On nilpotent elements in a nearring of polynomials

Ebrahim Hashemi ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Shahrood University of Technology, P.O.Box 316-3619995161, Shahrood, Iran

Received March 3, 2011; accepted June 15, 2011

Abstract

For a ring $R, R[x]$ is a left nearring under addition and substitution, and we denote it by $(R[x],+, \circ)$. In this note, we show that if $\operatorname{nil}(R)$ is a locally nilpotent ideal of R, then $\operatorname{nil}(R[x],+, \circ)=\operatorname{nil}(R)_{0}[x]$, where $\operatorname{nil}(R)$ is the set of nilpotent elements of R and $\operatorname{nil}(R)_{0}[x]$ is the 0 -symmetric left nearring of polynomials with coefficients in $\operatorname{nil}(R)$. As a corollary, if R is a 2 -primal ring, then $\operatorname{nil}(R[x],+, \circ)=\operatorname{nil}(R)_{0}[x]$.

AMS subject classifications: $16 \mathrm{Y} 30,16 \mathrm{~S} 36$
Key words: Armendariz rings, nearring of polynomials, nilpotent elements, insertion of factors property, 2-primal rings

1. Introduction

Throughout this paper, all rings are associative and unitary and all nearrings are left nearrings; subrings of a ring need not have the same unit, and subrng will denote a subring without unit. For a ring or nearring $N, \operatorname{nil}(N)$ denotes the set of nilpotent elements of N. Also, $P(R)$ denotes the prime radical of a ring R. Recall that a ring or a nearring is said to be reduced if it has no nonzero nilpotent elements.

Rege and Chhawchharia [20] introduce the notion of an Armendariz ring. A ring R is called Armendariz if whenever $f(x) g(x)=0$ where $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$, then $a_{i} b_{j}=0$ for each i, j. The name of the ring was given to E. Armendariz who proved in [3] that reduced rings satisfied this condition. The interest of this notion lies in its natural and useful role in understanding the relation between the annihilators of the ring R and the annihilators of the polynomial ring $R[x]$. Let us recall two known facts: A ring R is called Baer by Kaplansky [11] if the right annihilator of every nonempty subset of R is generated by an idempotent. An example of Chon shows that the matrix ring $M_{2}(\mathbb{Z})$ is Baer but $M_{2}(\mathbb{Z})[x]$ is not. A well-known example of Kerr [12] shows that there exists a right Goldie ring R such that $R[x]$ is not right Goldie. But, for an Armendariz ring R, R is Baer if and only if $R[x]$ is Baer (Armendariz [3]; Kim and Lee [14]), and R is right Goldie if and only if $R[x]$ is right Goldie (Hirano [8]). The reason behind these is a natural bijection between the set of annihilators of R and the set of annihilators of $R[x]$ (see Hirano [8]). We refer to $[1,2,3,9,10,14,15,16,17,20]$ for more detail on Armendariz rings.
*Corresponding author. Email address: eb_hashemi@yahoo.com (E. Hashemi)

Recall from [4] R is said to satisfy the IFP (insertion of factors property) if $r_{R}(a)=\{b \in R \mid a b=0\}$ is an ideal for all $a \in R$. Reduced rings satisfy the IFP. Shin [21] proved that R is a division ring if and only if R is a von Neumann regular prime ring and satisfies the IFP. Smoktunowicz [22] showed that there exists a nil ring R such that $R[x]$ is not nil. But if R satisfies the IFP, then Liu and Zhao [16] proved that $\operatorname{nil}(R)$ is an ideal of R and $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$. Also Antoine [2] proved that if R is an Armendariz ring, then $\operatorname{nil}(R)$ is a subrng of R and $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$. Properties, examples and counterexamples of rings which satisfy the IFP are given in $[4,7,8,10,18,21,23]$.

A ring R is called 2-primal if the prime radical of R coincides with the set of all nilpotent elements of R (see [6] for details). The class of 2-primal rings is also closed under subrings by [6, Proposition 2.2]. If R satisfies the IFP, then R is 2-primal.

