this case.

Case 2. k is even.

If k1 and k2 are both even, we can obtain the result as desired in a way similar
to that in the proof of Case 1.

So it suffices to deal with the case when k is even and k1, k2 are both odd. Note
that GC−uj is just H(k+1; m, k1;h, k2). Set z(GC−uj) = zk+1, z(GC−u0) = z

(0)
C ,

z(GC − uk) = z
(k)
C , and B = zk+1 − z

(0)
C + zk+1 − z

(k)
C . Note that k1 + k2 = k − 2,

by Lemmas 1, 2, 5 and Corollary 3, we have

zk+1 = Fkz2 + Fk−1z1

= Fk(Fm+k1+2Fh+k2+2 + Fm+1Fh+1Fk1+1Fk2+1)
+Fk−1[Fm+1Fh+1Fk1+1Fk2+1 + Fm+1Fh+1Fk1Fk2+1 + Fm+1Fh+1Fk1+1Fk2

+(FmFh+1 + Fm+1Fh)Fk1+1Fk2+1]
= Fk[(Fm+1Fk1+2 + FmFk1+1)(Fh+1Fk2+2+FhFk2+1)+Fm+1Fh+1Fk1+1Fk2+1]

+Fk−1[Fm+1Fh+1Fk1+k2+2 + (FmFh+1 + Fm+1Fh)Fk1+1Fk2+1]
= Fk[Fm+1Fh+1Fk1+k2+3 + FmFh+1Fk1+1Fk2+2 + Fm+1FhFk1+2Fk2+1

+FmFhFk1+1Fk2+1]
+Fk−1[Fm+1Fh+1Fk1+k2+2 + (FmFh+1 + Fm+1Fh)Fk1+1Fk2+1]

= Fm+1Fh+1Fk(Fk+1 + Fk−1) + FmFh+1Fk1+1(FkFk2+2 + Fk−1Fk2+1)
+Fm+1FhFk2+1(FkFk1+2 + Fk−1Fk1+1) + FmFhFkFk1+1Fk2+1

= Fm+1Fh+1Fk(Fk+1 + Fk−1)+FmFh+1Fk1+1Fk+k2+1+Fm+1FhFk2+1Fk+k1+1

+FmFhFkFk1+1Fk2+1,

z
(0)
C = Fm+1(F2kFh+1 + (Fk)2Fh),

z
(k)
C = Fh+1(F2kFm+1 + (Fk)2Fm),

and

B = 2zk+1 − z
(0)
C − z

(k)
C

= 2Fm+1Fh+1[Fk(Fk+1 + Fk−1)− F2k] + 2FmFh+1Fk1+1(Fk+1Fk2+1 + FkFk2)
+2Fm+1FhFk2+1(Fk+1Fk1+1 + FkFk1) + 2FmFhFkFk1+1Fk2+1

−(Fk)2(FmFh+1 + Fm+1Fh)
= (2Fk+1Fk1+1Fk2+1 − (Fk)2)(FmFh+1 + Fm+1Fh)

+2Fk(FmFh+1Fk1+1Fk2 + Fm+1FhFk2+1Fk1 + FmFhFk1+1Fk2+1)
> (2Fk+1Fk1+1Fk2+1 − (Fk)2)(FmFh+1 + Fm+1Fh).

Considering k1 + k2 = k− 2, and k1, k2 are both odd, and k is even (clearly, k ≥ 4),
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by Lemma 6 and Corollary 2, we have

B > (2Fk−2Fk+1 − (Fk)2)(FmFh+1 + Fm+1Fh)
> (Fk−1Fk+1 − (Fk)2)(FmFh+1 + Fm+1Fh)
= FmFh+1 + Fm+1Fh > 0.

So we have zk+1 > z
(0)
C , or zk+1 > z

(k)
C , that is, z

(0)
C < zk+1, or z

(k)
C < zk+1. By

Lemma 11, we have z(GCu0Sy) < z(GCujSy) or z(GCukSy) < z(GCujSy), which
finishes the proof for this case since GCu0Sy and GCukSy all belong to G0.

By now the proof of this lemma is completed.

Theorem 3. For any graph G ∈ U (2)2
n,d , we have

z(G) ≥ Fd+2 + (n− d− 1)Fd + (n− d + 1)Fd−2.

The equality holds if and only if G ∼= C
(2)
4 (1n−d−1, (d− 3)1).

