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Abstract. The Hosoya index of a (molecular) graph is defined as the total number of the
matchings, including the empty edge set, of this graph. Let U, 4 be the set of connected
unicyclic (molecular) graphs of order n with diameter d. In this paper we completely
characterize the graphs from U, ¢ minimizing the Hosoya index and determine the values
of corresponding indices. Moreover, the third smallest Hosoya index of unicyclic graphs is
determined.
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1. Introduction

The Hosoya index of a graph G, denoted by z(G), is a well-known topological index
in combinatorial chemistry. For a graph G, z(G) is defined as the total number
of the matchings (independent edge subsets), including the empty edge set, of the
graph. If we denote by m(G, k) the number of k—matchings, matching with k edges,
of the graph G, then z(G) can also be written as

121
2(G)=>_m(G,k),
k=0

where n is the order of G and | %] is the integer part of §. Other topological indices
of graphs can be seen in [6, 5].

The Hosoya index was introduced by Hosoya [8] in 1971. It has received much
attention since its first introduction (see [2, 15, 4, 12]). Moreover, it plays an im-
portant role in studying the relation between a molecular structure and physical
and chemical properties of certain hydrocarbon compounds. For example, it was
shown [6] that a nearly linear correlation exists between the logarithm of z(G) and
the boiling points of saturated hydrocarbon represented by the graph G. More
precisely, a better reproduction of boiling points was given in [6] by the formula
(alnz+ b)n’% + ¢, where a, b, ¢ are empirical parameters.
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It is significant to determine the extremal (maximal or minimal) graphs with
respect to the Hosoya index. By now, many nice results can be found in [2, 15, 4,
12, 11, 6, 10, 3, 13, 18, 16, 17] concerning the extremal graphs with respect to the
Hosoya index. For example, trees [15], unicyclic graphs [4, 13, 18], bicyclic graphs
[2, 3, 17] and so on, are of major interest. Especially, Wagner [15] characterizes
the trees with the given maximum degree maximizing the Hosoya index. Deng et
al. [4] determine all the extremal (maximal and minimal) unicyclic graphs with
respect to the Hosoya index. Deng [2, 3] characterizes the extremal (maximal and
minimal) bicyclic graphs with respect to Hosoya index. Xu and Xu [18] characterize
all the unicyclic graphs of order n and with given maximum degree A maximizing
the Hosoya index. Very recently, the present author [16] has determined the smallest
and the largest Hosoya indices of graphs with a given clique number.

All graphs considered in this paper are finite and simple. Let G be a graph with
vertex set V(G) and edge set E(G). For a subset W of V(G), let G — W be the
subgraph of G obtained by deleting the vertices of W and the edges incident with
them. Similarly, for a subset E’ of E(G), by G — E’ we denote the subgraph of G
obtained by deleting the edges of E'. If W = {v} and E’ = {xy}, the subgraphs
G — W and G — E’ will be written as G — v and G — zy for short, respectively.
For any two nonadjacent vertices x and y of a graph G, G + zy denotes the graph
obtained from G by adding an edge xy. For a vertex v € V(G), we denote by N¢g(v)
the neighbors of v in G. dg(v) = |Ng(v)| is called the degree of v in G. For a vertex
v of graph G, if dg(v) = 1 and wv € E(G), then v is called a pendant vertex, and
e = wuv is called a pendant edge. In the following, by P,, C, and S, we always
denote the path, the cycle and the star with n vertices, respectively. For undefined
notations and terminology from graph theory, the readers are referred to [1].

Let U,,.q be the set of connected unicyclic graphs of order n with diameter d.
Denote by U(n) the set of connected unicyclic graphs of order n. In Section 2, we list
or prove some lemmas which will be used in the proofs. In Section 3, we characterize
the graphs U, 4 with the smallest Hosoya index and determine the corresponding
Hosoya indices. The graph from U(n) with the third smallest Hosoya index is also
determined in this section.

2. Some lemmas

To obtain our main results, we first introduce some new definitions and list or prove
some lemmas as necessary preliminaries.

Lemma 1 (see [12, 6]). Let G be a graph.

(1) If v e V(G), then we have z2(G) = 2(G —v) + >, 2(G—{w,v}) ;
wENg(v)

(2) If ww € E(Q), then we have z(G) = z(G — uwv) + 2(G — {u, v});

(3) If G1,Ga,- - ,Gy are all the components of G, then we have z(G) = [] 2(Gg).
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Lemma 2 (see [12, 6]). Let F,, be the n — th Fibonacci number, that is, Fo = 0,
F,=F,=1,and F,, = F,,_1 + F,,_o forn > 3. Then we have z(P,) = F, 1 and
z(Sn) = n.

A tree is called a d-pode (see [15]) if it contains only one vertex v of degree

d
d > 2. v is called the center. Denote by R(c1,ca,- - ,cq) the d-pode where > ¢, =
k=1
n — 1, ¢; is the length of the i—th ”ray” going out from the center. That is to

d
say, R(cy,ca,+++,cq) —v = |J P.,. Especially, the tree R(cy, c2,c3) will be written
k=1

as T(c1,ca,c3) in the followi;lg. If we attach two paths of length b3 and by to one
pendant vertex of the path P,y; in T'(a,bq,bs), the obtained tree will be denoted
by H(a + 1;b1,ba;b3,by). Graphs T(2,3,4) and H(3;2,1;2,3) are shown as two

examples in Fig. 1.

T(2,3,4) H(3;2,1;2,3)

Figure 1: Graphs T'(2,3,4) and H(3;2,1;2,3)

For some positive integers k1 < ky < --- < k,,, we denote by Cj, (klll , kl22, oo k)
a graph obtained by attaching ly,ls,- - 1, paths of length kq,ko,--- , ky,, respec-
tively, to one vertex of Cj. Let C’,gl)(klll, k2 oo Ebmep® p% ..o p®) be a graph
obtained by attaching I; paths of length k1, l5 paths of length ko, ---, [, paths of
length k., to a vertex, say vg, of Cj and attaching ¢; paths of length p;, ¢o paths of
length ps, ---, q; paths of length p; to another vertex in Cj at distance [ from vy.
For example, the graphs C5(12,22,3!) and C’éQ)(IQ, 3%;41) are shown in Fig. 2.

