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On nilpotent elements in a nearring of polynomials
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Abstract. For a ring R, R[] is a left nearring under addition and substitution, and we
denote it by (R[z],+, o). In this note, we show that if nil(R) is a locally nilpotent ideal of
R, then nil(R[z], +,0) = nil(R)o[x], where nil(R) is the set of nilpotent elements of R and
nil(R)o[z] is the O-symmetric left nearring of polynomials with coeflicients in nil(R). As a
corollary, if R is a 2-primal ring, then nil(R[z],+, o) = nil(R)o[z].
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1. Introduction

Throughout this paper, all rings are associative and unitary and all nearrings are left
nearrings; subrings of a ring need not have the same unit, and subrng will denote a
subring without unit. For a ring or nearring N, nil(N) denotes the set of nilpotent
elements of N. Also, P(R) denotes the prime radical of a ring R. Recall that a ring
or a nearring is said to be reduced if it has no nonzero nilpotent elements.

Rege and Chhawchharia [20] introduce the notion of an Armendariz ring. A ring
R is called Armendariz if whenever f(z)g(z) = 0 where f(z) = ag + a1z + -+ +
apz”™ and g(z) = by + b1z + --- + bpa™ € RJz], then a;b; = 0 for each 4,j. The
name of the ring was given to E. Armendariz who proved in [3] that reduced rings
satisfied this condition. The interest of this notion lies in its natural and useful
role in understanding the relation between the annihilators of the ring R and the
annihilators of the polynomial ring R[z]. Let us recall two known facts: A ring R is
called Baer by Kaplansky [11] if the right annihilator of every nonempty subset of
R is generated by an idempotent. An example of Chon shows that the matrix ring
M5 (Z) is Baer but Ms(Z)[z] is not. A well-known example of Kerr [12] shows that
there exists a right Goldie ring R such that R[z] is not right Goldie. But, for an
Armendariz ring R, R is Baer if and only if R[z] is Baer (Armendariz [3]; Kim and
Lee [14]), and R is right Goldie if and only if R[z] is right Goldie (Hirano [8]). The
reason behind these is a natural bijection between the set of annihilators of R and the
set of annihilators of R[z] (see Hirano [8]). We refer to [1, 2, 3,9, 10, 14, 15, 16, 17, 20]
for more detail on Armendariz rings.
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Recall from [4] R is said to satisfy the IFP (insertion of factors property) if
rr(a) = {b € Rlab = 0} is an ideal for all « € R. Reduced rings satisfy the IFP. Shin
[21] proved that R is a division ring if and only if R is a von Neumann regular prime
ring and satisfies the IFP. Smoktunowicz [22] showed that there exists a nil ring R
such that R[z] is not nil. But if R satisfies the IFP, then Liu and Zhao [16] proved
that nil(R) is an ideal of R and nil(R[z]) = nil(R)[z]. Also Antoine [2] proved that
if R is an Armendariz ring, then nil(R) is a subrng of R and nil(R[z]) = nil(R)[z].
Properties, examples and counterexamples of rings which satisfy the IFP are given
in [4, 7, 8, 10, 18, 21, 23).

A ring R is called 2-primal if the prime radical of R coincides with the set of all
nilpotent elements of R (see [6] for details). The class of 2-primal rings is also closed
under subrings by [6, Proposition 2.2]. If R satisfies the IFP, then R is 2-primal.

Let R be a ring. Since R[z] is an abelian nearring under addition and substitu-
tion, it is natural to investigate the nearring of polynomials (R[z], +,0). The binary
operation of substitution, denoted by o, of one polynomial into another is both nat-
ural and important in the theory of polynomials. We adopt the convention that for
polynomials (z)g and (z)f = Y.1", fiz' € R[z], (x)go (z)f = 31", fi((z)g)’. For
example, (ag + a1z) o 22 = (ag + a12)? = a2 + (apa1 + a1ao)x + a?x*. However,
the operation “o”, left distributes but does not right distribute over addition. Thus
(R[x], +, o) forms a left nearring but not a ring. Unless specifically indicated other-
wise, R[z] denotes the left nearring of polynomials (R[z], +, o) with coefficients from
R and Rylz] = {f € R[z]|f has zero constant term} is the O-symmetric left nearring
of polynomials with coefficients in R.

We say that a set S C R is locally nilpotent if for any subset {s1,s2,--+ ,s,} C S,
there exists an integer t, such that any product of ¢ elements from {sq,s9, -, s, }
is zero.

