The smallest Hosoya index of unicyclic graphs with given diameter ${ }^{*}$

Kexiang Xu ${ }^{1, \dagger}$
${ }^{1}$ College of Science, Nanjing University of Aeronautics \& Astronautics, Nanjing-210 016, P. R. China

Received March 21, 2010; accepted May 30, 2011

Abstract

The Hosoya index of a (molecular) graph is defined as the total number of the matchings, including the empty edge set, of this graph. Let $\mathcal{U}_{n, d}$ be the set of connected unicyclic (molecular) graphs of order n with diameter d. In this paper we completely characterize the graphs from $\mathcal{U}_{n, d}$ minimizing the Hosoya index and determine the values of corresponding indices. Moreover, the third smallest Hosoya index of unicyclic graphs is determined.

AMS subject classifications: 05C90
Key words: Hosoya index, unicyclic (molecular) graph, diameter

1. Introduction

The Hosoya index of a graph G, denoted by $z(G)$, is a well-known topological index in combinatorial chemistry. For a graph $G, z(G)$ is defined as the total number of the matchings (independent edge subsets), including the empty edge set, of the graph. If we denote by $m(G, k)$ the number of k-matchings, matching with k edges, of the graph G, then $z(G)$ can also be written as

$$
z(G)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} m(G, k)
$$

where n is the order of G and $\left\lfloor\frac{n}{2}\right\rfloor$ is the integer part of $\frac{n}{2}$. Other topological indices of graphs can be seen in $[6,5]$.

The Hosoya index was introduced by Hosoya [8] in 1971. It has received much attention since its first introduction (see [2, 15, 4, 12]). Moreover, it plays an important role in studying the relation between a molecular structure and physical and chemical properties of certain hydrocarbon compounds. For example, it was shown [6] that a nearly linear correlation exists between the logarithm of $z(G)$ and the boiling points of saturated hydrocarbon represented by the graph G. More precisely, a better reproduction of boiling points was given in [6] by the formula $(a \ln z+b) n^{-\frac{1}{2}}+c$, where a, b, c are empirical parameters.

[^0]It is significant to determine the extremal (maximal or minimal) graphs with respect to the Hosoya index. By now, many nice results can be found in $[2,15,4$, $12,11,6,10,3,13,18,16,17]$ concerning the extremal graphs with respect to the Hosoya index. For example, trees [15], unicyclic graphs [4, 13, 18], bicyclic graphs $[2,3,17]$ and so on, are of major interest. Especially, Wagner [15] characterizes the trees with the given maximum degree maximizing the Hosoya index. Deng et al. [4] determine all the extremal (maximal and minimal) unicyclic graphs with respect to the Hosoya index. Deng [2, 3] characterizes the extremal (maximal and minimal) bicyclic graphs with respect to Hosoya index. Xu and Xu [18] characterize all the unicyclic graphs of order n and with given maximum degree Δ maximizing the Hosoya index. Very recently, the present author [16] has determined the smallest and the largest Hosoya indices of graphs with a given clique number.

All graphs considered in this paper are finite and simple. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a subset W of $V(G)$, let $G-W$ be the subgraph of G obtained by deleting the vertices of W and the edges incident with them. Similarly, for a subset E^{\prime} of $E(G)$, by $G-E^{\prime}$ we denote the subgraph of G obtained by deleting the edges of E^{\prime}. If $W=\{v\}$ and $E^{\prime}=\{x y\}$, the subgraphs $G-W$ and $G-E^{\prime}$ will be written as $G-v$ and $G-x y$ for short, respectively. For any two nonadjacent vertices x and y of a graph $G, G+x y$ denotes the graph obtained from G by adding an edge $x y$. For a vertex $v \in V(G)$, we denote by $N_{G}(v)$ the neighbors of v in $G . d_{G}(v)=\left|N_{G}(v)\right|$ is called the degree of v in G. For a vertex v of graph G, if $d_{G}(v)=1$ and $u v \in E(G)$, then v is called a pendant vertex, and $e=u v$ is called a pendant edge. In the following, by P_{n}, C_{n} and S_{n} we always denote the path, the cycle and the star with n vertices, respectively. For undefined notations and terminology from graph theory, the readers are referred to [1].

Let $\mathcal{U}_{n, d}$ be the set of connected unicyclic graphs of order n with diameter d. Denote by $\mathcal{U}(n)$ the set of connected unicyclic graphs of order n. In Section 2, we list or prove some lemmas which will be used in the proofs. In Section 3, we characterize the graphs $\mathcal{U}_{n, d}$ with the smallest Hosoya index and determine the corresponding Hosoya indices. The graph from $\mathcal{U}(n)$ with the third smallest Hosoya index is also determined in this section.

2. Some lemmas

To obtain our main results, we first introduce some new definitions and list or prove some lemmas as necessary preliminaries.

Lemma 1 (see [12, 6]). Let G be a graph.
(1) If $v \in V(G)$, then we have $z(G)=z(G-v)+\sum_{w \in N_{G}(v)} z(G-\{w, v\})$;
(2) If $u v \in E(G)$, then we have $z(G)=z(G-u v)+z(G-\{u, v\})$;
(3) If $G_{1}, G_{2}, \cdots, G_{t}$ are all the components of G, then we have $z(G)=\prod_{k=1}^{t} z\left(G_{k}\right)$.

Lemma 2 (see [12, 6]). Let F_{n} be the $n-t h$ Fibonacci number, that is, $F_{0}=0$, $F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. Then we have $z\left(P_{n}\right)=F_{n+1}$ and $z\left(S_{n}\right)=n$.

A tree is called a d-pode (see [15]) if it contains only one vertex v of degree $d>2 . v$ is called the center. Denote by $R\left(c_{1}, c_{2}, \cdots, c_{d}\right)$ the d-pode where $\sum_{k=1}^{d} c_{k}=$ $n-1, c_{i}$ is the length of the $i-$ th "ray" going out from the center. That is to say, $R\left(c_{1}, c_{2}, \cdots, c_{d}\right)-v=\bigcup_{k=1}^{d} P_{c_{k}}$. Especially, the tree $R\left(c_{1}, c_{2}, c_{3}\right)$ will be written as $T\left(c_{1}, c_{2}, c_{3}\right)$ in the following. If we attach two paths of length b_{3} and b_{4} to one pendant vertex of the path P_{a+1} in $T\left(a, b_{1}, b_{2}\right)$, the obtained tree will be denoted by $H\left(a+1 ; b_{1}, b_{2} ; b_{3}, b_{4}\right)$. Graphs $T(2,3,4)$ and $H(3 ; 2,1 ; 2,3)$ are shown as two examples in Fig. 1.

Figure 1: Graphs $T(2,3,4)$ and $H(3 ; 2,1 ; 2,3)$

For some positive integers $k_{1} \leq k_{2} \leq \cdots \leq k_{m}$ we denote by $C_{k}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, \cdots, k_{m}^{l_{m}}\right)$ a graph obtained by attaching $l_{1}, l_{2}, \cdots, l_{m}$ paths of length $k_{1}, k_{2}, \cdots, k_{m}$, respectively, to one vertex of C_{k}. Let $C_{k}^{(l)}\left(k_{1}^{l_{1}}, k_{2}^{l_{2}}, \cdots, k_{m}^{l_{m}} ; p_{1}^{q_{1}}, p_{2}^{q_{2}}, \cdots, p_{t}^{q_{t}}\right)$ be a graph obtained by attaching l_{1} paths of length k_{1}, l_{2} paths of length k_{2}, \cdots, l_{m} paths of length k_{m} to a vertex, say v_{0}, of C_{k} and attaching q_{1} paths of length p_{1}, q_{2} paths of length p_{2}, \cdots, q_{t} paths of length p_{t} to another vertex in C_{k} at distance l from v_{0}. For example, the graphs $C_{5}\left(1^{2}, 2^{2}, 3^{1}\right)$ and $C_{5}^{(2)}\left(1^{2}, 3^{1} ; 4^{1}\right)$ are shown in Fig. 2.

Figure 2: The graphs $C_{5}\left(1^{2}, 2^{2}, 3^{1}\right)$ and $C_{5}^{(2)}\left(1^{2}, 3^{1} ; 4^{1}\right)$

Lemma 3 (see [15]). Let $G \neq K_{1}$ be a connected graph, $v \in V(G) . G(k, n-1-k)$ is the graph resulting from attaching at v two paths of length k and $n-1-k$,
K. Xu
respectively. Let $n=4 m+j$, where $j \in\{1,2,3,4\}$ and $m \geq 0$. Then

$$
\begin{aligned}
z(G(1, n-2)) & <z(G(3, n-4))<\cdots<z(G(2 m+2 l-1, n-2 m-2 l)) \\
& <z(G(2 m, n-1-2 m))<\cdots<z(G(2, n-3)) \\
& <z(G(0, n-1))
\end{aligned}
$$

where $l=\left\lfloor\frac{j-1}{2}\right\rfloor$, and $G(0, n-1)$ can also be viewed as a graph obtained by attaching at $v \in V(G)$ a path of length $n-1$.

Lemma 4 (see [2]). Let $P=u_{0} u_{1} u_{2} \cdots u_{t} u_{t+1}$ be a path or a cycle (if $u_{0}=u_{t+1}$) in a graph G, where the degrees of $u_{1}, u_{2}, \cdots u_{t}$ in G are $2, t \geq 1$. G_{1} denotes the graph that results from identifying $u_{r}(0 \leq r \leq t)$ with the vertex v_{k} of a simple path $v_{1} v_{2} \cdots v_{k}, G_{2}=G_{1}-u_{r} u_{r+1}+u_{r+1} v_{1}$ (see Fig. 3). Then we have $z\left(G_{1}\right)<z\left(G_{2}\right)$.