12 22 1
05( ,2%,3 ) CE(>2)(12’31;41)
)

Figure 2: The graphs C5(1%,22 3%) and Cé2 (12,3%;4%)

Lemma 3 (see [15]). Let G # K be a connected graph, v € V(G). G(k,n—1—k)
is the graph resulting from attaching at v two paths of length k and n — 1 — k,
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respectively. Let n = 4m + j, where j € {1,2,3,4} and m > 0. Then

z(G(l,n—2)) < 2(G3,n—4)) < --- < 2(G2m + 2] — 1,n — 2m — 21))
< z(G(2m,n—1-2m)) <--- < z(G(2,n — 3))
< z(G(0,n — 1)),

where | = [15=], and G(0,n—1) can also be viewed as a graph obtained by attaching

at v € V(G) a path of length n — 1.

Lemma 4 (see [2]). Let P = upujug - - - urupr1 be a path or a cycle (if ug = ugy1)
in a graph G, where the degrees of uy,us, - -us in G are 2, t > 1. Gy denotes the
graph that results from identifying u, (0 < r < t) with the vertex vy of a simple path
vV1Vg -+ Uk, Go = Gy — Upttpg1 + Upry1v1 (see Fig. 3). Then we have z(G1) < z(Gs).

Ut+1 Ut+1 Ur+1
............ ._.\' "
Ur41 :
(%} .
G Uy -e—e
Vk—1 o
..... k — ._./. Vi—1
Uo Uy Uo Up
Gl G2

Figure 3: Graphs in Lemma 4

Lemma 5 (see [4]). F,, = FyFp_pt1 + Fr—1Fn_g for 1 <k <n.
The following lemma is important and useful to continue the next proofs.

Lemma 6 (see [9]). Let n = 4s +r, where n,s and v are nonnegative integers with
0<r<3.

(1) If r € {0,1}, then

FiFap1 > BBy > FsFy_3 > - Fosy 1 Fosyrqn > FosFosyrio
> F2572F25+r+4 > > F4Fn72 > F2Fn7

(2) If r € {2,3}, then

FiFy > F3Fy_ 1 > F5F,y_3> - Fog 1 Fogipy1 > FogpoFos iy
> FogFogipgo > - > FyF,_o > b F,.

From Lemma 6, it is not difficult to deduce the following result.

Corollary 1. The sequence {FyF,,_i} reaches its minimum at k =2 or k =n — 2.
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Lemma 7 (see [18]). For two positive integers k and m, we have

—)1p, 7 k< m;
FyFop —Fy 1 Fpg = { E—lgmileffn—tll ij k> m.

Corollary 2. For a positive integer k, we have FZ — Fj,_1Fp11 = (—1)F 1.

If positive integers by, ba, b3, by are fixed and a > 2 is an integer, the Hosoya index
z(H (a; b1, ba; b3, by)) will be written as z, for short.
Lemma 8 (see [15]). For four given positive integers by, ba,bs, by and an integer
a> 2, we have zq = 2q_1 + Za_2.
Corollary 3. For every integer n > 2, we have z, = F,, 120 + F,,_221.

Proof. First we prove an equality below analogously to that in Lemma 6.
Zn = Frzn—ii1 + Fo—12n—k (%)

We prove equality (x) by induction on k.
From Lemma 8, we have z, = Fyz,,_1 + F12,_2, which means that equality (x)
holds for k = 2.

Assume that z, = Fr_12n—k+2 + Fr—22n—k+1. Then, by Lemma 8, we have

Zn = Fpo1(Zn—k41 + 2Zn—k) + Fo—2Zn—k+1
= (Fro1+ Fr2)zn—pt1+ Froo12n—k
= Fpzn_p41 + Fr—12n—k.

Thus equality (*) holds immediately. By choosing k = n — 1 in equality (x), the
result in this lemma is obtained. O

Lemma 9 (see [10]). Let H, X,Y be three connected, pairwise disjoint graphs. Sup-
pose that u,v are two vertices of H, v’ is a vertex of X, u' is a vertex of Y. Let G be
the graph obtained from H,X,Y by identifying v with v’ and u with u’, respectively.
Let G be the graph obtained from H, XY by identifying vertices v,v’', v, and G5
be the graph obtained from H,X,Y by identifying vertices u,u’,v’ as shown in Fig.
4. Then we have

2(GY) < z(Q) or z(G3) < z(G).

G G G
Figure 4: Graphs G, G} and G5 in Lemma 9

If Hy, Hs are two graphs with V(H;y) (V(Hz) = {v}, then G = HyvHs is defined
as a new graph with V(G) = V(H;) UV (Hz) and E(G) = E(Hy)J E(H3).
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Lemma 10 (see [11]). Let H be a graph and T; a tree of orderl > 2 with V.(H) (\V(T})
= {v}. Then we have z(HvT}) > z(HvS;). And the equality holds if and only if
HvT; = HvS), where v is identified with the center of the star S; in HvSj.

Lemma 11 (see [17]). Let G1 and Gy be two graphs and v; a vertex of G; for
i =1,2. If both 2(G1) < 2(G2) and z(G1 — v1) < 2(G2 — v2), and at least one of
the inequalities is strict, then we have z(Giv1T}) < z(GovaT}), where T} is a tree of
order 1 > 2 and there is a vertex v in I} such that v is identified with the vertex vy
in G1 when GyviT) is formed, and with ve in Go when GauaT} is formed.