Proof. Suppose that G0 ∈ U (2)2
n,d has the minimal Hosoya index. From Lemma 15,

we find that G0 is of the form C
(k)
2k (m1, 1y; h1) with y = n−d−k, k ≥ 2,m ≥ 0, h ≥ 0,

and m+h ≥ 1. Set z(C(k)
2k (m1, 1y;h1)) = z(k), z(C(k−1)

2k−2 (m1, 1y+1; (h+1)1)) = z(k−1)

and ∆ = z(k) − z(k−1). From Lemma 12, for k ≥ 3, we have

z(k) = Fh+1F2k+m+1 + FhFkFk+m+1 + Fm+1[Fh+1(yF2k + F2k−1)
+FhFk(yFk + Fk−1)],

z(k−1) = Fh+2F2k+m−1 + Fh+1Fk−1Fk+m

+Fm+1[Fh+2((y + 1)F2k−2 + F2k−3) + Fh+1Fk−1((y + 1)Fk−1 + Fk−2)],

and

∆ = Fh+1F2k+m+1 + FhFkFk+m+1 + Fm+1[Fh+1(yF2k + F2k−1)
+FhFk(yFk + Fk−1)]
−Fh+2F2k+m−1 − Fh+1Fk−1Fk+m

−Fm+1[Fh+2((y + 1)F2k−2 + F2k−3) + Fh+1Fk−1((y + 1)Fk−1 + Fk−2)]
= (Fh+1F2k+m+1 − Fh+2F2k+m−1) + (FhFkFk+m+1 − Fh+1Fk−1Fk+m)

+Fm+1[y(Fh+1F2k − Fh+2F2k−2) + y(Fh(Fk)2 − Fh+1(Fk−1)2)
+(Fh+1F2k−1 − Fh+2F2k−3) + (FhFkFk−1 − Fh+1Fk−1Fk−2)
−(Fh+2F2k−2 + Fh+1(Fk−1)2)].

Set

A = Fh+1F2k+m+1 − Fh+2F2k+m−1,

B = FhFkFk+m+1 − Fh+1Fk−1Fk+m,

D = Fh+1F2k − Fh+2F2k−2 + Fh(Fk)2 − Fh+1(Fk−1)2,
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and

E = (Fh+1F2k−1 − Fh+2F2k−3) + (FhFkFk−1 − Fh+1Fk−1Fk−2)
−(Fh+2F2k−2 + Fh+1(Fk−1)2).

Then, by Lemma 5, we have

D = Fh+1F2k − Fh+1F2k−2 − FhF2k−2 + Fh(Fk)2 − Fh(Fk−1)2 − Fh−1(Fk−1)2

= Fh+1F2k−1 − FhF2k−2 + FhFk+1Fk−2 − Fh−1(Fk−1)2

= Fh+1F2k−1 − FhFkFk−3 − Fh−1(Fk−1)2

= Fh+1FkFk−2 − FhFkFk−3 + Fh+1Fk+1Fk−1 − Fh−1(Fk−1)2 > 0,

B = Fh(Fk−1 + Fk−2)(Fk+m + Fk+m−1)− (Fh + Fh−1)Fk−1Fk+m

= FhFk−2Fk+m+1 + FhFk−1Fk+m−1 − Fh−1Fk−1Fk+m

=
1
2
(Fh2Fk−2Fk+m+1 − Fh−1Fk−1Fk+m + FhFk−12Fk+m−1 − Fh−1Fk−1Fk+m)

> 0,

E = (Fh+1F2k−2 + Fh+1F2k−3 − Fh+1F2k−3 − FhF2k−3)
+(FhFkFk−1 − FhFk−1Fk−2 − Fh−1Fk−1Fk−2)− (Fh+2F2k−2 + Fh+1(Fk−1)2)

= Fh+1F2k−2 − FhF2k−3 + Fh(Fk−1)2 − Fh−1Fk−1Fk−2

−(Fh+2F2k−2 + Fh+1(Fk−1)2)
= −FhF2k−2 − Fh−1(Fk−1)2 − FhF2k−3 − Fh−1Fk−1Fk−2

= −FhF2k−1 − Fh−1FkFk−1,

A = Fh+1F2k+m + Fh+1F2k+m−1 − Fh+1F2k+m−1 − FhF2k+m−1

= Fh+1F2k+m − FhF2k+m−1.