Figure 3: Graphs in Lemma 4

Lemma 5 (see [4]). $F_{n}=F_{k} F_{n-k+1}+F_{k-1} F_{n-k}$ for $1 \leq k \leq n$.
The following lemma is important and useful to continue the next proofs.
Lemma 6 (see [9]). Let $n=4 s+r$, where n, s and r are nonnegative integers with $0 \leq r \leq 3$.
(1) If $r \in\{0,1\}$, then

$$
\begin{aligned}
F_{1} F_{n+1} & >F_{3} F_{n-1}>F_{5} F_{n-3}>\cdots F_{2 s+1} F_{2 s+r+1}>F_{2 s} F_{2 s+r+2} \\
& >F_{2 s-2} F_{2 s+r+4}>\cdots>F_{4} F_{n-2}>F_{2} F_{n}
\end{aligned}
$$

(2) If $r \in\{2,3\}$, then

$$
\begin{aligned}
F_{1} F_{n+1} & >F_{3} F_{n-1}>F_{5} F_{n-3}>\cdots F_{2 s+1} F_{2 s+r+1}>F_{2 s+2} F_{2 s+r} \\
& >F_{2 s} F_{2 s+r+2}>\cdots>F_{4} F_{n-2}>F_{2} F_{n} .
\end{aligned}
$$

From Lemma 6, it is not difficult to deduce the following result.
Corollary 1. The sequence $\left\{F_{k} F_{n-k}\right\}$ reaches its minimum at $k=2$ or $k=n-2$.

Lemma 7 (see [18]). For two positive integers k and m, we have

$$
F_{k} F_{m}-F_{k-1} F_{m+1}= \begin{cases}(-1)^{k-1} F_{m-k+1} & \text { if } \quad k \leq m \\ (-1)^{m-1} F_{k-m-1} & \text { if } k>m .\end{cases}
$$

Corollary 2. For a positive integer k, we have $F_{k}^{2}-F_{k-1} F_{k+1}=(-1)^{k-1}$.
If positive integers $b_{1}, b_{2}, b_{3}, b_{4}$ are fixed and $a>2$ is an integer, the Hosoya index $z\left(H\left(a ; b_{1}, b_{2} ; b_{3}, b_{4}\right)\right)$ will be written as z_{a} for short.
Lemma 8 (see [15]). For four given positive integers $b_{1}, b_{2}, b_{3}, b_{4}$ and an integer $a>2$, we have $z_{a}=z_{a-1}+z_{a-2}$.

Corollary 3. For every integer $n>2$, we have $z_{n}=F_{n-1} z_{2}+F_{n-2} z_{1}$.
Proof. First we prove an equality below analogously to that in Lemma 6.

$$
\begin{equation*}
z_{n}=F_{k} z_{n-k+1}+F_{k-1} z_{n-k} \tag{*}
\end{equation*}
$$

We prove equality $(*)$ by induction on k.
From Lemma 8 , we have $z_{n}=F_{2} z_{n-1}+F_{1} z_{n-2}$, which means that equality ($*$) holds for $k=2$.

Assume that $z_{n}=F_{k-1} z_{n-k+2}+F_{k-2} z_{n-k+1}$. Then, by Lemma 8, we have

$$
\begin{aligned}
z_{n} & =F_{k-1}\left(z_{n-k+1}+z_{n-k}\right)+F_{k-2} z_{n-k+1} \\
& =\left(F_{k-1}+F_{k-2}\right) z_{n-k+1}+F_{k-1} z_{n-k} \\
& =F_{k} z_{n-k+1}+F_{k-1} z_{n-k} .
\end{aligned}
$$

Thus equality $(*)$ holds immediately. By choosing $k=n-1$ in equality ($*$), the result in this lemma is obtained.

Lemma 9 (see [10]). Let H, X, Y be three connected, pairwise disjoint graphs. Suppose that u, v are two vertices of H, v^{\prime} is a vertex of X, u^{\prime} is a vertex of Y. Let G be the graph obtained from H, X, Y by identifying v with v^{\prime} and u with u^{\prime}, respectively. Let G_{1}^{*} be the graph obtained from H, X, Y by identifying vertices $v, v^{\prime}, u^{\prime}$, and G_{2}^{*} be the graph obtained from H, X, Y by identifying vertices $u, u^{\prime}, v^{\prime}$ as shown in Fig. 4. Then we have

$$
z\left(G_{1}^{*}\right)<z(G) \text { or } z\left(G_{2}^{*}\right)<z(G)
$$

Figure 4: Graphs G, G_{1}^{*} and G_{2}^{*} in Lemma 9

If H_{1}, H_{2} are two graphs with $V\left(H_{1}\right) \bigcap V\left(H_{2}\right)=\{v\}$, then $G=H_{1} v H_{2}$ is defined as a new graph with $V(G)=V\left(H_{1}\right) \bigcup V\left(H_{2}\right)$ and $E(G)=E\left(H_{1}\right) \bigcup E\left(H_{2}\right)$.

Lemma 10 (see [11]). Let H be a graph and T_{l} a tree of order $l \geq 2$ with $V(H) \bigcap V\left(T_{l}\right)$ $=\{v\}$. Then we have $z\left(H v T_{l}\right) \geq z\left(H v S_{l}\right)$. And the equality holds if and only if $H v T_{l} \cong H v S_{l}$, where v is identified with the center of the star S_{l} in $H v S_{l}$.
Lemma 11 (see [17]). Let G_{1} and G_{2} be two graphs and v_{i} a vertex of G_{i} for $i=1,2$. If both $z\left(G_{1}\right) \leq z\left(G_{2}\right)$ and $z\left(G_{1}-v_{1}\right) \leq z\left(G_{2}-v_{2}\right)$, and at least one of the inequalities is strict, then we have $z\left(G_{1} v_{1} T_{l}\right)<z\left(G_{2} v_{2} T_{l}\right)$, where T_{l} is a tree of order $l \geq 2$ and there is a vertex v in T_{l} such that v is identified with the vertex v_{1} in G_{1} when $G_{1} v_{1} T_{l}$ is formed, and with v_{2} in G_{2} when $G_{2} v_{2} T_{l}$ is formed.
Corollary 4. Let G be a graph and v_{1}, v_{2} two vertices of G such that $z\left(G-v_{1}\right)<$ $z\left(G-v_{2}\right)$. Suppose that T_{l} is a tree of order $l \geq 2$ and v_{1}, v_{2} in T_{l} represent the same vertex in it. Then we have $z\left(G v_{1} T_{l}\right)<z\left(G v_{2} T_{l}\right)$.

In the following lemma the values of the Hosoya indices of the two graphs defined above are determined.

Lemma 12.

$$
\begin{aligned}
z(T(a, b, c))= & F_{a+c+2} F_{b+1}+F_{a+1} F_{c+1} F_{b}, \\
z\left(C_{2 k}^{(k)}\left(1^{l}, m^{1} ; h^{1}\right)\right)= & F_{h+1} F_{2 k+m+1}+F_{h} F_{k} F_{k+m+1} \\
& +F_{m+1}\left[F_{h+1}\left(l F_{2 k}+F_{2 k-1}\right)+F_{h} F_{k}\left(l F_{k}+F_{k-1}\right)\right] .
\end{aligned}
$$

Proof. Using Lemma 1 (1) to the unique vertex of degree 3 in graph $T(a, b, c)$, and from Lemma 1 (3) and Lemmas 2, 5, we have

$$
\begin{aligned}
z(T(a, b, c)) & =F_{a+1} F_{b+1} F_{c+1}+F_{a} F_{b+1} F_{c+1}+F_{a+1} F_{b} F_{c+1}+F_{a+1} F_{b+1} F_{c} \\
& =F_{a+2} F_{b+1} F_{c+1}+F_{a+1} F_{b} F_{c+1}+F_{a+1} F_{b+1} F_{c} \\
& =F_{a+c+2} F_{b+1}+F_{a+1} F_{c+1} F_{b} .
\end{aligned}
$$

Now we start to determine the value of $z\left(C_{2 k}^{(k)}\left(1^{l}, m^{1} ; h^{1}\right)\right)$. Set

$$
A=z\left(C_{2 k}^{(k)}\left(1^{l}, m^{1} ; h^{1}\right)\right)
$$

Considering the formula of $z(T(a, b, c))$, applying Lemma 1 (1) to the vertex of degree $1+1+2=1+3$ in graph $C_{2 k}^{(k)}\left(1^{l}, m^{1} ; h^{1}\right)$, similarly we get

$$
\begin{aligned}
A= & z\left(P_{m}\right) z(T(k-1, k-1, h))+l z\left(P_{m}\right) z(T(k-1, k-1, h)) \\
& +z\left(P_{m-1}\right) z(T(k-1, k-1, h))+2 z\left(P_{m}\right) z(T(k-2, k-1, h)) \\
= & {\left[(l+1) F_{m+1}+F_{m}\right]\left(F_{h+1} F_{2 k}+F_{h} F_{k}^{2}\right)+2 F_{m+1}\left(F_{h+1} F_{2 k-1}+F_{h} F_{k} F_{k-1}\right) } \\
= & F_{h+1} F_{m+1}\left(l F_{2 k}+F_{2 k+1}+F_{2 k-1}\right)+F_{m} F_{h+1} F_{2 k} \\
& +F_{h} F_{k}\left[F_{m+1}\left((l+1) F_{k}+2 F_{k-1}\right)+F_{m} F_{k}\right] \\
= & F_{h+1} F_{2 k+m+1}+F_{m+1} F_{h+1}\left(l F_{2 k}+F_{2 k-1}\right) \\
& +F_{h} F_{k}\left[F_{m+1}\left(l F_{k}+F_{k+1}+F_{k-1}\right)+F_{m} F_{k}\right] \\
= & F_{h+1} F_{2 k+m+1}+F_{m+1} F_{h+1}\left(l F_{2 k}+F_{2 k-1}\right)+F_{h} F_{k}\left[F_{m+k+1}+F_{m+1}\left(l F_{k}+F_{k-1}\right)\right] \\
= & F_{h+1} F_{2 k+m+1}+F_{h} F_{k} F_{k+m+1}+F_{m+1}\left[F_{h+1}\left(l F_{2 k}+F_{2 k-1}\right)+F_{h} F_{k}\left(l F_{k}+F_{k-1}\right)\right] .
\end{aligned}
$$

Therefore the proof of this lemma is completed.