Corollary 4. Let G be a graph and vi,ve two vertices of G such that z(G — v1) <
2(G — vg). Suppose that Ty is a tree of order | > 2 and vy,vy in T; represent the
same vertex in it. Then we have z(Gv1T;) < z(GuaT).

In the following lemma the values of the Hosoya indices of the two graphs defined
above are determined.

Lemma 12.
2(T(a,b,¢)) = Fager2Fopr + Fag1Fe1 Fy,
Z(Céi)(llamlz b)) = Fni1 Foktmet + FrnFiFrimi
+Fi1[Fry1(lFog + Fop—1) + Fp Fi(IFy 4+ Fr—1)].
Proof. Using Lemma 1 (1) to the unique vertex of degree 3 in graph T'(a, b, ¢), and
from Lemma 1 (3) and Lemmas 2, 5, we have
2(T(a,b,c)) = Fop1Fop1 Fepr + FoFy 1 Fopr + Fo1 By Fopy + Fop1 Fy Fe
= FopolFp1Feyr + Fop1 FyFeqq + Fog1 Fpqa Fe
= FareroFpr1 + Fap1Fep1 Fy.
Now we start to determine the value of Z(CQ(Z)(II, mt;hl)). Set
A=z 1 mb; hY).
Considering the formula of z(T'(a,b,c)), applying Lemma 1 (1) to the vertex of
degree 1+14-2=1+3 in graph C’éi)(ll, ml; hl), similarly we get
A= 2(P)2(T(k — 1,k — 1,h)) + l2(Pw)2(T(k — 1,k — 1, 1))
4 2(Po ) 2(T(k — 1,k — 1, 1)) + 22(Po)2(T(k — 2,k — 1, )
= [(1+1)Fpi1 4 Fp)(Fry1 Fop + FLF2) 4 2F 1 (Fry1 For—1 + F,FyFe_1)
= Fpp1 P (IFog + Fopqr + Fop—1) + Frn Frg1 Fop
+FRF [P (L4 1) Fy + 2F,—1) + F Fy]
= Frop1Foryme1 + Fop1 Fnp1 (1Fop + Fop—q)
+Fth[Fm+l(le + Fk+1 + Fk—l) + Fka]
= Fap1Fopymir+Fonp1 Fn1 (o + Fop 1) F FrnFp[Foprg1 + Fr1 (1P + Fr—1)]
= Frp1Forgme1r +FrnFrFrogpmsr + Fopr [Frp ((For, + Fop—1)+ Fp F(1F + F—1)].

Therefore the proof of this lemma is completed. O
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Lemma 13 (see [14]). Let G be a connected graph with vivy € E(G) such that
G —vivg = G1JG2 and v; € V(G;) fori = 1,2. Denote by G’ the graph obtained
from G by deleting the edge vive and identifying vi with ve to form a new vertex v
and attaching a pendent vertex w to v. Then we have z(G') < z(G).

3. Main results

In this section we will determine the graphs from U,, 4 minimizing the Hosoya index
for all the possible values of d. If n = 3, there is only one unicyclic graph Cj,
and so there is nothing to prove. When n = 4, there are exactly two connected
unicyclic graphs Cy and Cs(1'). From Lemmas 1 and 2, it is easy to find that
2(C3(11)) < 2(Cy), which finishes our proof for n = 4. If d = n — 1, there exists
only one graph, i.e. a path P,, but it does not belong to U, 4. For d = 1, any two
vertices in a graph of this form are all adjacent, so it is the complete graph K,,, but
it is not a unicyclic graph when n > 4. Therefore, we always assume that n > 4 and
1 < d < n—1 in the following.

For any graph G € U,, 4, a path with length d of G is called the main path of G,
the only cycle of G is called a unique cycle of G. Note that the number of main paths
in G € Uy, 4 is possibly more than one. The following lemma presents a property of
graphs from U, 4 with the smallest Hosoya index.

Lemma 14. Suppose that G € U, q has the smallest Hosoya index. Let C' be a
unique cycle of G. Then there exists a main path P of G such that V(P)\V(C) #
P.

Proof. Let P = vyvg - --vgvg4+1. To the contrary, there exists a vertex ug € V(C)
such that the vertices ug and v; (where j € {2,3,---,d}) are linked by a unique
path Py = uoujus - - - u—1u;, where u; = v;. Assume that in G' a subtree T,’;” (with
the vertex u; included) of order m; is attached at u; for i € {0,1,--- ;1 — 1,1}, and

l
Zmi =m+1.
i=0

Now we construct a new graph G’ as shown in Fig. 5, which is obtained from G by

Figure 5: Main path and unique cycle in graph G’

replacing all subtrees Tfﬁi by stars S,,, with u; as its center for ¢ € {0,1,--- ,1—1,1},
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and then deleting all the edges uous, -, ujtit1, -+ ,u—1u; and identifying these
vertices ug, u1,- - ,U—1,u; to form a new vertex u(= wup) and attaching | pendant
vertices to the vertex u(= ug). Note that G’ € U,, 4. Applying repeatedly Lemma 13
and considering Lemma 10, we have 2(G’) < z(G). This is a contradiction to the
choice of (G, which completes the proof of this lemma. O

Next we will look for the graph from U, 4 with the smallest Hosoya index. To
do it, we first introduce two subsets of U, 4. Let

Lls()i = {G : G € U,, 4, the main path of G and the unique cycle of G have exactly

one vertex in common }
and

U,(f; = {G: G € U, 4, the main path of G and the unique cycle of G have at least

two vertices in common}.

From Lemma 14, to determine the graph from U, 4 with the smallest Hosoya index,

it suffices to find the graph from L{T(fzi with minimal the Hosoya index for i = 1,2,
respectively.

Theorem 1. For any graph G € L{f:()i, we have 2(G) > 2(n — d)Fq + 2F441. The
equality holds if and only if G = C3(1"~472 (d — 1)1).