So we have

∆ = A + B + yFm+1D + Fm+1E

> A + Fm+1E + B

= Fh+1F2k+m − FhF2k+m−1 − Fm+1(FhF2k−1 + Fh−1FkFk−1) + B

= FhF2k+m + Fh−1F2k+m − FhF2k+m−1 − Fm+1FhF2k−1

−Fm+1Fh−1FkFk−1 + B

= FhF2k+m−2 + Fh−1F2k+m − Fm+1FhF2k−1 − Fm+1Fh−1FkFk−1 + B

= Fh(F2k+m−2 − Fm+1F2k−1) + Fh−1(F2k+m − Fm+1FkFk−1) + B

= Fh(Fm+1F2k−2 + FmF2k−3 − Fm+1F2k−1)
+Fh−1(FmF2k−1 + Fm+1F2k − Fm+1FkFk−1) + B

= Fh(FmF2k−3 − Fm+1F2k−3) + Fh−1(FmF2k−1 + Fm+1FkFk+1) + B

= Fh−1(FmF2k−1 + Fm+1FkFk+1)− FhFm−1F2k−3 + B.
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Then we have

∆ > A + Fm+1E

= Fh−1FmF2k−1 − Fh−1Fm−1F2k−3 + Fh−1Fm+1FkFk+1 − Fh−2Fm−1F2k−3

≥ Fh−1Fm−1F2k−2 + Fh−2Fm−1(FkFk+1 − F2k−3)
= Fh−1Fm−1F2k−2 + Fh−2Fm−1(FkFk+1 − FkFk−2 − Fk−1Fk−3)
= Fh−1Fm−1F2k−2 + Fh−2Fm−1Fk−1(2Fk − Fk−3) ≥ 0, if h ≥ 2;

∆ > A + Fm+1E + B

= Fk−2Fk+m+1 + Fk−1Fk+m−1 − Fm−1F2k−3

> FkFk+m−1 − Fm−1F2k−3

= Fk(FkFm + Fk−1Fm−1)− Fm−1(Fk−1Fk−1 + Fk−2Fk−2)
= Fm(Fk)2 − Fm−1(Fk−1)2 + Fm−1(FkFk−1 − (Fk−2)2) > 0, if h = 1.

Thus we have ∆ = z(C(k)
2k (m1, 1y; h1)) − z(C(k−1)

2k−2 (m1, 1y+1; (h + 1)1)) > 0, which
means that after identifying vertex uk−1 with uk, u′k−1 with uk, and attaching a
pendant edge to uk, and the other pendant edge to pendant vertex vd+1 as shown
in Fig. 7, the obtained graph has a smaller Hosoya index. After repeating the
above operation, we find that for given positive integer m, the minimal Hosoya
index of graphs of the form C

(k)
2k (m1, 1y; h1) with y = n − d − k is attained at

C
(2)
4 (m1, 1n−d−2; (d−m− 2)1).

Set x = n− d− 2 and h = d−m− 2. Now we start to determine the value of k
at which z(C(2)

4 (m1, 1x; h1)) reaches its minimum. Note that h + m = d− 2. From
Lemmas 5, 12, we have

z(C(2)
4 (m1, 1x; h1)) = Fh+1Fm+5+FhFm+3+Fm+1[Fh+1(xF4 + F3)+Fh(xF2 + F1)]

= Fh+m+4+Fh+1Fm+3+(x + 1)Fm+1(3Fh+1+Fh)− Fm+1Fh+1

= Fh+m+4 + Fh+1Fm+3 + (x + 1)Fm+1Fh+3 + xFm+1Fh+1

= Fh+m+4 + Fh+1Fm+3 + Fm+1Fh+3 + xFm+1(Fh+3 + Fh+1)
= Fh+m+4 + Fh+1Fm+1 + Fh+1Fm+2 + Fm+1(Fh + 2Fh+1)

+xFm+1(Fh+3 + Fh+1)
= Fh+m+4 + Fm+h+2 + 3Fm+1Fh+1 + xFm+1(Fh+3 + Fh+1)
= Fd+2 + Fd + 3Fm+1Fh+1 + xFm+1(Fh+3 + Fh+1).

From Corollary 1, z(C(2)
4 (m1, 1x; h1)) reaches its minimum at m = 1, and its mini-

mum is

Fd+2 +Fd +3Fd−2 +(n−d−2)(Fd +Fd−2) = Fd+2 +(n−d−1)Fd +(n−d+1)Fd−2.

Therefore this theorem follows immediately.

Note that the set Un,2 contains only one graph which is just C3(1n−3) with
z(C3(1n−3)) = 2n − 2. Next, we will prove our main theorem, in which all the
graphs from Un,d with the smallest Hosoya index are fully characterized.
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Theorem 4. Let G ∈ Un,d.

(1) If d = 3, then z(G) ≥ 3n − 6 with the equality holding if and only if G ∼=
C

(1)
3 (1n−4; 11);

(2) If 4 ≤ d < n− 1, then z(G) ≥ Fd+2 + (n− d− 1)Fd + (n− d + 1)Fd−2 with the
equality holding if and only if G ∼= C

(2)
4 (1n−d−1; (d− 3)1).