Lemma 13 (see [14]). Let G be a connected graph with $v_{1} v_{2} \in E(G)$ such that $G-v_{1} v_{2}=G_{1} \bigcup G_{2}$ and $v_{i} \in V\left(G_{i}\right)$ for $i=1,2$. Denote by G^{\prime} the graph obtained from G by deleting the edge $v_{1} v_{2}$ and identifying v_{1} with v_{2} to form a new vertex v and attaching a pendent vertex w to v. Then we have $z\left(G^{\prime}\right)<z(G)$.

3. Main results

In this section we will determine the graphs from $\mathcal{U}_{n, d}$ minimizing the Hosoya index for all the possible values of d. If $n=3$, there is only one unicyclic graph C_{3}, and so there is nothing to prove. When $n=4$, there are exactly two connected unicyclic graphs C_{4} and $C_{3}\left(1^{1}\right)$. From Lemmas 1 and 2 , it is easy to find that $z\left(C_{3}\left(1^{1}\right)\right)<z\left(C_{4}\right)$, which finishes our proof for $n=4$. If $d=n-1$, there exists only one graph, i.e. a path P_{n}, but it does not belong to $\mathcal{U}_{n, d}$. For $d=1$, any two vertices in a graph of this form are all adjacent, so it is the complete graph K_{n}, but it is not a unicyclic graph when $n>4$. Therefore, we always assume that $n>4$ and $1<d<n-1$ in the following.

For any graph $G \in \mathcal{U}_{n, d}$, a path with length d of G is called the main path of G, the only cycle of G is called a unique cycle of G. Note that the number of main paths in $G \in \mathcal{U}_{n, d}$ is possibly more than one. The following lemma presents a property of graphs from $\mathcal{U}_{n, d}$ with the smallest Hosoya index.

Lemma 14. Suppose that $G \in \mathcal{U}_{n, d}$ has the smallest Hosoya index. Let C be a unique cycle of G. Then there exists a main path P of G such that $V(P) \cap V(C) \neq$ Φ.

Proof. Let $P=v_{1} v_{2} \cdots v_{d} v_{d+1}$. To the contrary, there exists a vertex $u_{0} \in V(C)$ such that the vertices u_{0} and v_{j} (where $j \in\{2,3, \cdots, d\}$) are linked by a unique path $P_{0}=u_{0} u_{1} u_{2} \cdots u_{l-1} u_{l}$, where $u_{l}=v_{j}$. Assume that in G a subtree $T_{m_{i}}^{i}$ (with the vertex u_{i} included) of order m_{i} is attached at u_{i} for $i \in\{0,1, \cdots, l-1, l\}$, and

$$
\sum_{i=0}^{l} m_{i}=m+l
$$

Now we construct a new graph G^{\prime} as shown in Fig. 5, which is obtained from G by

Figure 5: Main path and unique cycle in graph G^{\prime}
replacing all subtrees $T_{m_{i}}^{i}$ by stars $S_{m_{i}}$ with u_{i} as its center for $i \in\{0,1, \cdots, l-1, l\}$,
and then deleting all the edges $u_{0} u_{1}, \cdots, u_{i} u_{i+1}, \cdots, u_{l-1} u_{l}$ and identifying these vertices $u_{0}, u_{1}, \cdots, u_{l-1}, u_{l}$ to form a new vertex $u\left(=u_{0}\right)$ and attaching l pendant vertices to the vertex $u\left(=u_{0}\right)$. Note that $G^{\prime} \in \mathcal{U}_{n, d}$. Applying repeatedly Lemma 13 and considering Lemma 10, we have $z\left(G^{\prime}\right)<z(G)$. This is a contradiction to the choice of G, which completes the proof of this lemma.

Next we will look for the graph from $\mathcal{U}_{n, d}$ with the smallest Hosoya index. To do it, we first introduce two subsets of $\mathcal{U}_{n, d}$. Let
$\mathcal{U}_{n, d}^{(1)}=\left\{G: G \in \mathcal{U}_{n, d}\right.$, the main path of G and the unique cycle of G have exactly one vertex in common\}
and

$$
\mathcal{U}_{n, d}^{(2)}=\left\{G: G \in \mathcal{U}_{n, d}, \text { the main path of } \mathrm{G} \text { and the unique cycle of } \mathrm{G}\right. \text { have at least }
$$ two vertices in common $\}$.

From Lemma 14, to determine the graph from $\mathcal{U}_{n, d}$ with the smallest Hosoya index, it suffices to find the graph from $\mathcal{U}_{n, d}^{(i)}$ with minimal the Hosoya index for $i=1,2$, respectively.

Theorem 1. For any graph $G \in \mathcal{U}_{n, d}^{(1)}$, we have $z(G) \geq 2(n-d) F_{d}+2 F_{d+1}$. The equality holds if and only if $G \cong C_{3}\left(1^{n-d-2},(d-1)^{1}\right)$.

Proof. Suppose that $G_{0} \in \mathcal{U}_{n, d}^{(1)}$ has the smallest Hosoya index. By the definition of $\mathcal{U}_{n, d}^{(1)}$, we assume that $P=v_{1} v_{2} \cdots v_{d} v_{d+1}$ and C_{k} is the main path and the unique cycle of G, respectively, and $V(P) \bigcap V\left(C_{k}\right)=\left\{v_{j}\right\}$, where $j \in\{2,3, \cdots, d\}$.

Note that the subgraph of G_{0} induced by $V(P) \bigcup V\left(C_{k}\right)$ is just

$$
C_{k}\left((j-1)^{1},(d+1-j)^{1}\right) \cong G_{M} .
$$

Set $x=n-\left|V(P) \bigcup V\left(C_{k}\right)\right|$, by Lemmas 9,10 , we find that either $G_{0} \cong G_{M} v_{j} S_{x}$, or $G_{0} \cong G_{M} u_{t} S_{x}$, where $u_{t} \in V\left(C_{k}\right) \backslash\left\{v_{j}\right\}$.

Now we claim that $k=3$, that is, the length of C_{k} in G_{M} is 3 . Otherwise, we have $k \geq 4$. If $G_{0} \cong G_{M} v_{j} S_{x}$, after decreasing the length of C_{k} by 1 and attaching a pendant edge to vertex v_{j} in G_{0}, by Lemma 4 , the obtained graph has a smaller Hosoya index than G_{0}. If $G_{0} \cong G_{M} u_{t} S_{x}$, then, similarly, G_{0} can be changed into G_{0}^{\prime} with $z\left(G_{0}^{\prime}\right)<z\left(G_{0}\right)$ by decreasing the length of C_{k} by 1 and attaching a pendant edge to u_{t} in G_{0}. These are two contradictions to the choice of G_{0}, which complete the proof of this claim.

Let

$$
G_{C} \cong C_{3}\left((j-1)^{1},(d+1-j)^{1}\right)
$$

and $y=n-d-3$. By now we have found that $G_{0} \in\left\{G_{C} v_{j} S_{y}, G_{C} v_{i} S_{y}, G_{C} u_{t} S_{y}\right\}$, where j, i are defined as above and $t \in\{1,2\}$. Graphs $G_{C} v_{j} S_{y}, G_{C} v_{i} S_{y}, G_{C} u_{1} S_{y}$ are shown as three examples in Fig. 6. By Lemma 9, we claim that $G_{C} v_{i} S_{y}$ and $G_{C} u_{t} S_{y}$ with $t=1,2$ cannot have the smallest Hosoya index. Thus we find that G_{0} must be of the form $G_{C} v_{j} S_{y}$.