Proof. Suppose that Gy € Z/lfic)l has the smallest Hosoya index. By the definition of

Ur(i()i, we assume that P = vqvg - - - vqvg4+1 and Cf is the main path and the unique
cycle of G, respectively, and V(P)(\V(Ck) = {v,}, where j € {2,3,---,d}.
Note that the subgraph of Gg induced by V(P)|JV(Cy) is just

Cr(G—DN(d+1-))") =Gy

Set z =n — |V(P)|UV(Ck)|, by Lemmas 9, 10, we find that either Gy = Gpv;Sq,
or Go = GpuySy, where uy € V(C) \ {v;}.

Now we claim that k£ = 3, that is, the length of Cy in G, is 3. Otherwise, we
have k > 4. If Go = G'pv;S;, after decreasing the length of Cj, by 1 and attaching
a pendant edge to vertex v; in Go, by Lemma 4, the obtained graph has a smaller
Hosoya index than Go. If Gy 2 GprutSy, then, similarly, Go can be changed into G,
with z(Gj)) < 2(Gp) by decreasing the length of Cj; by 1 and attaching a pendant
edge to u; in Gy. These are two contradictions to the choice of Gy, which complete
the proof of this claim.

Let

Ge=Cs((j -1 (d+1-5)")

and y = n —d — 3. By now we have found that Gy € {G¢cv;Sy, GoviSy, GourSy},
where j,i are defined as above and t € {1,2}. Graphs Gcv;Sy, Gov; Sy, Gour Sy
are shown as three examples in Fig. 6. By Lemma 9, we claim that G¢v; Sy, and
GcuSy with t = 1,2 cannot have the smallest Hosoya index. Thus we find that G
must be of the form Gcv;S,.
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1
AV R A
*—@ +oc-- co—e vj
1277y GeourSy
Gcov;Sy GcviSy
Figure 6: Graphs Gcv; Sy, GoviSy and GoulSy
Note that

GCUij = 03(1y7 (] - 1)17 (d+ 1 7.7.)1)'
From Lemma 3, we have
2(Gev;Sy) = 2(C3(1" 772, (d = 1)1))
with equality holding if and only Gcv;S, = C3(1"~972 (d — 1)!). By Lemmas 1, 2,
it is not difficult to obtain
2(C3(1"972 (d — 1)Y)) = 2(n — d)Fy + 2F 441,

which completes the proof of this theorem. O

To determine the graph from Z/{T(i)l with the smallest Hosoya index, we divide this

set into two subsets: @) @)1 (2)2
Un’d - un’d Uun,d ’

where
U ={G: G e, g(G) =3}

and
UEY ={G:GeU?),g(G) > 3}.

The following theorem presents the graph from Z/Iflzc)ll with the minimal Hosoya index.

Theorem 2. For any graph G € Llr(lel, we have

2(G)> (n—d+1)Fay.
The equality holds if and only if G = C:gl)(lnfd’l; (d—2)h).

Proof. Suppose that Go € U (2()11 has the minimal Hosoya index. Let P = vyvg - --

n,
vgv4+1 and Cj be the main path and the unique cycle of G, respectively. From the

definition of the set L{T(f()il, it is easy to see that Cy = Cj3, and there exist two vertices
vj, V41, where j € {2,3,--- ,d—1} from V(P) and another vertex, say vg, such that
Cs = vjvj41v9vj. Denote by G¢ the subgraph of Gy induced by V(P) J{vo}, that
is to say,
~ (1)) .
Ge =P (-1 d=3)").
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Let y = n—d— 2. In a similar way to that in the proof of Theorem 1, we claim that
G must be of the form G¢vySy, or of the form GovS,, where t € {j,j + 1}, or of
the form Gew; Sy, where ¢ € {2,3,--- ,d—1}\ {j,7 + 1}.

Now we claim that Gy is of the form Gev Sy, where t € {j,j + 1} or GovaS,y,
with 7 > 2. If not, Go must be of the form GcvSy, or of the form G¢ov;S,, where
ie€{2,3,---,d—1}\{j, 7+ 1}. If Gy is of the form GcvyS,, we construct a graph
G{ by deleting the path P; attached at v; of G¢ and attaching a path P; to the
vertex vg. Note that G{) = G¢v;Sy, by Lemma 9, we have

2(Gh) = 2(Gow;8y) < 2(GovoS,),

this is impossible because of the minimality of z(GcvoSy). If Gg is of the form
Gcv;Sy, where i € {2,3,--- ,d—1}\{j, j+ 1}, without loss of generality, we assume
that ¢ € {2,3,--,j — 1}. From Lemmas 1, 2 and 5, we have

2(Ge —vj) = FjFais-j,
HGo—v) = RGN (G —i— 1),
(d - ])1)) = Fi(Fd—i+3 + Fj—iFd—j-H)-

When j is fixed, from Corollary 1, z(G¢ — v;) reaches its minimum at ¢ = 2, and its
minimum is Fyy1 + Fj_2F43_;11. Thus we have

2(Ge —vi) = 2(Go —vj) > Fay1 + Fj oFa_j1 — FjFay3-;
= FjFayo—j+ Fj1Fapi—j + FjoFqj1—FiFa3-5 =0.
By Lemma 11, we have 2(G¢cv;Sy) < 2(GcviSy) when ¢ > 2. Therefore this claim
holds immediately.
Denote by G the graph Gev,8, with j > 3. Let G; be the graph Gov; S, with
j€{2,3,---,d—1}. Applying Lemma 1 (1) to the vertex of maximum degree in
G; and Gé] ), respectively, by Lemmas 2, 5, we have

2(Gj) = (y+ V)FjFars—j + Fj1Faps—j + FjFaro—j + FjFayi—;
= yFjFays—j +2FjFays—j + Fj1Futs—j
=yFjFis—j + FitaFaps—j,
AGY)) = (y+ 2)(Fugr + Fj2Fa_ji1) + 2(C57 (G = 05 (d = j)1)
= (y+2)(Fas1 + Fj—oFa—jy1) + Fa+ Fj_3Fq—ji.