Let R be a ring. Since $R[x]$ is an abelian nearring under addition and substitution, it is natural to investigate the nearring of polynomials $(R[x],+, \circ)$. The binary operation of substitution, denoted by \circ, of one polynomial into another is both natural and important in the theory of polynomials. We adopt the convention that for polynomials $(x) g$ and $(x) f=\sum_{i=0}^{m} f_{i} x^{i} \in R[x],(x) g \circ(x) f=\sum_{i=0}^{m} f_{i}((x) g)^{i}$. For example, $\left(a_{0}+a_{1} x\right) \circ x^{2}=\left(a_{0}+a_{1} x\right)^{2}=a_{0}^{2}+\left(a_{0} a_{1}+a_{1} a_{0}\right) x+a_{1}^{2} x^{2}$. However, the operation " \circ ", left distributes but does not right distribute over addition. Thus $(R[x],+, \circ)$ forms a left nearring but not a ring. Unless specifically indicated otherwise, $R[x]$ denotes the left nearring of polynomials $(R[x],+, \circ)$ with coefficients from R and $R_{0}[x]=\{f \in R[x] \mid f$ has zero constant term $\}$ is the 0 -symmetric left nearring of polynomials with coefficients in R.

We say that a set $S \subseteq R$ is locally nilpotent if for any subset $\left\{s_{1}, s_{2}, \cdots, s_{n}\right\} \subseteq S$, there exists an integer t, such that any product of t elements from $\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ is zero.

Antoine [2, Corollaries 3.3 and 5.2] proved that if R is an Armendariz ring, then $\operatorname{nil}(R)$ is a subrng of R and $\operatorname{nil}(R)[x]=\operatorname{nil}(R[x])$. Hence $\operatorname{nil}(R)$ is a locally nilpotent subrng of R, when R is an Armendariz ring.

The following examples show that there exist non Armendariz rings such that the set of its nilpotent elements is a locally nilpotent ideal.

Example 1. Let \mathbb{Z} be the ring of integers and let

$$
R=\left\{\left.\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right) \right\rvert\, a-b \equiv c \equiv 0(\bmod 2)\right\} .
$$

Then by [14, Example 13], R is not Armendariz. Since

$$
\operatorname{nil}(R)=\left\{\left.\left(\begin{array}{ll}
0 & c \\
0 & 0
\end{array}\right) \right\rvert\, c \equiv 0(\bmod 2)\right\}
$$

hence $\operatorname{nil}(R)$ is a locally nilpotent ideal of R.
Example 2. Let T be a reduced ring and

$$
R=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in T\right\}
$$

Let

$$
S=\left\{\left.\left(\begin{array}{cc}
A & B \\
0 & A
\end{array}\right) \right\rvert\, A, B \in R\right\}
$$

Then by [14, Example 5], S is not Armendariz. Since

$$
\operatorname{nil}(S)=\left\{\left.\left(\begin{array}{cc}
A & B \\
0 & A
\end{array}\right) \right\rvert\, A \in \operatorname{nil}(R) \text { and } B \in R\right\}
$$

hence $\operatorname{nil}(S)$ is a locally nilpotent ideal of S.
If R satisfies the IFP, then R is abelian (i.e., each idempotent of R is central). The following example shows that there exists a ring R such that it does not satisfy the IFP, but $\operatorname{nil}(R)$ is a locally nilpotent ideal of R.

Example 3. Let F be a division ring and consider the 2-by-2 upper triangular ring

$$
R=\left(\begin{array}{ll}
F & F \\
0 & F
\end{array}\right)
$$

Then R does not satisfy the IFP, since R is not abelian. But

$$
\operatorname{nil}(R)=\left\{\left.\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \right\rvert\, b \in F\right\}
$$

is a locally nilpotent ideal of R.

2. Nilpotent elements in a nearring of polynomials

Definition 1. Let R be a ring. We say R has property (*), whenever $(x) f=$ $a_{0}+a_{1} x+\cdots+a_{m} x^{m},(x) g=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ are elements of nearring $(R[x],+, \circ)$ and $f \circ g \in \operatorname{nil}(R)[x]$, then $a_{i} b_{j} \in \operatorname{nil}(R)$ for $i=1, \cdots, m, j=0,1, \cdots, n$.