Figure 6: Graphs $G_{C} v_{j} S_{y}, G_{C} v_{i} S_{y}$ and $G_{C} u_{1} S_{y}$

Note that

$$
G_{C} v_{j} S_{y} \cong C_{3}\left(1^{y},(j-1)^{1},(d+1-j)^{1}\right)
$$

From Lemma 3, we have

$$
z\left(G_{C} v_{j} S_{y}\right) \geq z\left(C_{3}\left(1^{n-d-2},(d-1)^{1}\right)\right)
$$

with equality holding if and only $G_{C} v_{j} S_{y} \cong C_{3}\left(1^{n-d-2},(d-1)^{1}\right)$. By Lemmas 1,2 , it is not difficult to obtain

$$
z\left(C_{3}\left(1^{n-d-2},(d-1)^{1}\right)\right)=2(n-d) F_{d}+2 F_{d+1}
$$

which completes the proof of this theorem.
To determine the graph from $\mathcal{U}_{n, d}^{(2)}$ with the smallest Hosoya index, we divide this set into two subsets:

$$
\mathcal{U}_{n, d}^{(2)}=\mathcal{U}_{n, d}^{(2) 1} \bigcup \mathcal{U}_{n, d}^{(2) 2}
$$

where

$$
\mathcal{U}_{n, d}^{(2) 1}=\left\{G: G \in \mathcal{U}_{n, d}^{(2)}, g(G)=3\right\}
$$

and

$$
\mathcal{U}_{n, d}^{(2) 2}=\left\{G: G \in \mathcal{U}_{n, d}^{(2)}, g(G)>3\right\} .
$$

The following theorem presents the graph from $\mathcal{U}_{n, d}^{(2) 1}$ with the minimal Hosoya index.
Theorem 2. For any graph $G \in \mathcal{U}_{n, d}^{(2) 1}$, we have

$$
z(G) \geq(n-d+1) F_{d+1}
$$

The equality holds if and only if $G \cong C_{3}^{(1)}\left(1^{n-d-1} ;(d-2)^{1}\right)$.
Proof. Suppose that $G_{0} \in \mathcal{U}_{n, d}^{(2) 1}$ has the minimal Hosoya index. Let $P=v_{1} v_{2} \ldots$ $v_{d} v_{d+1}$ and C_{k} be the main path and the unique cycle of G, respectively. From the definition of the set $\mathcal{U}_{n, d}^{(2) 1}$, it is easy to see that $C_{k}=C_{3}$, and there exist two vertices v_{j}, v_{j+1}, where $j \in\{2,3, \cdots, d-1\}$ from $V(P)$ and another vertex, say v_{0}, such that $C_{3}=v_{j} v_{j+1} v_{0} v_{j}$. Denote by G_{C} the subgraph of G_{0} induced by $V(P) \bigcup\left\{v_{0}\right\}$, that is to say,

$$
G_{C} \cong C_{3}^{(1)}\left((j-1)^{1} ;(d-j)^{1}\right)
$$

Let $y=n-d-2$. In a similar way to that in the proof of Theorem 1, we claim that G_{0} must be of the form $G_{C} v_{0} S_{y}$, or of the form $G_{C} v_{t} S_{y}$, where $t \in\{j, j+1\}$, or of the form $G_{C} v_{i} S_{y}$, where $i \in\{2,3, \cdots, d-1\} \backslash\{j, j+1\}$.

Now we claim that G_{0} is of the form $G_{C} v_{t} S_{y}$, where $t \in\{j, j+1\}$ or $G_{C} v_{2} S_{y}$ with $j>2$. If not, G_{0} must be of the form $G_{C} v_{0} S_{y}$, or of the form $G_{C} v_{i} S_{y}$, where $i \in\{2,3, \cdots, d-1\} \backslash\{j, j+1\}$. If G_{0} is of the form $G_{C} v_{0} S_{y}$, we construct a graph G_{0}^{\prime} by deleting the path P_{j} attached at v_{j} of G_{C} and attaching a path P_{j} to the vertex v_{0}. Note that $G_{0}^{\prime} \cong G_{C} v_{j} S_{y}$, by Lemma 9 , we have

$$
z\left(G_{0}^{\prime}\right)=z\left(G_{C} v_{j} S_{y}\right)<z\left(G_{C} v_{0} S_{y}\right)
$$

this is impossible because of the minimality of $z\left(G_{C} v_{0} S_{y}\right)$. If G_{0} is of the form $G_{C} v_{i} S_{y}$, where $i \in\{2,3, \cdots, d-1\} \backslash\{j, j+1\}$, without loss of generality, we assume that $i \in\{2,3, \cdots, j-1\}$. From Lemmas 1, 2 and 5, we have

$$
\begin{aligned}
z\left(G_{C}-v_{j}\right) & =F_{j} F_{d+3-j} \\
z\left(G_{C}-v_{i}\right) & =F_{i} z\left(C _ { 3 } ^ { (1) } \left((j-i-1)^{1}\right.\right. \\
\left.\left.(d-j)^{1}\right)\right) & =F_{i}\left(F_{d-i+3}+F_{j-i} F_{d-j+1}\right)
\end{aligned}
$$

When j is fixed, from Corollary $1, z\left(G_{C}-v_{i}\right)$ reaches its minimum at $i=2$, and its minimum is $F_{d+1}+F_{j-2} F_{d-j+1}$. Thus we have

$$
\begin{aligned}
z\left(G_{C}-v_{i}\right)-z\left(G_{C}-v_{j}\right) & \geq F_{d+1}+F_{j-2} F_{d-j+1}-F_{j} F_{d+3-j} \\
& =F_{j} F_{d+2-j}+F_{j-1} F_{d+1-j}+F_{j-2} F_{d-j+1}-F_{j} F_{d+3-j}=0 .
\end{aligned}
$$

By Lemma 11, we have $z\left(G_{C} v_{j} S_{y}\right)<z\left(G_{C} v_{i} S_{y}\right)$ when $i>2$. Therefore this claim holds immediately.

Denote by $G_{2}^{(j)}$ the graph $G_{C} v_{2} S_{y}$ with $j \geq 3$. Let G_{j} be the graph $G_{C} v_{j} S_{y}$ with $j \in\{2,3, \cdots, d-1\}$. Applying Lemma 1 (1) to the vertex of maximum degree in G_{j} and $G_{2}^{(j)}$, respectively, by Lemmas 2,5 , we have

$$
\begin{aligned}
z\left(G_{j}\right) & =(y+1) F_{j} F_{d+3-j}+F_{j-1} F_{d+3-j}+F_{j} F_{d+2-j}+F_{j} F_{d+1-j} \\
& =y F_{j} F_{d+3-j}+2 F_{j} F_{d+3-j}+F_{j-1} F_{d+3-j} \\
& =y F_{j} F_{d+3-j}+F_{j+2} F_{d+3-j}, \\
z\left(G_{2}^{(j)}\right) & =(y+2)\left(F_{d+1}+F_{j-2} F_{d-j+1}\right)+z\left(C_{3}^{(1)}\left((j-4)^{1} ;(d-j)^{1}\right)\right. \\
& =(y+2)\left(F_{d+1}+F_{j-2} F_{d-j+1}\right)+F_{d}+F_{j-3} F_{d-j+1} .
\end{aligned}
$$

Note that a simple calculation shows the validity of $z\left(G_{2}^{(j)}\right)$ for $j=3$ or 4 . In view of Corollary 1, the minimum of $z\left(G_{j}\right)$ is attained at $j=2$, and its minimum is $(y+3) F_{d+1}$. Moreover, considering $y=n-d-2$ and $d<n-1$, we have

$$
\begin{aligned}
z\left(G_{2}^{(j)}\right)-(y+3) F_{d+1} & =(y+2) F_{j-2} F_{d-j+1}+F_{d}+F_{j-3} F_{d-j+1}-F_{d+1} \\
& =(n-d) F_{j-2} F_{d-j+1}+F_{j-3} F_{d-j+1}-F_{d-1} \\
& \geq 2 F_{j-2} F_{d-j+1}+F_{j-3} F_{d-j+1}-F_{d-1} \\
& =F_{j} F_{d-j+1}-F_{d-1}>F_{2} F_{d-1}-F_{d-1}=0 .
\end{aligned}
$$

Note that the last inequality holds since in $G_{2}^{(j)}, j \geq 3$. Therefore we find that each graph $G_{2}^{(j)}$ for $j \geq 3$ has a larger Hosoya index than G_{j} (which is just $G_{C} v_{j} S_{y}$) with $j=2$, which has the smallest Hosoya index in the set $\left\{G_{C} v_{j} S_{y}: j=2,3, \cdots, d-1\right\}$. We have now proven that $C_{3}^{(1)}\left(1^{n-d-1} ;(d-2)^{1}\right)$ from $\mathcal{U}_{n, d}^{(2) 1}$ has the minimal Hosoya index $(n-d+1) F_{d+1}$, which completes the proof of this theorem.

Let

$$
\mathcal{G}_{0}=\left\{C_{2 k}^{(k)}\left(m^{1}, 1^{y} ; h^{1}\right): y=n-d-k, k \geq 2, m \geq 0, h \geq 0, \text { and } m+h \geq 1\right\}
$$

Before determining the minimal Hosoya index of graphs from $\mathcal{U}_{n, d}^{(2) 2}$, we first prove the following lemma.

Lemma 15. Suppose that $G_{0} \in \mathcal{U}_{n, d}^{(2) 2}$ has the minimal Hosoya index. Then $G_{0} \in \mathcal{G}_{0}$.
Proof. From the definition of $\mathcal{U}_{n, d}^{(2) 2}$, by Lemmas 9, 10, we find that G_{0} must be a graph obtained by attaching $x=n-m-l-h$ pendant edges to one of the non-pendant vertices of $C_{l}^{(k)}\left(m^{1} ; h^{1}\right)$ with $l \geq 2 k$ and $k+m+h=d$, that is, $G_{0} \cong C_{l}^{(k)}\left(m^{1} ; h^{1}\right) v_{0} S_{x}$, where v_{0} is a non-pendant vertex of $C_{l}^{(k)}\left(m^{1} ; h^{1}\right)$.

Now we claim that in $C_{l}^{(k)}\left(m^{1} ; h^{1}\right) v_{0} S_{x}, l=2 k$. Assume that, to the contrary, $l-k+1>k$. Considering the structure of $C_{l}^{(k)}\left(m^{1}, ; h^{1}\right) v_{0} S_{x}$, after decreasing the length of path P_{l-k+1} (which is on the cycle C_{l} in G_{0}, but not on the main path of G_{0}) by 1 and attaching a pendant edge to one vertex of resulting path P_{l-k}, by Lemma 4, the obtained graph has a smaller Hosoya index. This is a contradiction to the choice of G_{0}, which completes the proof of this claim. Let $y=n-d-k$. Note that $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right)$ in G_{0} is a graph as shown in Fig. 7. Therefore G_{0} must be in the set \mathcal{G}_{0} of the type $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right) v_{i} S_{y}$, where $i \in\{2,3, \cdots, m, m+k+2, m+k+3, \cdots, d\}$, or of the type $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right) u_{j} S_{y}$, where $j \in\{1,2, \cdots, k-1\}$.