Note that a simple calculation shows the validity of Z(G;j )) for j = 3 or 4. In view
of Corollary 1, the minimum of z(G;) is attained at j = 2, and its minimum is
(y + 3)Fy41. Moreover, considering y =n —d — 2 and d < n — 1, we have

Z(ng)) —(W+3) i1 = W+ 2)Fj2Fg_j1 + Fa+ Fj_3Fq_j41 — Faa
=(n—d)F;_oF;_ji1+ Fj_3Fq_j 11— Faq
>2F; oFy jy1+Fj 3Fq jy1— Faga
= Fde—j-i-l —Fy_ 1> FyFy 1—F;.1=0.
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Note that the last inequality holds since in ng ), j > 3. Therefore we find that each
graph ng) for j > 3 has a larger Hosoya index than G; (which is just G¢v;S,) with
J = 2, which has the smallest Hosoya index in the set {Gcv; Sy : j =2,3,--- ,d—1}.
We have now proven that C{" (1"=9-1; (4 — 2)!) from L{ff}il has the minimal Hosoya
index (n —d + 1)F;41, which completes the proof of this theorem. O

Let

Go = {Cz(:)(ml,ly;hl) cy=n—d—Fk,k>2m>0,h >0, and m+h > 1}.
Before determining the minimal Hosoya index of graphs from Z/lr(ft)iz, we first prove
the following lemma.

Lemma 15. Suppose that Gy € L{T(f()lz has the minimal Hosoya index. Then Gy € Gy.

Proof. From the definition of L{T(Lz()f, by Lemmas 9, 10, we find that Gy must be
a graph obtained by attaching + = n — m — [ — h pendant edges to one of the

non-pendant vertices of Cl(k)(mlghl) with [ > 2k and k 4+ m + h = d, that is,
Go = C’l(k)(ml; hY)vgS,, where vy is a non-pendant vertex of C’l(k)(ml; hl).

Now we claim that in C’l(k)(ml; hYYvgS,, I = 2k. Assume that, to the contrary,
I —k+ 1> k. Considering the structure of C’l(k)(ml, s hY)vgS,, after decreasing the
length of path P,_gy; (which is on the cycle C) in G, but not on the main path
of Gy) by 1 and attaching a pendant edge to one vertex of resulting path P,_g, by
Lemma 4, the obtained graph has a smaller Hosoya index. This is a contradiction to
the choice of Gy, which completes the proof of this claim. Let y = n—d—k. Note that
C’éllz) (m!;h1) in Gy is a graph as shown in Fig. 7. Therefore Gy must be in the set
Go of the type CIF) (mY; h1)v;S,, where i € {2,3,--- ,m,m+k+2,m+k+3,--- ,d},
or of the type C’éz)(ml;hl)uij, where j € {1,2,--- k —1}.

(o7 . P
! . Um4-k+2
—@ --o-- @ ceeconn ’U,J .....
0 k Vg Ud+1
V1 Vg Um ATTTINE T RS
u b uj; Up_q

Figure 7: The graph Cz(z) (m';hl) in Gy

If Gy is in the set Gy, we are done. In the following we use G¢ to denote
Cg;)(ml;hl). If Gy is of the type Céi)(ml;hl)viSy, where i € {2,3,--- ,m,m +
E+2m+k+3,---,d+ 1}, without loss of generality, we assume that Gy =
Céz)(ml;hl)viSy with ¢ € {2,3,---,m}. Set A = 2(Ge — v;) — 2(Ge — wg), by
Lemmas 1, 2, 5 and 12, we have

2(Ge — ug) = Foy1 (Fop Fp1 + (Fi)* Fy),
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AGe —vi) = Fiz(C5) (m — i)' 1)
= Fil(Fm—it1+ Fni)2(T(h,k — 1,k — 1))
2F s 2(T(hy k= 1,k — 2))]
= Fi[Fonivo(ForFuyr + (F)*Fp)
F2F i1 (For—1Fpy1 + FrFe—1F)],

and

A= (FiF_iyo—Fmi1)(For Fyo1+(Fp) > Fp) +2F, Fry— i1 (Fok—1 Frg1 + Fy Fio—1 Fy)
= 2FFpit1(Fop—1Fny1 + FrFr1Fp) — Fio1 Fip1 (Fop Frg1 + (Fr)?Fy)
= Fpp1Fmiv1(Fi2Fop—1 — Fi_1For) + FrFpFp_ip1 (Fi2F,—1 — F;_1 Fy) > 0.

Note that the last inequality holds since 2F5,_1 > Fop and 2Fy_1 > Fy if £ > 2.
By Lemma 11, we have z(GcouoSy) < 2(Gev;Sy) for i € {2,3,---,m}. This is
impossible because of the minimality of z2(Go) = 2(Gcv;Sy).

Next we will prove that for any graph G’ of the type C’éi) (m*; h')u;S, with
Jj€{1,2,--- ,k — 1}, there exists a graph G € Gy such that z(G"”) < z(G’). Set
j=ki+land k—j=ks+1,1ie., k1 + ks =k — 2. To do this, we distinguish the
following two cases.

Case 1. k is odd.