Antoine [2, Corollaries 3.3 and 5.2] proved that if R is an Armendariz ring, then
nil(R) is a subrng of R and nil(R)[x] = nil(R[z]). Hence nil(R) is a locally nilpotent
subrng of R, when R is an Armendariz ring.

The following examples show that there exist non Armendariz rings such that
the set of its nilpotent elements is a locally nilpotent ideal.

Example 1. Let Z be the ring of integers and let

R:{(gg)m—bzczo(modw}.

Then by [14, Ezample 13], R is not Armendariz. Since

nil(R) = {(8 3) e = 0(mod 2)} ,

hence nil(R) is a locally nilpotent ideal of R.

Example 2. Let T be a reduced ring and

Rz{(gs)la,beT}.
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S{(‘éi)lA,BeR}.

Then by [14, Example 5], S is not Armendariz. Since

Let

nil(S) = {(g‘ ﬁ) 1A € nil(R) and B € R} 7

hence nil(S) is a locally nilpotent ideal of S.

If R satisfies the IFP, then R is abelian (i.e., each idempotent of R is central).
The following example shows that there exists a ring R such that it does not satisfy
the IFP, but nil(R) is a locally nilpotent ideal of R.

Example 3. Let F be a division ring and consider the 2-by-2 upper triangular ring

(51,

Then R does not satisfy the IFP, since R is not abelian. But

nil(R) = {(8 g) b e F}

is a locally nilpotent ideal of R.

2. Nilpotent elements in a nearring of polynomials

Definition 1. Let R be a ring. We say R has property (x), whenever (z)f =
aptar1z+- - +anx™, (v)g = bo+b1z+- - -+b,x" are elements of nearring ( [x], 4+, 0)
and f o g € nil(R)[z], then a;b; € nil(R) fori=1,---,m, j=0,1,---,n

By [5, Lemma 3.4], every reduced ring has property (x).

Proposition 1. Let I be a nil ideal of a ring R. Then R/I has property (x) if and
only if R has property (x).

Proof. We denote R = R/I. Since I is nil, then nil(R) = nil(R). Let (z)f =
Yitgaixt and (z)g = 37 bjz’ be elements of nearring R[z]. Then fog €
nil(R)[z], if ancLonly ifiZZio a;xt) o (Z?:o b;x?) € nil(R)[x]. Also, a;b; € nil(R)
if and only if @;b; € nil(R), fori=1,--- ,mand j =0,1,---,n

O

Proposition 2. Let R be a ring and e a central idempotent element of R. Then the
following statements are equivalent:

1. R has property (x).

2. eR and (1 — e)R have property (*).
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Proof. (1) = (2) It is clear, since eR and (1 — e)R are subrings of R.

(2) = (1) Let (2)f = >21" @iz’ and (x)g = Y7 bz’ be elements of nearring
R[z] such that fog € nil(R)[z]. Let (z)f1 = Y iy ea;x’, (z)fa =Y ivy(1l — €)a;x’,
(x)g1 = Z?:o ebjxd and (z)ge = Z?:O(l —e)bjz?. Then fiog = (> i, ea;x’) o
(X ebja?) = e.(fog) € nil(eR)[z] and foo g2 = (322 (1 — e)az’) o (3o7_o(1 —
e)bjz?) = (1 —e).(fog) € nil((1 — e)R)[x], since fog € nil(R)[z] and e, (1 — e)
are central idempotent elements of R. Hence ea;b; and (1 — e)a;b; are nilpotent,
foreachi=1,--- ;mand j =0,1,--- ,n, since eR and (1 — )R have property ().
Thus there exists ¢ > 2 such that (ea;b;)" = ((1 —e)a;b;)* =0 foreachi=1,---,m
and j = 0,1,--- ,n. Hence (a;b;)" =0 for each i = 1,--- ,m and j = 0,1,--- ,n.
Therefore R has property (). O

Proposition 3. Let R be a finite subdirect sum of rings which have property (x).
Then R has property (x).

Proof. Let I, (k=1,2,---,¢) be ideals of R such that R/I} has property () and
Ni—y Ik = 0. Suppose that (z)f = Y% aa’ and (x)g = Y7 bz’ be elements
of nearring R[z] such that f o g € nil(R)[z]. Then there exists p;; > 1, such that
(@;b;)?¥ = 0 in R/I,. Thus (a;b;)P" € Iy. Set p = maxz{p;;|i,j > 1}. Then
(a;bj)?i € Iy, for any k, which implies that (a;b;)? = 0. Therefore R has property
(*). O

For a ring R, we denote the n-by-n upper triangular and full matrix ring over R
by T,,(R) and M, (R), respectively.