By [5, Lemma 3.4], every reduced ring has property $(*)$.
Proposition 1. Let I be a nil ideal of a ring R. Then R / I has property $(*)$ if and only if R has property ($*$).
Proof. We denote $\bar{R}=R / I$. Since I is nil, then $\operatorname{nil}(\bar{R})=\overline{\operatorname{nil(R)}}$. Let $(x) f=$ $\sum_{i=0}^{m} a_{i} x^{i}$ and $(x) g=\sum_{j=0}^{n} b_{j} x^{j}$ be elements of nearring $R[x]$. Then $f \circ g \in$ $\operatorname{nil}(R)[x]$, if and only if $\left(\sum_{i=0}^{m} \bar{a}_{i} x^{i}\right) \circ\left(\sum_{j=0}^{n} \bar{b}_{j} x^{j}\right) \in \operatorname{nil}(\bar{R})[x]$. Also, $a_{i} b_{j} \in \operatorname{nil}(R)$ if and only if $\overline{a_{i}} \overline{b_{j}} \in \operatorname{nil}(\bar{R})$, for $i=1, \cdots, m$ and $j=0,1, \cdots, n$.

Proposition 2. Let R be a ring and e a central idempotent element of R. Then the following statements are equivalent:

1. R has property (*).
2. $e R$ and $(1-e) R$ have property (*).

Proof. (1) $\Rightarrow(2)$ It is clear, since $e R$ and $(1-e) R$ are subrings of R.
$(2) \Rightarrow(1)$ Let $(x) f=\sum_{i=0}^{m} a_{i} x^{i}$ and $(x) g=\sum_{j=0}^{n} b_{j} x^{j}$ be elements of nearring $R[x]$ such that $f \circ g \in \operatorname{nil}(R)[x]$. Let $(x) f_{1}=\sum_{i=0}^{m} e a_{i} x^{i},(x) f_{2}=\sum_{i=0}^{m}(1-e) a_{i} x^{i}$, $(x) g_{1}=\sum_{j=0}^{n} e b_{j} x^{j}$ and $(x) g_{2}=\sum_{j=0}^{n}(1-e) b_{j} x^{j}$. Then $f_{1} \circ g_{1}=\left(\sum_{i=0}^{m} e a_{i} x^{i}\right) \circ$ $\left(\sum_{j=0}^{n} e b_{j} x^{j}\right)=e .(f \circ g) \in \operatorname{nil}(e R)[x]$ and $f_{2} \circ g_{2}=\left(\sum_{i=0}^{m}(1-e) a_{i} x^{i}\right) \circ\left(\sum_{j=0}^{n}(1-\right.$ $\left.e) b_{j} x^{j}\right)=(1-e) .(f \circ g) \in \operatorname{nil}((1-e) R)[x]$, since $f \circ g \in \operatorname{nil}(R)[x]$ and $e,(1-e)$ are central idempotent elements of R. Hence $e a_{i} b_{j}$ and $(1-e) a_{i} b_{j}$ are nilpotent, for each $i=1, \cdots, m$ and $j=0,1, \cdots, n$, since $e R$ and $(1-e) R$ have property $(*)$. Thus there exists $t \geq 2$ such that $\left(e a_{i} b_{j}\right)^{t}=\left((1-e) a_{i} b_{j}\right)^{t}=0$ for each $i=1, \cdots, m$ and $j=0,1, \cdots, n$. Hence $\left(a_{i} b_{j}\right)^{t}=0$ for each $i=1, \cdots, m$ and $j=0,1, \cdots, n$. Therefore R has property ($*$).

Proposition 3. Let R be a finite subdirect sum of rings which have property $(*)$. Then R has property (*).

Proof. Let $I_{k}(k=1,2, \cdots, \ell)$ be ideals of R such that R / I_{k} has property $(*)$ and $\cap_{k=1}^{\ell} I_{k}=0$. Suppose that $(x) f=\sum_{i=0}^{m} a_{i} x^{i}$ and $(x) g=\sum_{j=0}^{n} b_{j} x^{j}$ be elements of nearring $R[x]$ such that $f \circ g \in \operatorname{nil}(R)[x]$. Then there exists $p_{i j} \geq 1$, such that $\left(\bar{a}_{i} \bar{b}_{j}\right)^{p_{i j}}=0$ in R / I_{k}. Thus $\left(a_{i} b_{j}\right)^{p_{i j}} \in I_{k}$. Set $p=\max \left\{p_{i j} \mid i, j \geq 1\right\}$. Then $\left(a_{i} b_{j}\right)^{p_{i j}} \in I_{k}$, for any k, which implies that $\left(a_{i} b_{j}\right)^{p}=0$. Therefore R has property (*).