Let G, = Go — {v1,v2,--- , v} and Tr(,?j_y
that GouoS, = G'CuoT,(,?J)ry. By Lemma 9, we have z(GcoupSy) < 2(Gcou;Sy) or
AGpu, T,

mty) < 2(GouySy), where G/CujTr(r(L)j-y

be a tree as shown in Fig. 8. Note

is a graph obtained by identifying
u;j of G with the vertex of maximum degree in 7, (0) . If the former holds, we

m+y-*
are done for this case. If not, we will compare the values of z( 'CuoT(O) ) and

m+y

2 ..... y
VA
..... o
Um Um—1 U1

; . (0)
Figure 8: The tree T,,,%,

2( ’CujTﬁgj_y). From Lemma 12, we have

2(Gl — wo) = FapFrq1 + (Fy)?Fy,
2(Go = u5) = Fry1 Frqry 414k +1 + FuFrgr, +1Fky 11
= Fy1Fop + FnFroqr+1F k41,
and
2(Ge —uo) — 2(Go — uz) = Fu((Fi)? = Fagky+1Frp+1)-

Since k is odd and k; + ks = k — 2, one of k; and ks is even. If ko is even,
From Lemma 6, we have Fjig,+1Fk+1 > (Fg)?, that is to say, 2(Gp — ug) <
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2(Gw — uj). By Lemma 11, we have z( /CUOT,ng_y) = 2(GouoSy) < (Gt Thty)-

Therefore z(GcoupSy) < 2( IchTrES-)s-y) < 2(GeoujSy). When ky is even, similarly,

z2(GeourSy) < 2(GeouySy), which finishes the proof for this case.
Case 2. k is even.

If k1 and ko are both even, we can obtain the result as desired in a way similar
to that in the proof of Case 1.

So it suffices to deal with the case when k is even and k1, ko are both odd. Note
that G —uy; is just H(k+1;m, ki; h, ka). Set 2(Ge —uj) = zky1, 2(Ge—up) = zg)),
2(Go —ug) = zg), and B = zp41 — zg)) + Zk41 — ch)' Note that k; + ko = k — 2,
by Lemmas 1, 2, 5 and Corollary 3, we have

2p41 = Frza + Fro121
= Fi(Fotri+2Fhikot2 + Fop1 Frp1 Fioy 11 Fry11)
+Fy1[Fros1 Fro1 Fioy+1Fry 41 + Frnp1 Fao1 Fioy Fry 11 + Fonp1 Frp1 Fioy 41 Fr,
H(EmFryr + Fong 1 Fn) Fry 11 Fry11]
= Fip[(Fns1Fey+2 + Fn ey 41) (Fh1 Py 2+ Fn Fey 1) + Frnp 1t Fpge 1 Py 41 Fley 1]
+Fu 1 Fms1 Fro1Fryvkor2 + (FFnt1 + Fong1 Fr) Fry 41 Fry11]
= Fi[Fomt1 Fni1 Fry ko3 + Fin Fn1 Fiey 11 Fry 12 + Frnp1 P By 12 Fg, 11
+E Fy iy 41 Fy 1]
+Fp1 [ Fs1 Fre1Fry v ko2 + (B Fnt1 + Fog1 Fr) Froy 41 Fry11]
= Fp1Fap1 F(Frr + Fr—1) + Fon Fog1 Fry 1 (FiFry 2 + Fro—1Fiop11)
+F 1 Fn o1 (FeFiy 42 + Foo1 Fiy 1) + Fon FrFio Froy 1 Froy 11
= Fn 1 Fay1 B (Frqr + Fr1) Y Fn Fog1 By 11 Freqko i1t F Fonp 1 FnF g1 Py 11
FEn Fp b Fry+1F 41,
Zg)) = Frp1(FarFpi1 + (Fp)*Fy),
ch) = Fyy1(FoxFrns1 + (Fi)*Frn),
and
B =2z —2(69) - Z(CI«C)
= 2F 41 Fhg1 [Fi(Foq1 + Frie1) — For) + 2F Fp1 Fiy 11 (Fiep1 Fiog1 + FiFr,)
+2F i1 FrnFyyi1(Fep1 Fryv1 + FrFry) + 280 Fn FrFy 11 Fry11
—(F)*(Fon i1 + Fong1 F)
= (2F%+1Fpy 41 F ko1 — (Fr)*) (FoFrg1 + Frng1 Fr)
2B (F Fpst Fry 41 Fiy + Fons FiFioy 31 Fey + FonFiFiy 41 Fipt1)
> (2F511Fiy+1Fk+1 — (F)?) (FruFg1 + Frng1 Fr).

Considering k1 + ko = k — 2, and k1, ko are both odd, and & is even (clearly, k > 4),
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by Lemma 6 and Corollary 2, we have

B > (2F,_2Fii1 — (F)*)(FrFny1 + Fpy1 Fp)
> (Fee1Frg1 = (Fe)*)(FoFrgt + Frog1 Fr)
= FnLF}H—l + F?n-‘rth > 0.

So we have zpy1 > zg)), Oor Zpy1 > ch)’ that is, zé?) < Zg41, OT ng) < zZk4+1. By
Lemma 11, we have z(GcuoSy) < 2(Gcu;Sy) or z2(GourSy) < z(Gcu;Sy), which
finishes the proof for this case since GoupS, and GourSy all belong to Go.

By now the proof of this lemma is completed. O

Theorem 3. For any graph G € UD? | we have

n,d ’

Z(G) > Fypo+ (n —d— I)Fd + (n —d+ 1)Fd_2.
The equality holds if and only if G = C’f)(l”*d’l, (d—3)1).

Proof. Suppose that Gy € Llr(fc)f has the minimal Hosoya index. From Lemma 15,
we find that Gy is of the form C{F (m!, 14; hY) with y = n—d—k, k > 2,m > 0,h > 0,
and m+h > 1. Set z(C’éz) (m',1¥;h1)) = 2(F), Z(Cé]]z:é) (m', 19+ (h+1)1)) = 2D
and A = 2 — 2(:=1_ From Lemma 12, for k > 3, we have

M) = Fy1 Fogrmer + FuFiFrvmir + Bt [Fa1 (yFor + Fog—1)
+En F(yFy + Fie—1)),
= FrioFopym—1+ Fhp1 Fre 1 Frym
+Fpi [Fny2((y + 1) Fop—o + Fop—3) + Frp1 Fre1((y + 1) Fr—1 + Fi—2)),

(k=)

and

A = Fr1Fopyme1 + FuFuFrimer + Fo1 [Fag1 (Y For + Far—1)
+FnFr(yFy, + Fr—1)]
—FhioForym—1 — Fhp1Fe1Frim
—Fo1[Fra2((y + 1) Fop—o + Fop—3) + Fpp1 Fo—1((y + 1) Fr—1 + Fi—2)]

= (Fht1Fortmt1 — FaroForpm—1) + (FpFpFrimy1 — Frp1 Fr—1Frm)

+Fni1[y(Frs1 For — FrioFor—2) + y(Fn(F)? — Frp1(Fe-1)?)
+(Frnp1Fop—1 — FrqoFop—3) + (FyFpFr_1 — Fpp1 Fr_1Fp_2)
—(FpyoFok—2 + Fpi1(F—1)?)].