Proposition 4. A ring R has property (x) if and only if, for any n, T,,(R) has
property (x).

Proof. If T,,(R) has property (*), then so R has property () as a subring of T),(R).
Conversely, let (z)f = >"_  A;z" and (z)g = Z?:O Bjz7 be elements of nearring
T, (R)[z] such that fog € nil(T,(R))[z]. Let

i i
ayp A1 * Aqp
1 1
0 ajy --- aj,
A= ;
7
0 0 ---ay,
and o )
7 7 7
bl b12 T VIn
7 7
0 b5y -+ by,
Bi=|{ . . .
0O 0 --- b

Then from f o g € nil(T,(R))[z] it follows that (3°7_,al,x") o (327 _obl27) €
nil(R)[x] for s = 1,--- ,n. Since R has property (*), aibl, € nil(R), for each

i=1,---,p,j=0,1,---,gand s = 1,--- ,n. Then A;B; € nil(T,(R)) for each
i=1,---,p,j=0,1,---,q. Therefore T, (R) has property (). O
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Let R be a ring. Then

a a2 @13 A1n
0 a a23 a2n

R, = 00 a - asn \a,aij €ER
00 O a

is a subring of T;,(R), for each n > 2. By a similar argument as used in the proof
of Proposition 4, we can show that R has property (x) if and only if, for any n, R,
has property ().

The same idea can be used to prove the following.

Proposition 5. Let R, S be rings and pMg an (R, S)-bimodule. ThenT = (R M)

0S5
has property (%) if and only if R and S have property ().
Theorem 1. If nil(R) is an ideal of R, then R has property (x).

Proof. Since R/nil(R) is a reduced ring, hence by [5, Lemma 3.4], R/nil(R) has
property (x). Hence by Proposition 1, R has property (x). O

Lemma 1 (sce [16]). If R satisfies the IFP, then
1. nil(R) is a locally nilpotent ideal of R;
2. nil(R[z]) = nil(R)[x].
Proposition 6. If R satisfies the IFP, then R has property (x).
Proof. It follows from Lemma 1 and Theorem 1. O

The following example shows that the condition “ nil(R) be an ideal of R ” in
Theorem 1 is not superfluous.

Example 4. Let F be a field and S = My(F). Then nil(S) is not ideal of R. Let

@r=(50)+ (5 %)s
()g = <‘01 _01>x+ (éﬁ):ﬂ

be polynomials in S[x]. Then fog=0 € nil(S)[x], but

<—01 _01) <_01 _01> - (éé) ¢ nil(9).

Lemma 2. Let nil(R) be an ideal of R, and ay,az, - ,an,a,b € R.

and

1. If ab € nil(R), then arb € nil(R) for each r € R.
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2. If ab™ € nil(R) for some n > 1, then ab € nil(R).
3. If byby - - - by, € nil(R), where b; € {ay,aq, - ,a,}, then ajas - - - a, € nil(R).
Proof. The details are left to the reader. O

For any (x)f € R[z], we denote by C} the set of all coefficients of f. Let
C} = Cy —{ao}, where ag is the constant term of f.

Proposition 7. Let (z)f1,(x)f2, -+, (z)fn be elements of nearring R[z], such that
fiofao--ofy € nil(R)[x]. If nil(R) is an ideal of R, then C} C%, ---C} C nil(R).

Proof. We use induction on n. The case n = 2 follows from Theorem 1.

Suppose n > 2. Consider g = foo f3o---o f,. Then f; og € nil(R)[z] and
hence by Theorem 1, aja, € nil(R) where a, € Cy and a1 € CF,. Therefore for all
a; € C;l,

goajx = (faofzo--rofy)oax=faofso---0f,_10(fnoarx)
= fao fzo 0 fu_10(a1fn) € nil(R)[]

and by induction, since the coefficients of a1 f,, are aia,, where a,, is a coeflicient
of f,, we obtain asas---an_1a1a, € nil(R). Hence C; C, - CF C nil(R), by
Lemma 2. L]

Theorem 2. Let (z)f = ap + a1z + -+ + ama™ be a nilpotent element of nearring
R[x] and nil(R) an ideal of R. Then a; € nil(R) fori=0,1,--- ,m.