For a ring R, we denote the n-by- n upper triangular and full matrix ring over R by $T_{n}(R)$ and $M_{n}(R)$, respectively.

Proposition 4. A ring R has property (*) if and only if, for any $n, T_{n}(R)$ has property (*).

Proof. If $T_{n}(R)$ has property $(*)$, then so R has property $(*)$ as a subring of $T_{n}(R)$.
Conversely, let $(x) f=\sum_{i=0}^{p} A_{i} x^{i}$ and $(x) g=\sum_{j=0}^{q} B_{j} x^{j}$ be elements of nearring $T_{n}(R)[x]$ such that $f \circ g \in \operatorname{nil}\left(T_{n}(R)\right)[x]$. Let

$$
A_{i}=\left(\begin{array}{cccc}
a_{11}^{i} & a_{12}^{i} & \cdots & a_{1 n}^{i} \\
0 & a_{22}^{i} & \cdots & a_{2 n}^{i} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}^{i}
\end{array}\right)
$$

and

$$
B_{j}=\left(\begin{array}{cccc}
b_{11}^{i} & b_{12}^{i} & \cdots & b_{1 n}^{i} \\
0 & b_{22}^{i} & \cdots & b_{2 n}^{i} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & b_{n n}^{i}
\end{array}\right) .
$$

Then from $f \circ g \in \operatorname{nil}\left(T_{n}(R)\right)[x]$ it follows that $\left(\sum_{i=0}^{p} a_{s s}^{i} x^{i}\right) \circ\left(\sum_{j=0}^{q} b_{s s}^{j} x^{j}\right) \in$ $n i l(R)[x]$ for $s=1, \cdots, n$. Since R has property $(*), a_{s s}^{i} b_{s s}^{j} \in \operatorname{nil}(R)$, for each $i=1, \cdots, p, j=0,1, \cdots, q$ and $s=1, \cdots, n$. Then $A_{i} B_{j} \in \operatorname{nil}\left(T_{n}(R)\right)$ for each $i=1, \cdots, p, j=0,1, \cdots, q$. Therefore $T_{n}(R)$ has property $(*)$.

Let R be a ring. Then

$$
R_{n}=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

is a subring of $T_{n}(R)$, for each $n \geq 2$. By a similar argument as used in the proof of Proposition 4, we can show that R has property ($*$) if and only if, for any n, R_{n} has property ($*$).

The same idea can be used to prove the following.
Proposition 5. Let R, S be rings and ${ }_{R} M_{S}$ an (R, S)-bimodule. Then $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ has property $(*)$ if and only if R and S have property (*).

Theorem 1. If nil (R) is an ideal of R, then R has property (*).
Proof. Since $R / \operatorname{nil}(R)$ is a reduced ring, hence by [5, Lemma 3.4], $R / n i l(R)$ has property $(*)$. Hence by Proposition $1, R$ has property ($*$).
Lemma 1 (see [16]). If R satisfies the IFP, then

1. nil (R) is a locally nilpotent ideal of R;
2. $\operatorname{nil}(R[x])=\operatorname{nil}(R)[x]$.

Proposition 6. If R satisfies the IFP, then R has property (*).
Proof. It follows from Lemma 1 and Theorem 1.
The following example shows that the condition " $\operatorname{nil}(R)$ be an ideal of R " in Theorem 1 is not superfluous.

Example 4. Let F be a field and $S=M_{2}(F)$. Then nil (S) is not ideal of R. Let

$$
(x) f=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right) x
$$

and

$$
(x) g=\left(\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x^{2}
$$

be polynomials in $S[x]$. Then $f \circ g=0 \in \operatorname{nil}(S)[x]$, but

$$
\left(\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \notin \operatorname{nil}(S) .
$$

Lemma 2. Let nil(R) be an ideal of R, and $a_{1}, a_{2}, \cdots, a_{n}, a, b \in R$.