Figure 7: The graph $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right)$ in G_{0}
If G_{0} is in the set \mathcal{G}_{0}, we are done. In the following we use G_{C} to denote $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right)$. If G_{0} is of the type $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right) v_{i} S_{y}$, where $i \in\{2,3, \cdots, m, m+$ $k+2, m+k+3, \cdots, d+1\}$, without loss of generality, we assume that $G_{0} \cong$ $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right) v_{i} S_{y}$ with $i \in\{2,3, \cdots, m\}$. Set $A=z\left(G_{C}-v_{i}\right)-z\left(G_{C}-u_{0}\right)$, by Lemmas $1,2,5$ and 12 , we have

$$
z\left(G_{C}-u_{0}\right)=F_{m+1}\left(F_{2 k} F_{h+1}+\left(F_{k}\right)^{2} F_{h}\right),
$$

$$
\begin{aligned}
z\left(G_{C}-v_{i}\right)= & F_{i} z\left(C_{2 k}^{(k)}\left((m-i)^{1} ; h^{1}\right)\right) \\
= & F_{i}\left[\left(F_{m-i+1}+F_{m-i}\right) z(T(h, k-1, k-1))\right. \\
& \left.+2 F_{m-i+1} z(T(h, k-1, k-2))\right] \\
= & F_{i}\left[F_{m-i+2}\left(F_{2 k} F_{h+1}+\left(F_{k}\right)^{2} F_{h}\right)\right. \\
& \left.+2 F_{m-i+1}\left(F_{2 k-1} F_{h+1}+F_{k} F_{k-1} F_{h}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
A & =\left(F_{i} F_{m-i+2}-F_{m+1}\right)\left(F_{2 k} F_{h+1}+\left(F_{k}\right)^{2} F_{h}\right)+2 F_{i} F_{m-i+1}\left(F_{2 k-1} F_{h+1}+F_{k} F_{k-1} F_{h}\right) \\
& =2 F_{i} F_{m-i+1}\left(F_{2 k-1} F_{h+1}+F_{k} F_{k-1} F_{h}\right)-F_{i-1} F_{m-i+1}\left(F_{2 k} F_{h+1}+\left(F_{k}\right)^{2} F_{h}\right) \\
& =F_{h+1} F_{m-i+1}\left(F_{i} 2 F_{2 k-1}-F_{i-1} F_{2 k}\right)+F_{k} F_{h} F_{m-i+1}\left(F_{i} 2 F_{k-1}-F_{i-1} F_{k}\right)>0 .
\end{aligned}
$$

Note that the last inequality holds since $2 F_{2 k-1}>F_{2 k}$ and $2 F_{k-1} \geq F_{k}$ if $k \geq 2$. By Lemma 11, we have $z\left(G_{C} u_{0} S_{y}\right)<z\left(G_{C} v_{i} S_{y}\right)$ for $i \in\{2,3, \cdots, m\}$. This is impossible because of the minimality of $z\left(G_{0}\right)=z\left(G_{C} v_{i} S_{y}\right)$.

Next we will prove that for any graph G^{\prime} of the type $C_{2 k}^{(k)}\left(m^{1} ; h^{1}\right) u_{j} S_{y}$ with $j \in\{1,2, \cdots, k-1\}$, there exists a graph $G^{\prime \prime} \in \mathcal{G}_{0}$ such that $z\left(G^{\prime \prime}\right)<z\left(G^{\prime}\right)$. Set $j=k_{1}+1$ and $k-j=k_{2}+1$, i.e., $k_{1}+k_{2}=k-2$. To do this, we distinguish the following two cases.

Case 1. k is odd.
Let $G_{C}^{\prime}=G_{C}-\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ and $T_{m+y}^{(0)}$ be a tree as shown in Fig. 8. Note that $G_{C} u_{0} S_{y} \cong G_{C}^{\prime} u_{0} T_{m+y}^{(0)}$. By Lemma 9, we have $z\left(G_{C} u_{0} S_{y}\right)<z\left(G_{C} u_{j} S_{y}\right)$ or $z\left(G_{C}^{\prime} u_{j} T_{m+y}^{(0)}\right)<z\left(G_{C} u_{j} S_{y}\right)$, where $G_{C}^{\prime} u_{j} T_{m+y}^{(0)}$ is a graph obtained by identifying u_{j} of G_{C}^{\prime} with the vertex of maximum degree in $T_{m+y}^{(0)}$. If the former holds, we are done for this case. If not, we will compare the values of $z\left(G_{C}^{\prime} u_{0} T_{m+y}^{(0)}\right)$ and

Figure 8: The tree $T_{m+y}^{(0)}$
$z\left(G_{C}^{\prime} u_{j} T_{m+y}^{(0)}\right)$. From Lemma 12, we have

$$
\begin{aligned}
z\left(G_{C}^{\prime}-u_{0}\right) & =F_{2 k} F_{h+1}+\left(F_{k}\right)^{2} F_{h} \\
z\left(G_{C}^{\prime}-u_{j}\right) & =F_{h+1} F_{k+k_{1}+1+k_{2}+1}+F_{h} F_{k+k_{1}+1} F_{k_{2}+1} \\
& =F_{h+1} F_{2 k}+F_{h} F_{k+k_{1}+1} F_{k_{2}+1}
\end{aligned}
$$

and

$$
z\left(G_{C}^{\prime}-u_{0}\right)-z\left(G_{C}^{\prime}-u_{j}\right)=F_{h}\left(\left(F_{k}\right)^{2}-F_{k+k_{1}+1} F_{k_{2}+1}\right)
$$

Since k is odd and $k_{1}+k_{2}=k-2$, one of k_{1} and k_{2} is even. If k_{2} is even, From Lemma 6, we have $F_{k+k_{1}+1} F_{k_{2}+1}>\left(F_{k}\right)^{2}$, that is to say, $z\left(G_{C}^{\prime}-u_{0}\right)<$
$z\left(G_{C}^{\prime}-u_{j}\right)$. By Lemma 11, we have $z\left(G_{C}^{\prime} u_{0} T_{m+y}^{(0)}\right)=z\left(G_{C} u_{0} S_{y}\right)<z\left(G_{C}^{\prime} u_{j} T_{m+y}\right)$. Therefore $z\left(G_{C} u_{0} S_{y}\right)<z\left(G_{C}^{\prime} u_{j} T_{m+y}^{(0)}\right)<z\left(G_{C} u_{j} S_{y}\right)$. When k_{1} is even, similarly, $z\left(G_{C} u_{k} S_{y}\right)<z\left(G_{C} u_{j} S_{y}\right)$, which finishes the proof for this case.

Case 2. k is even.
If k_{1} and k_{2} are both even, we can obtain the result as desired in a way similar to that in the proof of Case 1.

So it suffices to deal with the case when k is even and k_{1}, k_{2} are both odd. Note that $G_{C}-u_{j}$ is just $H\left(k+1 ; m, k_{1} ; h, k_{2}\right)$. Set $z\left(G_{C}-u_{j}\right)=z_{k+1}, z\left(G_{C}-u_{0}\right)=z_{C}^{(0)}$, $z\left(G_{C}-u_{k}\right)=z_{C}^{(k)}$, and $B=z_{k+1}-z_{C}^{(0)}+z_{k+1}-z_{C}^{(k)}$. Note that $k_{1}+k_{2}=k-2$, by Lemmas 1, 2, 5 and Corollary 3, we have