Proof. Let (2)f = ap+a1x+- -+ amnz™ € nil(R[z]). Then there exists k > 2 such
that
ff=fofof---of=0¢mnil(R)xz].
—_—
k

By Proposition 7, a; € nil(R) for each i = 1,--- ,m. We claim that ag € nil(R).
The constant term of f* is ag + 3, where 3 is a sum of elements @iy Giy - - - @, such
that ¢ > 2 and {a;,, @iy, -~ a5, }N{a1, a2, -+ ,am} # ¢. Then B € nil(R), and since
ag+ 5 € nil(R), we have ag € nil(R). Therefore a; € nil(R), fori=0,1,--- ,m. O

Theorem 3. If nil(R) is a locally nilpotent ideal of a ring R, then nil(R[z]) =
nil (R)o[z].

Proof. Let (z)f = ap + a1z + - - - + a»z™ be a nilpotent element of nearring R[z].
By Theorem 2, a; € nil(R) for ¢ = 0,1,--- ,m. Thus {ag,a1, - ,am} C nil(R),
and since nil(R) is a locally nilpotent subset of R, there exists ¢ > 2 such that
{ag,a1, - ,a,}t = 0. Since f € nil(R[z]), hence

ff=fofof--of=0,

k

for some k > t. For each j > 1, the coefficient of 27 in the polynomial f* is a
sum of elements a;,a;, - - - a;,, where a;. € {ag,a1, - ,am}, and £ > k. Also the
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constant term of the polynomial f* is ag + a1ag + a2ag + --- + alf_zao + «a, where

« is a sum of elements a;, a4, - - - a;,, where a;, € {ag,a1, - ,an} and £ > k. Since
{ag, a1, -+ ,am}t =0, hence a = 0, and since ag+ajag+a3ag+-- ~+a’f*2a0+a =0,
we have ag + ajag + afag + -+ + a’f_2a0 = 0. Multiplying this equation by a; from

the left yields ajag + a?ag + -+ + a’f_lao = 0, and since a’f‘lao = 0 we have

arao + aiag + - - - + a¥"2ag = 0. Hence ag = 0 and nil(R[z]) C nil(R)o[z].

Now let (z)f = a1+ -+ anmax™ € nil(R)o[x]. Since nil(R) is a locally nilpotent
subset of R, there exists ¢ > 2 such that {a,---,a,}* = 0. Since for each j > 2,
the coefficient of 27 in the polynomial

fl=fofofof
t

is a sum of elements a;, a;, - - - a;,, where a;, € {a1,--- ,a;,} and £ > t, hence f' = 0.
Therefore nil(R)o[z] C nil(R[z]) and hence nil(R[z]) = nil(R)o[z]. O

By [13, Proposition 10.31], the sum of all locally nilpotent ideals in a ring R
(denoted by L-rad R) is locally nilpotent, and P(R) C L-rad R C nil(R). Then
P(R) = L-rad R = nil(R), if R is a 2-primal ring. Thus we have the following
result:

Corollary 1. If R is a 2-primal ring, then nil(R[z]) = nil(R)o[z].
Corollary 2. If R satisfies the IFP, then nil(R[x]) = nil(R)o[x].

Corollary 3. If R is an Armendariz ring and nil(R) an ideal of R, then nil(R[z]) =
nil(R)o[x].

Proof. Since R is an Armendariz ring, hence by [2, Corollary 5.2] nil(R)[z] =
nil(R[z]). Thus by [1, Proposition 1], nil(R) is a locally nilpotent subset of R. Now
the result follows from Theorem 3. O

Proposition 8. If nil(R) is a locally nilpotent ideal of R, then nil(R[x]) is a right
ideal of (R[x],+,0).

Proof. Let

(@)f = fo+ fiz+ -+ frx™,

(x)h = ho+ hiz + -+ + hpa™ € Rx]
and

(x)g = g1z + -+ + gma™ € nil(Rx]).
Then

(f+g)oh—foh=h[(f+g)— fl+hal(f +9)° = P+ +hul(f +9)™ — f7].

Since for each i > 2, [(f+g)" — f'] € nil(R)o[z], hence (f+g)oh— foh € nil(R)o[x].
Thus nil(Rx]) is a right ideal of (R[z], +, o). O
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