1. If $a b \in \operatorname{nil}(R)$, then $\operatorname{arb} \in \operatorname{nil}(R)$ for each $r \in R$.
2. If $a b^{n} \in \operatorname{nil}(R)$ for some $n \geq 1$, then $a b \in \operatorname{nil}(R)$.
3. If $b_{1} b_{2} \cdots b_{m} \in \operatorname{nil}(R)$, where $b_{i} \in\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, then $a_{1} a_{2} \cdots a_{n} \in \operatorname{nil}(R)$.

Proof. The details are left to the reader.
For any $(x) f \in R[x]$, we denote by C_{f} the set of all coefficients of f. Let $C_{f}^{*}=C_{f}-\left\{a_{0}\right\}$, where a_{0} is the constant term of f.

Proposition 7. Let $(x) f_{1},(x) f_{2}, \cdots,(x) f_{n}$ be elements of nearring $R[x]$, such that $f_{1} \circ f_{2} \circ \cdots \circ f_{n} \in \operatorname{nil}(R)[x]$. If nil (R) is an ideal of R, then $C_{f_{1}}^{*} C_{f_{2}}^{*} \cdots C_{f_{n}}^{*} \subseteq \operatorname{nil}(R)$.

Proof. We use induction on n. The case $n=2$ follows from Theorem 1 .
Suppose $n>2$. Consider $g=f_{2} \circ f_{3} \circ \cdots \circ f_{n}$. Then $f_{1} \circ g \in \operatorname{nil}(R)[x]$ and hence by Theorem 1, $a_{1} a_{g} \in \operatorname{nil}(R)$ where $a_{g} \in C_{g}$ and $a_{1} \in C_{f_{1}}^{*}$. Therefore for all $a_{1} \in C_{f_{1}}^{*}$,

$$
\begin{aligned}
g \circ a_{1} x & =\left(f_{2} \circ f_{3} \circ \cdots \circ f_{n}\right) \circ a_{1} x=f_{2} \circ f_{3} \circ \cdots \circ f_{n-1} \circ\left(f_{n} \circ a_{1} x\right) \\
& =f_{2} \circ f_{3} \circ \cdots \circ f_{n-1} \circ\left(a_{1} f_{n}\right) \in \operatorname{nil}(R)[x]
\end{aligned}
$$

and by induction, since the coefficients of $a_{1} f_{n}$ are $a_{1} a_{n}$, where a_{n} is a coefficient of f_{n}, we obtain $a_{2} a_{3} \cdots a_{n-1} a_{1} a_{n} \in \operatorname{nil}(R)$. Hence $C_{f_{1}}^{*} C_{f_{2}}^{*} \cdots C_{f_{n}}^{*} \subseteq \operatorname{nil}(R)$, by Lemma 2.

Theorem 2. Let $(x) f=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ be a nilpotent element of nearring $R[x]$ and $\operatorname{nil}(R)$ an ideal of R. Then $a_{i} \in \operatorname{nil}(R)$ for $i=0,1, \cdots, m$.

Proof. Let $(x) f=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \operatorname{nil}(R[x])$. Then there exists $k \geq 2$ such that

$$
f^{k}=\underbrace{f \circ f \circ f \cdots \circ f}_{k}=0 \in \operatorname{nil}(R)[x] .
$$

By Proposition 7, $a_{i} \in \operatorname{nil}(R)$ for each $i=1, \cdots, m$. We claim that $a_{0} \in \operatorname{nil}(R)$. The constant term of f^{k} is $a_{0}+\beta$, where β is a sum of elements $a_{i_{1}} a_{i_{2}} \cdots a_{i_{t}}$ such that $t \geq 2$ and $\left\{a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{t}}\right\} \cap\left\{a_{1}, a_{2}, \cdots, a_{m}\right\} \neq \phi$. Then $\beta \in \operatorname{nil}(R)$, and since $a_{0}+\beta \in \operatorname{nil}(R)$, we have $a_{0} \in \operatorname{nil}(R)$. Therefore $a_{i} \in \operatorname{nil}(R)$, for $i=0,1, \cdots, m$.