$$
\begin{aligned}
z_{k+1}= & F_{k} z_{2}+F_{k-1} z_{1} \\
= & F_{k}\left(F_{m+k_{1}+2} F_{h+k_{2}+2}+F_{m+1} F_{h+1} F_{k_{1}+1} F_{k_{2}+1}\right) \\
& +F_{k-1}\left[F_{m+1} F_{h+1} F_{k_{1}+1} F_{k_{2}+1}+F_{m+1} F_{h+1} F_{k_{1}} F_{k_{2}+1}+F_{m+1} F_{h+1} F_{k_{1}+1} F_{k_{2}}\right. \\
& \left.+\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) F_{k_{1}+1} F_{k_{2}+1}\right] \\
= & F_{k}\left[\left(F_{m+1} F_{k_{1}+2}+F_{m} F_{k_{1}+1}\right)\left(F_{h+1} F_{k_{2}+2}+F_{h} F_{k_{2}+1}\right)+F_{m+1} F_{h+1} F_{k_{1}+1} F_{k_{2}+1}\right] \\
& +F_{k-1}\left[F_{m+1} F_{h+1} F_{k_{1}+k_{2}+2}+\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) F_{k_{1}+1} F_{k_{2}+1}\right] \\
= & F_{k}\left[F_{m+1} F_{h+1} F_{k_{1}+k_{2}+3}+F_{m} F_{h+1} F_{k_{1}+1} F_{k_{2}+2}+F_{m+1} F_{h} F_{k_{1}+2} F_{k_{2}+1}\right. \\
& \left.+F_{m} F_{h} F_{k_{1}+1} F_{k_{2}+1}\right] \\
& +F_{k-1}\left[F_{m+1} F_{h+1} F_{k_{1}+k_{2}+2}+\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) F_{k_{1}+1} F_{k_{2}+1}\right] \\
= & F_{m+1} F_{h+1} F_{k}\left(F_{k+1}+F_{k-1}\right)+F_{m} F_{h+1} F_{k_{1}+1}\left(F_{k} F_{k_{2}+2}+F_{k-1} F_{k_{2}+1}\right) \\
& +F_{m+1} F_{h} F_{k_{2}+1}\left(F_{k} F_{k_{1}+2}+F_{k-1} F_{k_{1}+1}\right)+F_{m} F_{h} F_{k} F_{k_{1}+1} F_{k_{2}+1} \\
= & F_{m+1} F_{h+1} F_{k}\left(F_{k+1}+F_{k-1}\right)+F_{m} F_{h+1} F_{k_{1}+1} F_{k+k_{2}+1}+F_{m+1} F_{h} F_{k_{2}+1} F_{k+k_{1}+1} \\
& +F_{m} F_{h} F_{k} F_{k_{1}+1} F_{k_{2}+1}, \\
z_{C}^{(0)}= & F_{m+1}\left(F_{2 k} F_{h+1}+\left(F_{k}\right)^{2} F_{h}\right), \\
z_{C}^{(k)}= & F_{h+1}\left(F_{2 k} F_{m+1}+\left(F_{k}\right)^{2} F_{m}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
B= & 2 z_{k+1}-z_{C}^{(0)}-z_{C}^{(k)} \\
= & 2 F_{m+1} F_{h+1}\left[F_{k}\left(F_{k+1}+F_{k-1}\right)-F_{2 k}\right]+2 F_{m} F_{h+1} F_{k_{1}+1}\left(F_{k+1} F_{k_{2}+1}+F_{k} F_{k_{2}}\right) \\
& +2 F_{m+1} F_{h} F_{k_{2}+1}\left(F_{k+1} F_{k_{1}+1}+F_{k} F_{k_{1}}\right)+2 F_{m} F_{h} F_{k} F_{k_{1}+1} F_{k_{2}+1} \\
& -\left(F_{k}\right)^{2}\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) \\
= & \left(2 F_{k+1} F_{k_{1}+1} F_{k_{2}+1}-\left(F_{k}\right)^{2}\right)\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) \\
& +2 F_{k}\left(F_{m} F_{h+1} F_{k_{1}+1} F_{k_{2}}+F_{m+1} F_{h} F_{k_{2}+1} F_{k_{1}}+F_{m} F_{h} F_{k_{1}+1} F_{k_{2}+1}\right) \\
> & \left(2 F_{k+1} F_{k_{1}+1} F_{k_{2}+1}-\left(F_{k}\right)^{2}\right)\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) .
\end{aligned}
$$

Considering $k_{1}+k_{2}=k-2$, and k_{1}, k_{2} are both odd, and k is even (clearly, $k \geq 4$),
by Lemma 6 and Corollary 2, we have

$$
\begin{aligned}
B & >\left(2 F_{k-2} F_{k+1}-\left(F_{k}\right)^{2}\right)\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) \\
& >\left(F_{k-1} F_{k+1}-\left(F_{k}\right)^{2}\right)\left(F_{m} F_{h+1}+F_{m+1} F_{h}\right) \\
& =F_{m} F_{h+1}+F_{m+1} F_{h}>0 .
\end{aligned}
$$

So we have $z_{k+1}>z_{C}^{(0)}$, or $z_{k+1}>z_{C}^{(k)}$, that is, $z_{C}^{(0)}<z_{k+1}$, or $z_{C}^{(k)}<z_{k+1}$. By Lemma 11, we have $z\left(G_{C} u_{0} S_{y}\right)<z\left(G_{C} u_{j} S_{y}\right)$ or $z\left(G_{C} u_{k} S_{y}\right)<z\left(G_{C} u_{j} S_{y}\right)$, which finishes the proof for this case since $G_{C} u_{0} S_{y}$ and $G_{C} u_{k} S_{y}$ all belong to \mathcal{G}_{0}.

By now the proof of this lemma is completed.
Theorem 3. For any graph $G \in \mathcal{U}_{n, d}^{(2) 2}$, we have

$$
z(G) \geq F_{d+2}+(n-d-1) F_{d}+(n-d+1) F_{d-2}
$$

The equality holds if and only if $G \cong C_{4}^{(2)}\left(1^{n-d-1},(d-3)^{1}\right)$.
Proof. Suppose that $G_{0} \in \mathcal{U}_{n, d}^{(2) 2}$ has the minimal Hosoya index. From Lemma 15, we find that G_{0} is of the form $C_{2 k}^{(k)}\left(m^{1}, 1^{y} ; h^{1}\right)$ with $y=n-d-k, k \geq 2, m \geq 0, h \geq 0$, and $m+h \geq 1$. Set $z\left(C_{2 k}^{(k)}\left(m^{1}, 1^{y} ; h^{1}\right)\right)=z^{(k)}, z\left(C_{2 k-2}^{(k-1)}\left(m^{1}, 1^{y+1} ;(h+1)^{1}\right)\right)=z^{(k-1)}$ and $\Delta=z^{(k)}-z^{(k-1)}$. From Lemma 12, for $k \geq 3$, we have

$$
\begin{aligned}
z^{(k)}= & F_{h+1} F_{2 k+m+1}+F_{h} F_{k} F_{k+m+1}+F_{m+1}\left[F_{h+1}\left(y F_{2 k}+F_{2 k-1}\right)\right. \\
& \left.+F_{h} F_{k}\left(y F_{k}+F_{k-1}\right)\right] \\
z^{(k-1)}= & F_{h+2} F_{2 k+m-1}+F_{h+1} F_{k-1} F_{k+m} \\
& +F_{m+1}\left[F_{h+2}\left((y+1) F_{2 k-2}+F_{2 k-3}\right)+F_{h+1} F_{k-1}\left((y+1) F_{k-1}+F_{k-2}\right)\right],
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta= & F_{h+1} F_{2 k+m+1}+F_{h} F_{k} F_{k+m+1}+F_{m+1}\left[F_{h+1}\left(y F_{2 k}+F_{2 k-1}\right)\right. \\
& \left.+F_{h} F_{k}\left(y F_{k}+F_{k-1}\right)\right] \\
& -F_{h+2} F_{2 k+m-1}-F_{h+1} F_{k-1} F_{k+m} \\
& -F_{m+1}\left[F_{h+2}\left((y+1) F_{2 k-2}+F_{2 k-3}\right)+F_{h+1} F_{k-1}\left((y+1) F_{k-1}+F_{k-2}\right)\right] \\
= & \left(F_{h+1} F_{2 k+m+1}-F_{h+2} F_{2 k+m-1}\right)+\left(F_{h} F_{k} F_{k+m+1}-F_{h+1} F_{k-1} F_{k+m}\right) \\
& +F_{m+1}\left[y\left(F_{h+1} F_{2 k}-F_{h+2} F_{2 k-2}\right)+y\left(F_{h}\left(F_{k}\right)^{2}-F_{h+1}\left(F_{k-1}\right)^{2}\right)\right. \\
& +\left(F_{h+1} F_{2 k-1}-F_{h+2} F_{2 k-3}\right)+\left(F_{h} F_{k} F_{k-1}-F_{h+1} F_{k-1} F_{k-2}\right) \\
& \left.-\left(F_{h+2} F_{2 k-2}+F_{h+1}\left(F_{k-1}\right)^{2}\right)\right] .
\end{aligned}
$$

Set

$$
\begin{aligned}
& A=F_{h+1} F_{2 k+m+1}-F_{h+2} F_{2 k+m-1} \\
& B=F_{h} F_{k} F_{k+m+1}-F_{h+1} F_{k-1} F_{k+m} \\
& D=F_{h+1} F_{2 k}-F_{h+2} F_{2 k-2}+F_{h}\left(F_{k}\right)^{2}-F_{h+1}\left(F_{k-1}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
E= & \left(F_{h+1} F_{2 k-1}-F_{h+2} F_{2 k-3}\right)+\left(F_{h} F_{k} F_{k-1}-F_{h+1} F_{k-1} F_{k-2}\right) \\
& -\left(F_{h+2} F_{2 k-2}+F_{h+1}\left(F_{k-1}\right)^{2}\right)
\end{aligned}
$$