Set

A= Fri1Foptmi1 — Frv2Fokim—1,
B = FpFpFiyms1 — Frno1 Fiee1 Frqom,
D = Fyi1Fop — FryoFop—o + Fi(Fp)? — Fypa (Fi—1)?,
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and

E = (Fp41Fop—1 — FrioFop—3) + (FpFiFy—1 — Fry1Fr—1Fr—2)
—(FhpoFop—o + Fry1(Fr_1)?).

Then, by Lemma 5, we have

D = Fyi1Fop — Fry1Fop o — FrFop_o + Fy(Fr)? — F(Fe—1)? — Fr1(Fp_1)?
= Fhy1Fop_1 — FuFop—o + FpFri1 Fy_o — Frm1(F—1)?
= Fpp1Fop1 — FuFpFy_3 — Fro1(Fi1)?
= Fy1 FyFo — FyFyFys + Fyy1 Fry1 Fimn — Fyo1(Fi—1)® > 0,
B = Fn(Fr—1+ Fr—2)(Feqgm + Frym—1) — (Fn + Fro1)Fre—1Figm
= FpFyoFymi1 + Fnby1Frym—1 — Fpo1Fr—1Ferm

= %(FhQFkanerH —Fh 1 Fe 1 Frpm + FrF 12Fe i1 — FpoaFr 1 Frym)
>0,
E = (Fpy1Fop—2 + Fuy1Fop—3 — Fay1Fop—3 — FrFop_3)
+(FyFyFo1 — FyFy_1Fy—o — Fro1Fy_1 Fo—a) — (FppoFop—2 + Fp1 (Fe—1)?)
Fri1Fop—g — FrFap—3 + Fp(Fr1)® — Fyo1 Fo1F_s
—(Fhi2Fon—2 + Fyy1(Fr1)?)
= —FyFop—o — Fyo1(Fio1)® — FpFok—s — Fy_1Fp_1Fj_o
= —FpFop—1 — Fr1FpFy_1,
A= Fnp1Foprm + FrnyrForrm—1 — Fug1Forgym—1 — FrpForym—1

= Frpi1Fokym — FnFokym—1-
So we have

A=A+B+yF1D+ F, FE
>A+F,1E+B
= FppiForym — FnFopym—1 — Fpr(FpFog—1 + F 1 FpFr1) + B
= FnFokym + Frno1Fokrm — FpFoprm—1 — P11 FrFok—1
—Fny1Fh1FFy1+ B
= FpForym—2 + Fno1Fopym — Fpp1 Fubog—1 — Fnp1 P 1 FrFe 1 + B
= Fp(Forym—2 — Frg1For—1) + Foo1(Fogym — Fnp1 FeFr—1) + B
= Fu(Fnp1For—o + FnFop—3 — Fp1Fop—1)
+Fp 1 (FrnFop—1 + Frop1 Fop — Frn 1 FrF 1) + B
= F(FnFor—3 — Fnp1For—3) + Fr_1 (FFop—1 + Fr1 FiFrq1) + B
= Fn1(FnFor—1 + Frn1 FeFrq1) — FipFr 1 Fop 3+ B.
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Then we have

A>A+F,nFE

=Fh 1 Fplop1 — Fn1F 1 Fop 3+ Fon 1 Frp 1 FieFeyr — FroF 1 Fop—3

> Fy 1 F1Fop—o+ FroFp 1 (FuFie1 — Fag—3)

= Fy 1P 1 For—2+ FrnoFy 1 (FiFyqp1 — FpFi—o — F_1Fy_3)

= FnaFor o+ FroFy 1Fp 1(2F, — Fr_3) >0, if h > 2;
A>A+F, E+B

=Fp oFiimyr + Fo1Foym1 — Fino1Fog_3

> FpFyym—1 — Fri1Fop—3

= F(FuFp + Fe1Fpo1) — Fopo 1 (Fy—1 Fe—1 + Fi—2Fy2)

= Fp(Fr)? = Fro1(Fo1)? + Fop 1 (B Fr—y — (Fr_2)?) >0, if h = 1.

Thus we have A = Z(C’Q(? (mt,1v; hl)) — z(C’éﬁié)(ml, v (h +1)1)) > 0, which

means that after identifying vertex wux_; with ug, uj,_; with ug, and attaching a
pendant edge to uy, and the other pendant edge to pendant vertex vg41 as shown
in Fig. 7, the obtained graph has a smaller Hosoya index. After repeating the
above operation, we find that for given positive integer m, the minimal Hosoya
index of graphs of the form C’Q(Z) (m',19;h') with y = n — d — k is attained at
C®(ml, 1712, (d — m — 2)1).