Proof. By Theorems 1, 2 and 3, we find that the graph from U (1)
n,d minimizing the

Hosoya index is C3(1n−d−2, (d− 1)1) with

z(C3(1n−d−2, (d− 1)1)) = 2(n− d)Fd + 2Fd+1,

the graph from U (2)1
n,d minimizing the Hosoya index is C

(1)
3 (1n−d−1; (d− 2)1) with

z(C(1)
3 (1n−d−1; (d− 2)1)) = (n− d + 1)Fd+1,

the graph from U (2)2
n,d minimizing the Hosoya index is C

(2)
4 (1n−d−1; (d− 3)1) with

z(C(2)
4 (1n−d−1; (d− 3)1)) = Fd+2 + (n− d− 1)Fd + (n− d + 1)Fd−2.

Moreover, we have

2(n−d)Fd+2Fd+1−(n−d+1)Fd+1 = (n−d−1)(2Fd−Fd+1) > 0, for d > 2, (∗∗)
(n− d + 1)Fd+1 − [Fd+2 + (n− d− 1)Fd + (n− d + 1)Fd−2]

= (n− d− 1)Fd−3 + Fd−1 − 2Fd−2

= (n− d)Fd−3 − Fd−2.

Set A = (n − d)Fd−3 − Fd−2. Obviously, A = −1 < 0 if d = 3, and A ≥
2Fd−3 − Fd−2 > 0 if d > 3. Note that n > 4. Combining inequality (∗∗) and all the
cases of the value of A, the results in (1) and (2) follow immediately. The proof of
this theorem is completed.

Note that U(n) =
n−2⋃
d=2

Un,d. From Theorem 4 the following corollary is easily

obtained.

Corollary 5 (see [4, 13]). The smallest Hosoya index of graphs from U(n) is attained
at C3(1n−3) with z(C3(1n−3)) = 2n− 2; the second smallest Hosoya index of graphs
from U(n) is attained at C

(1)
3 (1n−4; 11) with z(C3(C

(1)
3 (1n−4; 11))) = 3n− 6.

Denote by Pk(k1; k2) the tree obtained by attaching k1, k2 pendant edges to two
pendant vertices of a path Pk. Now we end this paper with the theorem below, in
which the graph from U(n) with the third smallest Hosoya index is determined.

Theorem 5. Let n > 7 and G ∈ U(n) \ {C3(1n−3), C(1)
3 (1n−4; 11)}. Then we have

z(G) ≥ 3n− 5 with the equality holding if and only if G ∼= C4(1n−4).
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Proof. Suppose that G0 ∈ U(n)\{C3(1n−3), C(1)
3 (1n−4; 11)} has the smallest Hosoya

index. First we claim that G0 must be of the form C
(1)
3 (1n1 ; 1n2) with n1+n2 = n−3

and (n1, n2) 6= (1, n−4), or C4(1n−4). From Theorem 4 and Lemma 10, any unicyclic
graph with d > 3 has a larger Hosoya index than C

(2)
4 (1n−d−1; 1d−3), by Lemma 4,

we have
z(C(2)

4 (1n−d−1; 1d−3)) > z(C(1)
3 (1n−d−1; 1d−2)).

Therefore any unicyclic graph with d > 3 has a larger Hosoya index than C
(1)
3 (1n−d−1;

1d−2). In fact, any unicyclic graph with d = 3 is either C4(1n−4), or of the form
C

(1)
4 (1k1 ; 1k2) with k1+k2 = n−4, or of the form C

(1)
3 (1n1 ; 1n2) with n1+n2 = n−3.

In view of Lemma 4, we have

z(C(1)
4 (1k1 ; 1k2)) > z(C(1)

3 (1k1+1; 1k2)),

which finishes the proof of this claim.
Note that n1 + n2 = n− 3, by Lemmas 1 and 2, we have

z(C4(1n−4)) = (n− 3)F4 + 2F3 = 3n− 5,

z(C(1)
3 (1n1 ; 1n2)) = z(P3(n1; n2)) + 1

= z(Sn1+1)z(Sn2+1) + z(Sn1+1) + z(Sn2+1) + 1
= (n1 + 1)(n2 + 1) + n1 + n2 + 3 = 2n− 2 + n1n2.

It is easy to see that z(C(1)
3 (1n1 ; 1n2)) reaches its minimum 2n−2+2(n−5) = 4n−12

at (n1, n2) = (2, n−5) if (n1, n2) 6= (1, n−4). Clearly, 4n−12−(3n−5) = n−7 > 0.
Therefore the result of this theorem follows immediately.

By a simple calculation, we find that C4(13) or C
(1)
3 (12; 12) has the third smallest

Hosoya index in U(n) if n = 7. It is not difficult to determine the graph from U(n)
(which is still C4(1n−4)) with the third smallest Hosoya index when n = 5 or 6.
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