Then, by Lemma 5, we have

$$
\begin{aligned}
D= & F_{h+1} F_{2 k}-F_{h+1} F_{2 k-2}-F_{h} F_{2 k-2}+F_{h}\left(F_{k}\right)^{2}-F_{h}\left(F_{k-1}\right)^{2}-F_{h-1}\left(F_{k-1}\right)^{2} \\
= & F_{h+1} F_{2 k-1}-F_{h} F_{2 k-2}+F_{h} F_{k+1} F_{k-2}-F_{h-1}\left(F_{k-1}\right)^{2} \\
= & F_{h+1} F_{2 k-1}-F_{h} F_{k} F_{k-3}-F_{h-1}\left(F_{k-1}\right)^{2} \\
= & F_{h+1} F_{k} F_{k-2}-F_{h} F_{k} F_{k-3}+F_{h+1} F_{k+1} F_{k-1}-F_{h-1}\left(F_{k-1}\right)^{2}>0, \\
B= & F_{h}\left(F_{k-1}+F_{k-2}\right)\left(F_{k+m}+F_{k+m-1}\right)-\left(F_{h}+F_{h-1}\right) F_{k-1} F_{k+m} \\
= & F_{h} F_{k-2} F_{k+m+1}+F_{h} F_{k-1} F_{k+m-1}-F_{h-1} F_{k-1} F_{k+m} \\
= & \frac{1}{2}\left(F_{h} 2 F_{k-2} F_{k+m+1}-F_{h-1} F_{k-1} F_{k+m}+F_{h} F_{k-1} 2 F_{k+m-1}-F_{h-1} F_{k-1} F_{k+m}\right) \\
> & 0 \\
E= & \left(F_{h+1} F_{2 k-2}+F_{h+1} F_{2 k-3}-F_{h+1} F_{2 k-3}-F_{h} F_{2 k-3}\right) \\
& +\left(F_{h} F_{k} F_{k-1}-F_{h} F_{k-1} F_{k-2}-F_{h-1} F_{k-1} F_{k-2}\right)-\left(F_{h+2} F_{2 k-2}+F_{h+1}\left(F_{k-1}\right)^{2}\right) \\
= & F_{h+1} F_{2 k-2}-F_{h} F_{2 k-3}+F_{h}\left(F_{k-1}\right)^{2}-F_{h-1} F_{k-1} F_{k-2} \\
& -\left(F_{h+2} F_{2 k-2}+F_{h+1}\left(F_{k-1}\right)^{2}\right) \\
= & -F_{h} F_{2 k-2}-F_{h-1}\left(F_{k-1}\right)^{2}-F_{h} F_{2 k-3}-F_{h-1} F_{k-1} F_{k-2} \\
= & -F_{h} F_{2 k-1}-F_{h-1} F_{k} F_{k-1}, \\
A= & F_{h+1} F_{2 k+m}+F_{h+1} F_{2 k+m-1}-F_{h+1} F_{2 k+m-1}-F_{h} F_{2 k+m-1} \\
= & F_{h+1} F_{2 k+m}-F_{h} F_{2 k+m-1} .
\end{aligned}
$$

So we have

$$
\begin{aligned}
\Delta= & A+B+y F_{m+1} D+F_{m+1} E \\
> & A+F_{m+1} E+B \\
= & F_{h+1} F_{2 k+m}-F_{h} F_{2 k+m-1}-F_{m+1}\left(F_{h} F_{2 k-1}+F_{h-1} F_{k} F_{k-1}\right)+B \\
= & F_{h} F_{2 k+m}+F_{h-1} F_{2 k+m}-F_{h} F_{2 k+m-1}-F_{m+1} F_{h} F_{2 k-1} \\
& -F_{m+1} F_{h-1} F_{k} F_{k-1}+B \\
= & F_{h} F_{2 k+m-2}+F_{h-1} F_{2 k+m}-F_{m+1} F_{h} F_{2 k-1}-F_{m+1} F_{h-1} F_{k} F_{k-1}+B \\
= & F_{h}\left(F_{2 k+m-2}-F_{m+1} F_{2 k-1}\right)+F_{h-1}\left(F_{2 k+m}-F_{m+1} F_{k} F_{k-1}\right)+B \\
= & F_{h}\left(F_{m+1} F_{2 k-2}+F_{m} F_{2 k-3}-F_{m+1} F_{2 k-1}\right) \\
& +F_{h-1}\left(F_{m} F_{2 k-1}+F_{m+1} F_{2 k}-F_{m+1} F_{k} F_{k-1}\right)+B \\
= & F_{h}\left(F_{m} F_{2 k-3}-F_{m+1} F_{2 k-3}\right)+F_{h-1}\left(F_{m} F_{2 k-1}+F_{m+1} F_{k} F_{k+1}\right)+B \\
= & F_{h-1}\left(F_{m} F_{2 k-1}+F_{m+1} F_{k} F_{k+1}\right)-F_{h} F_{m-1} F_{2 k-3}+B .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\Delta & >A+F_{m+1} E \\
& =F_{h-1} F_{m} F_{2 k-1}-F_{h-1} F_{m-1} F_{2 k-3}+F_{h-1} F_{m+1} F_{k} F_{k+1}-F_{h-2} F_{m-1} F_{2 k-3} \\
& \geq F_{h-1} F_{m-1} F_{2 k-2}+F_{h-2} F_{m-1}\left(F_{k} F_{k+1}-F_{2 k-3}\right) \\
& =F_{h-1} F_{m-1} F_{2 k-2}+F_{h-2} F_{m-1}\left(F_{k} F_{k+1}-F_{k} F_{k-2}-F_{k-1} F_{k-3}\right) \\
& =F_{h-1} F_{m-1} F_{2 k-2}+F_{h-2} F_{m-1} F_{k-1}\left(2 F_{k}-F_{k-3}\right) \geq 0, \text { if } h \geq 2 ; \\
\Delta & >A+F_{m+1} E+B \\
& =F_{k-2} F_{k+m+1}+F_{k-1} F_{k+m-1}-F_{m-1} F_{2 k-3} \\
& >F_{k} F_{k+m-1}-F_{m-1} F_{2 k-3} \\
& =F_{k}\left(F_{k} F_{m}+F_{k-1} F_{m-1}\right)-F_{m-1}\left(F_{k-1} F_{k-1}+F_{k-2} F_{k-2}\right) \\
& =F_{m}\left(F_{k}\right)^{2}-F_{m-1}\left(F_{k-1}\right)^{2}+F_{m-1}\left(F_{k} F_{k-1}-\left(F_{k-2}\right)^{2}\right)>0, \text { if } h=1 .
\end{aligned}
$$

Thus we have $\Delta=z\left(C_{2 k}^{(k)}\left(m^{1}, 1^{y} ; h^{1}\right)\right)-z\left(C_{2 k-2}^{(k-1)}\left(m^{1}, 1^{y+1} ;(h+1)^{1}\right)\right)>0$, which means that after identifying vertex u_{k-1} with u_{k}, u_{k-1}^{\prime} with u_{k}, and attaching a pendant edge to u_{k}, and the other pendant edge to pendant vertex v_{d+1} as shown in Fig. 7, the obtained graph has a smaller Hosoya index. After repeating the above operation, we find that for given positive integer m, the minimal Hosoya index of graphs of the form $C_{2 k}^{(k)}\left(m^{1}, 1^{y} ; h^{1}\right)$ with $y=n-d-k$ is attained at $C_{4}^{(2)}\left(m^{1}, 1^{n-d-2} ;(d-m-2)^{1}\right)$.

Set $x=n-d-2$ and $h=d-m-2$. Now we start to determine the value of k at which $z\left(C_{4}^{(2)}\left(m^{1}, 1^{x} ; h^{1}\right)\right)$ reaches its minimum. Note that $h+m=d-2$. From Lemmas 5, 12, we have

$$
\begin{aligned}
z\left(C_{4}^{(2)}\left(m^{1}, 1^{x} ; h^{1}\right)\right)= & F_{h+1} F_{m+5}+F_{h} F_{m+3}+F_{m+1}\left[F_{h+1}\left(x F_{4}+F_{3}\right)+F_{h}\left(x F_{2}+F_{1}\right)\right] \\
= & F_{h+m+4}+F_{h+1} F_{m+3}+(x+1) F_{m+1}\left(3 F_{h+1}+F_{h}\right)-F_{m+1} F_{h+1} \\
= & F_{h+m+4}+F_{h+1} F_{m+3}+(x+1) F_{m+1} F_{h+3}+x F_{m+1} F_{h+1} \\
= & F_{h+m+4}+F_{h+1} F_{m+3}+F_{m+1} F_{h+3}+x F_{m+1}\left(F_{h+3}+F_{h+1}\right) \\
= & F_{h+m+4}+F_{h+1} F_{m+1}+F_{h+1} F_{m+2}+F_{m+1}\left(F_{h}+2 F_{h+1}\right) \\
& +x F_{m+1}\left(F_{h+3}+F_{h+1}\right) \\
= & F_{h+m+4}+F_{m+h+2}+3 F_{m+1} F_{h+1}+x F_{m+1}\left(F_{h+3}+F_{h+1}\right) \\
= & F_{d+2}+F_{d}+3 F_{m+1} F_{h+1}+x F_{m+1}\left(F_{h+3}+F_{h+1}\right) .
\end{aligned}
$$

From Corollary $1, z\left(C_{4}^{(2)}\left(m^{1}, 1^{x} ; h^{1}\right)\right)$ reaches its minimum at $m=1$, and its minimum is

$$
F_{d+2}+F_{d}+3 F_{d-2}+(n-d-2)\left(F_{d}+F_{d-2}\right)=F_{d+2}+(n-d-1) F_{d}+(n-d+1) F_{d-2}
$$

Therefore this theorem follows immediately.
Note that the set $\mathcal{U}_{n, 2}$ contains only one graph which is just $C_{3}\left(1^{n-3}\right)$ with $z\left(C_{3}\left(1^{n-3}\right)\right)=2 n-2$. Next, we will prove our main theorem, in which all the graphs from $\mathcal{U}_{n, d}$ with the smallest Hosoya index are fully characterized.