Set t=n—d—2and h=d—m — 2. Now we start to determine the value of k
at which z(Cf) (m!,1%; h')) reaches its minimum. Note that h +m = d — 2. From
Lemmas 5, 12, we have

2CP (' 175 1Y) = Fust Frgs+ FuFoga+ Frt [Foi (@ Fs + Fa)+ Fy(aF + 1))
= Foymyat+FppiFngs+(@ + 1) Epp1BFh +Fy) — Frop1 Fra
= Fhymia+ Frp1Fgs + (@ 4+ 1) Fs1 Fhys + o F i1 Fra
= Fhpmya + Fop1Fmgs + Frg1 Frgs + 2 F 1 (Frgs + Frgr)
= Fpymia + Fri1Fpr + Fnp1 Frg2 + Fr1 (Fr + 2F41)

+2Fp 1 (Fags + Fry)
= Fnymia + Fgni2 +3Fmp1 P + 2Fny1 (Frys + Frya)
— Fuvo + Fy+3Fms1Fass + 2Fmir (Fass + Fasi).

From Corollary 1, z(C’f)(ml, 1%; b)) reaches its minimum at m = 1, and its mini-
mum is

Fd+2+Fd+3Fd72+(n—d—2)(Fd+Fd72) = Fd+2+(n—d— 1)Fd+(n—d+ 1)Fd,2.
Therefore this theorem follows immediately. O

Note that the set U, 2 contains only one graph which is just Cs(1"73) with
2(C3(1"73)) = 2n — 2. Next, we will prove our main theorem, in which all the
graphs from U, 4 with the smallest Hosoya index are fully characterized.
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Theorem 4. Let G € Uy 4.

(1) If d = 3, then 2(G) > 3n — 6 with the equality holding if and only if G =
o 111,

(2) If4 <d<n—1, then 2(G) > Fgpa+ (n—d—1)Fqg+ (n—d+1)F4_o with the
equality holding if and only if G = Cf)(ln_d_l; (d—3)h).

Proof. By Theorems 1, 2 and 3, we find that the graph from L{r(th)l minimizing the
Hosoya index is C5(1"~ 972 (d — 1)*) with

2(C3(1" 472 (d — 1)Y)) = 2(n — d)Fy 4 2F 41,

the graph from Z/lr(fa)ll minimizing the Hosoya index is C’él) (1n=d=1: (d — 2)!) with

ACV A (d - 2)Y) = (n— d+ 1) Fyan,

the graph from Z/lr(ff minimizing the Hosoya index is C{% (1"=4=1: (d — 3)1) with

ACP A (d=3))) = Fyyn+ (n—d—1)Fy+ (n—d+1)Fy_o.
Moreover, we have

2(n—d)Fy+2F311—(n—d+1)Fay1 = (n—d—1)(2F;—F441) > 0, for d > 2, (x%)
(m—d+1)Fyi1 — [Fasa+ (n—d—1)Fy+ (n—d+1)F;_5]
=n—d—1)Fi_3+Fi_1—2F;»
— (n—d)Fy_s — Fy_o.

Set A = (n —d)Fy—35 — Fj_2. Obviously, A = -1 < 0ifd = 3, and A >
2F;_3 — F4_o > 0if d > 3. Note that n > 4. Combining inequality (**) and all the
cases of the value of A, the results in (1) and (2) follow immediately. The proof of
this theorem is completed. O

n—2
Note that U(n) = |J Uy q. From Theorem 4 the following corollary is easily
d=2

obtained.

Corollary 5 (see [4, 13]). The smallest Hosoya index of graphs from U (n) is attained
at C3(1"73) with z(C5(1"73)) = 2n — 2; the second smallest Hosoya index of graphs

from U(n) is attained at Cél)(1”*4; 1Y) with z(C’g(Cél)(lT‘*ZL; 11))) =3n —6.

Denote by Py (k1; ko) the tree obtained by attaching ki, ke pendant edges to two
pendant vertices of a path P,. Now we end this paper with the theorem below, in
which the graph from U(n) with the third smallest Hosoya index is determined.

Theorem 5. Letn > 7 and G € U(n) \ {Cg(l”*?’),Cél)(1”*4; 11)}. Then we have
2(G) > 3n — 5 with the equality holding if and only if G = C,(1"~%).
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Proof. Suppose that G € U(n)\{C3(1"73), C’él)(ln_‘l; 11)} has the smallest Hosoya
index. First we claim that Gy must be of the form C’él) (1™;172) with ny+ne =n—3
and (n1,n2) # (1,n—4), or C4(1"~*). From Theorem 4 and Lemma 10, any unicyclic
2) (1n—d—1 . 1d—3)

graph with d > 3 has a larger Hosoya index than C’i , by Lemma 4,

we haVe
2 n—d— d— 1 n—d— d—
Z(Cg )(l | 3)) > Z(C’é )(1 11 2))

1) (ln—d—l.

)

Therefore any unicyclic graph with d > 3 has a larger Hosoya index than C’é
19-2), In fact, any unicyclic graph with d = 3 is either C4(1"~*), or of the form
C’il)(lkl; 1%2) with k1 + ke = n—4, or of the form Cg()l)(lnl; 1) with ny +ng = n—3.
In view of Lemma 4, we have

2O (1R 1)) > 2(C5) (1FH k),

which finishes the proof of this claim.
Note that ny + ny = n — 3, by Lemmas 1 and 2, we have

2(C4(1"*)) = (n — 3)Fy + 2F3 = 3n — 5,

ACEV(517) = 2(Py(nina)) + 1
= Z(Sn1+1)z(sﬂ2+1) + Z(Sn1+1) + Z(Sn2+1) +1
= +1Dne+1)+n +n2+3=2n—2+nins.

It is easy to see that z(C?()l) (1™;172)) reaches its minimum 2n—2+2(n—>5) = 4n—12
at (n1,n2) = (2,n—>5) if (n1,n2) # (1,n—4). Clearly, 4dn—12—(3n—5) =n—7 > 0.
Therefore the result of this theorem follows immediately. O

By a simple calculation, we find that Cy(1%) or C:gl) (1%;1?) has the third smallest
Hosoya index in U(n) if n = 7. It is not difficult to determine the graph from U(n)
(which is still C4(1"~*)) with the third smallest Hosoya index when n =5 or 6.
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