Theorem 3. If nil(R) is a locally nilpotent ideal of a ring R, then $\operatorname{nil}(R[x])=$ $\operatorname{nil}(R)_{0}[x]$.

Proof. Let $(x) f=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ be a nilpotent element of nearring $R[x]$. By Theorem 2, $a_{i} \in \operatorname{nil}(R)$ for $i=0,1, \cdots, m$. Thus $\left\{a_{0}, a_{1}, \cdots, a_{m}\right\} \subseteq \operatorname{nil}(R)$, and since $\operatorname{nil}(R)$ is a locally nilpotent subset of R, there exists $t \geq 2$ such that $\left\{a_{0}, a_{1}, \cdots, a_{n}\right\}^{t}=0$. Since $f \in \operatorname{nil}(R[x])$, hence

$$
f^{k}=\underbrace{f \circ f \circ f \cdots \circ f}_{k}=0,
$$

for some $k \geq t$. For each $j \geq 1$, the coefficient of x^{j} in the polynomial f^{k} is a sum of elements $a_{i_{1}} a_{i_{2}} \cdots a_{i_{\ell}}$, where $a_{i_{r}} \in\left\{a_{0}, a_{1}, \cdots, a_{m}\right\}$, and $\ell \geq k$. Also the
constant term of the polynomial f^{k} is $a_{0}+a_{1} a_{0}+a_{1}^{2} a_{0}+\cdots+a_{1}^{k-2} a_{0}+\alpha$, where α is a sum of elements $a_{i_{1}} a_{i_{2}} \cdots a_{i_{\ell}}$, where $a_{i_{r}} \in\left\{a_{0}, a_{1}, \cdots, a_{m}\right\}$ and $\ell \geq k$. Since $\left\{a_{0}, a_{1}, \cdots, a_{m}\right\}^{t}=0$, hence $\alpha=0$, and since $a_{0}+a_{1} a_{0}+a_{1}^{2} a_{0}+\cdots+a_{1}^{k-2} a_{0}+\alpha=0$, we have $a_{0}+a_{1} a_{0}+a_{1}^{2} a_{0}+\cdots+a_{1}^{k-2} a_{0}=0$. Multiplying this equation by a_{1} from the left yields $a_{1} a_{0}+a_{1}^{2} a_{0}+\cdots+a_{1}^{k-1} a_{0}=0$, and since $a_{1}^{k-1} a_{0}=0$ we have $a_{1} a_{0}+a_{1}^{2} a_{0}+\cdots+a_{1}^{k-2} a_{0}=0$. Hence $a_{0}=0$ and $\operatorname{nil}(R[x]) \subseteq \operatorname{nil}(R)_{0}[x]$.

Now let $(x) f=a_{1} x+\cdots+a_{m} x^{m} \in \operatorname{nil}(R)_{0}[x]$. Since $\operatorname{nil}(R)$ is a locally nilpotent subset of R, there exists $t \geq 2$ such that $\left\{a_{1}, \cdots, a_{m}\right\}^{t}=0$. Since for each $j \geq 2$, the coefficient of x^{j} in the polynomial

$$
f^{t}=\underbrace{f \circ f \circ f \cdots \circ f}_{t}
$$

is a sum of elements $a_{i_{1}} a_{i_{2}} \cdots a_{i_{\ell}}$, where $a_{i_{r}} \in\left\{a_{1}, \cdots, a_{m}\right\}$ and $\ell \geq t$, hence $f^{t}=0$. Therefore $\operatorname{nil}(R)_{0}[x] \subseteq \operatorname{nil}(R[x])$ and hence $\operatorname{nil}(R[x])=\operatorname{nil}(R)_{0}[x]$.