Theorem 4. Let $G \in \mathcal{U}_{n, d}$.
(1) If $d=3$, then $z(G) \geq 3 n-6$ with the equality holding if and only if $G \cong$ $C_{3}^{(1)}\left(1^{n-4} ; 1^{1}\right) ;$
(2) If $4 \leq d<n-1$, then $z(G) \geq F_{d+2}+(n-d-1) F_{d}+(n-d+1) F_{d-2}$ with the equality holding if and only if $G \cong C_{4}^{(2)}\left(1^{n-d-1} ;(d-3)^{1}\right)$.
Proof. By Theorems 1, 2 and 3, we find that the graph from $\mathcal{U}_{n, d}^{(1)}$ minimizing the Hosoya index is $C_{3}\left(1^{n-d-2},(d-1)^{1}\right)$ with

$$
z\left(C_{3}\left(1^{n-d-2},(d-1)^{1}\right)\right)=2(n-d) F_{d}+2 F_{d+1}
$$

the graph from $\mathcal{U}_{n, d}^{(2) 1}$ minimizing the Hosoya index is $C_{3}^{(1)}\left(1^{n-d-1} ;(d-2)^{1}\right)$ with

$$
z\left(C_{3}^{(1)}\left(1^{n-d-1} ;(d-2)^{1}\right)\right)=(n-d+1) F_{d+1}
$$

the graph from $\mathcal{U}_{n, d}^{(2) 2}$ minimizing the Hosoya index is $C_{4}^{(2)}\left(1^{n-d-1} ;(d-3)^{1}\right)$ with

$$
z\left(C_{4}^{(2)}\left(1^{n-d-1} ;(d-3)^{1}\right)\right)=F_{d+2}+(n-d-1) F_{d}+(n-d+1) F_{d-2}
$$

Moreover, we have

$$
\begin{aligned}
& 2(n-d) F_{d}+2 F_{d+1}-(n-d+1) F_{d+1}=(n-d-1)\left(2 F_{d}-F_{d+1}\right)>0, \text { for } d>2,(* *) \\
& \quad(n-d+1) F_{d+1}-\left[F_{d+2}+(n-d-1) F_{d}+(n-d+1) F_{d-2}\right] \\
& \quad=(n-d-1) F_{d-3}+F_{d-1}-2 F_{d-2} \\
& \quad=(n-d) F_{d-3}-F_{d-2} .
\end{aligned}
$$

Set $A=(n-d) F_{d-3}-F_{d-2}$. Obviously, $A=-1<0$ if $d=3$, and $A \geq$ $2 F_{d-3}-F_{d-2}>0$ if $d>3$. Note that $n>4$. Combining inequality $(* *)$ and all the cases of the value of A, the results in (1) and (2) follow immediately. The proof of this theorem is completed.

Note that $\mathcal{U}(n)=\bigcup_{d=2}^{n-2} \mathcal{U}_{n, d}$. From Theorem 4 the following corollary is easily obtained.

Corollary 5 (see $[4,13])$. The smallest Hosoya index of graphs from $\mathcal{U}(n)$ is attained at $C_{3}\left(1^{n-3}\right)$ with $z\left(C_{3}\left(1^{n-3}\right)\right)=2 n-2$; the second smallest Hosoya index of graphs from $\mathcal{U}(n)$ is attained at $C_{3}^{(1)}\left(1^{n-4} ; 1^{1}\right)$ with $z\left(C_{3}\left(C_{3}^{(1)}\left(1^{n-4} ; 1^{1}\right)\right)\right)=3 n-6$.

Denote by $P_{k}\left(k_{1} ; k_{2}\right)$ the tree obtained by attaching k_{1}, k_{2} pendant edges to two pendant vertices of a path P_{k}. Now we end this paper with the theorem below, in which the graph from $\mathcal{U}(n)$ with the third smallest Hosoya index is determined.

Theorem 5. Let $n>7$ and $G \in \mathcal{U}(n) \backslash\left\{C_{3}\left(1^{n-3}\right), C_{3}^{(1)}\left(1^{n-4} ; 1^{1}\right)\right\}$. Then we have $z(G) \geq 3 n-5$ with the equality holding if and only if $G \cong C_{4}\left(1^{n-4}\right)$.

Proof. Suppose that $G_{0} \in \mathcal{U}(n) \backslash\left\{C_{3}\left(1^{n-3}\right), C_{3}^{(1)}\left(1^{n-4} ; 1^{1}\right)\right\}$ has the smallest Hosoya index. First we claim that G_{0} must be of the form $C_{3}^{(1)}\left(1^{n_{1}} ; 1^{n_{2}}\right)$ with $n_{1}+n_{2}=n-3$ and $\left(n_{1}, n_{2}\right) \neq(1, n-4)$, or $C_{4}\left(1^{n-4}\right)$. From Theorem 4 and Lemma 10, any unicyclic graph with $d>3$ has a larger Hosoya index than $C_{4}^{(2)}\left(1^{n-d-1} ; 1^{d-3}\right)$, by Lemma 4, we have

$$
z\left(C_{4}^{(2)}\left(1^{n-d-1} ; 1^{d-3}\right)\right)>z\left(C_{3}^{(1)}\left(1^{n-d-1} ; 1^{d-2}\right)\right)
$$

Therefore any unicyclic graph with $d>3$ has a larger Hosoya index than $C_{3}^{(1)}\left(1^{n-d-1}\right.$; $\left.1^{d-2}\right)$. In fact, any unicyclic graph with $d=3$ is either $C_{4}\left(1^{n-4}\right)$, or of the form $C_{4}^{(1)}\left(1^{k_{1}} ; 1^{k_{2}}\right)$ with $k_{1}+k_{2}=n-4$, or of the form $C_{3}^{(1)}\left(1^{n_{1}} ; 1^{n_{2}}\right)$ with $n_{1}+n_{2}=n-3$. In view of Lemma 4, we have

$$
z\left(C_{4}^{(1)}\left(1^{k_{1}} ; 1^{k_{2}}\right)\right)>z\left(C_{3}^{(1)}\left(1^{k_{1}+1} ; 1^{k_{2}}\right)\right)
$$

which finishes the proof of this claim.
Note that $n_{1}+n_{2}=n-3$, by Lemmas 1 and 2, we have

$$
\begin{gathered}
z\left(C_{4}\left(1^{n-4}\right)\right)=(n-3) F_{4}+2 F_{3}=3 n-5 \\
z\left(C_{3}^{(1)}\left(1^{n_{1}} ; 1^{n_{2}}\right)\right) \\
=z\left(P_{3}\left(n_{1} ; n_{2}\right)\right)+1 \\
\\
=z\left(S_{n_{1}+1}\right) z\left(S_{n_{2}+1}\right)+z\left(S_{n_{1}+1}\right)+z\left(S_{n_{2}+1}\right)+1 \\
\\
=\left(n_{1}+1\right)\left(n_{2}+1\right)+n_{1}+n_{2}+3=2 n-2+n_{1} n_{2}
\end{gathered}
$$

It is easy to see that $z\left(C_{3}^{(1)}\left(1^{n_{1}} ; 1^{n_{2}}\right)\right)$ reaches its minimum $2 n-2+2(n-5)=4 n-12$ at $\left(n_{1}, n_{2}\right)=(2, n-5)$ if $\left(n_{1}, n_{2}\right) \neq(1, n-4)$. Clearly, $4 n-12-(3 n-5)=n-7>0$. Therefore the result of this theorem follows immediately.

By a simple calculation, we find that $C_{4}\left(1^{3}\right)$ or $C_{3}^{(1)}\left(1^{2} ; 1^{2}\right)$ has the third smallest Hosoya index in $\mathcal{U}(n)$ if $n=7$. It is not difficult to determine the graph from $\mathcal{U}(n)$ (which is still $C_{4}\left(1^{n-4}\right)$) with the third smallest Hosoya index when $n=5$ or 6 .

Acknowledgement

The author is grateful to the two anonymous referees for their careful reading of this paper and constructive corrections and valuable comments on this paper, which have considerably improved the presentation of this paper.

References

[1] J. A. Bondy, U.S. R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.
[2] H. Deng, The largest Hosoya index of $(n, n+1)$ graphs, Comput. Math. Appl. 56(2008), 2499-2506.
[3] H. Y. Deng, The smallest Hosoya index in ($n, n+1$)-graphs, J. Math. Chem. 43(2008), 119-133.
[4] H. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 59(2008), 171190.
[5] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener Index of Trees: Theory and Applications, Acta Appl. Math. 66(2001), 211-249.
[6] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[7] I. Gutman, D. Vidović, B. Furtula, Coulson function and Hosoya index, Chem. Phys. Lett. 355(2002), 378-382.
[8] H. Hosoya, Topological index, Bull. Chem. Soc. Jpn. 44(1971), 2332-2339.
[9] X. Li, H. Zhao, On the Fibonacci numbers of trees, Fibonacci Quart. 44(2006), 32-38.
[10] H. Q. Liu, M. Lu, A unified approach to extremal cacti for different indices, MATCH Commun. Math. Comput. Chem. 58(2007), 193-204.
[11] H. Q. Liu, X. Yan, Z. Yan, On the Merrifield-Simmons indices and Hosoya indices of trees with a prescribed diameter, MATCH Commun. Math. Comput. Chem. 57(2007), 371-384.
[12] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[13] J. Ou, On extremal unicyclic molecular graphs with prescribed girth and minimal Hosoya index, J. Math. Chem. 42(2007), 423-432.
[14] X. F. Pan, Z. R. Sun, The (n, m)-Graphs of Minimum Hosoya Index, MATCH Commun. Math. Comput. Chem. 64(2010), 811-820.
[15] S. Wagner, Extremal trees with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 57(2007), 221-233.
[16] K. Xu, On the Hosoya index and the Merrifield-Simmons index of graphs with a given clique number, Appl. Math. Lett. 23(2010), 395-398.
[17] K. Xu, I. Gutman, The greatest Hosoya index of bicyclic graphs with given maximum degree, MATCH Commun. Math. Comput. Chem. 66(2011), 795-824.
[18] K. Xu, B. Xu, Some extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index, MATCH Commun. Math. Comput. Chem. 62(2009), 629648.
[19] A. Yu, F. Tian, A kind of graphs with minimal Hosoya index and maximal MerrifiedSimmons index, MATCH Commun. Math. Comput. Chem. 55(2006), 103-118.

[^0]: *This work is supported by NUAA Research Founding, No. NS2010205.
 ${ }^{\dagger}$ Corresponding author. Email address: xukexiang1211@gmail.com (K. Xu)