By [13, Proposition 10.31], the sum of all locally nilpotent ideals in a ring R (denoted by $L-\operatorname{rad} R$) is locally nilpotent, and $P(R) \subseteq L-\operatorname{rad} R \subseteq \operatorname{nil}(R)$. Then $P(R)=L-\operatorname{rad} R=\operatorname{nil}(R)$, if R is a 2-primal ring. Thus we have the following result:

Corollary 1. If R is a 2-primal ring, then $\operatorname{nil}(R[x])=\operatorname{nil}(R)_{0}[x]$.
Corollary 2. If R satisfies the IFP, then $\operatorname{nil}(R[x])=\operatorname{nil}(R)_{0}[x]$.
Corollary 3. If R is an Armendariz ring and nil(R) an ideal of R, then $\operatorname{nil}(R[x])=$ $\operatorname{nil}(R)_{0}[x]$.

Proof. Since R is an Armendariz ring, hence by [2, Corollary 5.2] $\operatorname{nil}(R)[x]=$ $\operatorname{nil}(R[x])$. Thus by [1, Proposition 1$], \operatorname{nil}(R)$ is a locally nilpotent subset of R. Now the result follows from Theorem 3.

Proposition 8. If nil (R) is a locally nilpotent ideal of R, then $\operatorname{nil}(R[x])$ is a right ideal of $(R[x],+, \circ)$.

Proof. Let

$$
\begin{aligned}
& (x) f=f_{0}+f_{1} x+\cdots+f_{m} x^{m} \\
& (x) h=h_{0}+h_{1} x+\cdots+h_{m} x^{m} \in R[x]
\end{aligned}
$$

and

$$
(x) g=g_{1} x+\cdots+g_{m} x^{m} \in \operatorname{nil}(R[x]) .
$$

Then

$$
(f+g) \circ h-f \circ h=h_{1}[(f+g)-f]+h_{2}\left[(f+g)^{2}-f^{2}\right]+\cdots+h_{m}\left[(f+g)^{m}-f^{m}\right]
$$

Since for each $i \geq 2,\left[(f+g)^{i}-f^{i}\right] \in \operatorname{nil}(R)_{0}[x]$, hence $(f+g) \circ h-f \circ h \in \operatorname{nil}(R)_{0}[x]$. Thus $\operatorname{nil}(R[x])$ is a right ideal of $(R[x],+, \circ)$.

Acknowledgement

The author thanks the referee for his/her valuable comments and suggestions. This research is supported by the Shahrood University of Technology at Iran.

References

[1] D. D. Anderson, S. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26(1998), 2265-2272.
[2] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319(2008), 31283140.
[3] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18(1974), 470-473.
[4] H.E. Bell, Near-rings in which each element is a power of itself, Bull Australian Math. Soc. 2(1970), 363-368.
[5] G. F. Birkenmeier, F. K. Huang, Annihilator conditions on polynomials, Comm. Algebra 29(2001), 2097-2112.
[6] G. F. Birkenmeier, H. E. Heatherly, E. K. Lee, Completely prime ideals and associated radicals, in: Proc. Biennial Ohio State-Denison Conference 1992, (S. K. Jain, S. T. Rizvi, Eds.), World Scientific, 1993.
[7] E. Hashemi, McCoy rings relative to a monoid, Comm. Algebra 38(2010), 1075-1083.
[8] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168(2002), 45-52.
[9] C. Y. Hong, N. K. Kim, T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31(2003), 103-122.
[10] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30(2002), 751-761.
[11] I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
[12] J. W. Kerr, The polynomial ring over a Goldie ring need not be a Goldie ring, J. Algebra 134(1990), 344-352.
[13] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, Berlin, 1991.
[14] N. H. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223(2000), 477488.
[15] T. K. Lee, T. L. Wong, On Armendariz rings, Houston J. Math. 29(2003), 583-593.
[16] Z. Liu, R. Zhao, On weak Armendariz rings, Comm. Algebra 34(2006), 2607-2616.
[17] Z. Liv, Armendariz rings relative to a monoid, Comm. Algebra 33(2005), 649-661.
[18] P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298(2006), 134-141.
[19] G. Pilz, Near-Rings, 2nd revised ed., North Holland, Amsterdam, 1983.
[20] M. B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73(1997), 14-17.
[21] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Transactions of the American Math. Soc. 184(1973), 43-60.
[22] A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233(2000), 427-436.
[23] W. Wang, Maximal semicommutative subrings of upper triangular matrix rings, Comm. Algebra 36(2008), 77-81.

