On some algebraic equations in connection with one kind of tangential polygons

Mirko Radić*

Abstract

This article can be considered as an appendix to article [1]. Here article [1] is completed and extended, where some new relations concerning one kind of tangential polygons and algebraic equations are established.

Key words: k-tangential polygons, algebraic equations
AMS subject classifications: 51E12
Received November 22, 2005
Accepted December 26, 2006
The whole article is in some way connected with the following definition which is a completion of Definition 1 in [1].

Definition 1. Let $A_{1} \ldots A_{n}$ be a tangential n-gon and let C be a denoted center of the inscribed circle into $A_{1} \ldots A_{n}$. Then we say that $A_{1} \ldots A_{n}$ is a k-inscribed tangential n-gon or, shortly, k-tangential n-gon if it has the following properties:

1. No two of its consecutive vertices are the same, that is, $A_{i} \neq A_{i+1}$ for each $i=1, \ldots, n$.
2. All of the angles

$$
\begin{equation*}
\measuredangle C A_{i} A_{i+1}, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

have the same orientation, that is, all of them are positively or negatively oriented.
3. It holds

$$
\begin{equation*}
\beta_{1}+\cdots+\beta_{n}=(n-2 k) \frac{\pi}{2} \tag{2a}
\end{equation*}
$$

where

$$
\begin{gather*}
\beta_{i}=\text { measure of } \measuredangle C A_{i} A_{i+1}, \quad i=1, \ldots, n \tag{2b}\\
k \in\left\{1,2, \ldots,\left[\frac{n-1}{2}\right]\right\} \tag{2c}\\
{\left[\frac{n-1}{2}\right]=\frac{n-1}{2} \text { if } n \text { is odd, }\left[\frac{n-1}{2}\right]=\frac{n-2}{2} \text { if } n \text { is even. }} \tag{2d}
\end{gather*}
$$

Of course, indices of vertices A_{i}, A_{i+1} are calculated modulo n. Thus, $A_{n+1}=A_{1}$.

[^0]Notice 1. In the following we shall take the measure of an oriented angle with sign + or - depending on whether the angle is positively or negatively oriented. Also, let us remark that measures will be expressed by radians.

From the following examples it will be easily seen that for a k-tangential n-gon it holds

$$
\begin{equation*}
\left|\varphi_{1}+\cdots+\varphi_{n}\right|=2 k \pi \tag{3}
\end{equation*}
$$

where $\varphi_{i}=$ measure of oriented $\measuredangle A_{i} C A_{i+1}, \quad i=1, \ldots, n$.
Example 1. Pentagon $A_{1} \ldots A_{5}$ shown in Figure 1 has a property that all of the angles $\measuredangle C A_{i} A_{i+1}, i=1, \ldots, n$, are positively oriented and there holds

$$
2 \beta_{1}+\cdots+2 \beta_{5}=(5-2) \pi
$$

or

$$
\beta_{1}+\cdots+\beta_{5}=(5-2 \cdot 1) \frac{\pi}{2}
$$

Thus, $A_{1} \ldots A_{5}$ is a 1-tangential pentagon.
In this connection let us remark that all of the angles $\measuredangle A_{i} C A_{i+1}, i=1, \ldots, n$, are negatively oriented and that

$$
\begin{aligned}
\left|\varphi_{1}+\cdots+\varphi_{5}\right| & =\sum_{i=1}^{5}\left[\pi-\left(\beta_{i}+\beta_{i+1}\right)\right] \\
& =5 \pi-\left(2 \beta_{1}+\cdots+2 \beta_{5}\right) \\
& =5 \pi-3 \pi=2 \pi=2 \cdot 1 \cdot \pi
\end{aligned}
$$

Figure 1.
Now let us consider the pentagon shown in Figure 2. As can be seen, all of the angles $\measuredangle C A_{i} A_{i+1}, i=1, \cdots, 5$, are negatively oriented, and all of the angles $\measuredangle A_{i} C A_{i+1}, i=1, \cdots, 4$, are positively oriented. Therefore, for example,

$$
\beta_{1}+\beta_{2}=-\left(\pi-\varphi_{1}\right) \text { since } \beta_{1}<0, \beta_{2}<0, \varphi_{1}>0
$$

Hence

$$
2 \beta_{1}+\cdots+2 \beta_{5}=\sum_{i=1}^{5}\left(\beta_{i}+\beta_{i+1}\right)=\sum_{i=1}^{5}\left(-\pi+\varphi_{i}\right)=-5 \pi+4 \pi
$$

which can be written as

$$
\left|\beta_{1}\right|+\cdots+\left|\beta_{5}\right|=-(-5 \pi+4 \pi)=(5-2 \cdot 2) \frac{\pi}{2}
$$

Thus, the pentagon shown in Figure 2 is a 2-tangential pentagon. In this connection let us remark that $\varphi_{1}+\cdots+\varphi_{5}=2 \cdot 2 \pi$.

Figure 2.
Now let us remark that the numbering of vertices of the pentagon shown in Figure 1 is such that the pentagon (as oriented one) is negatively oriented, and that the numbering of vertices of the pentagon shown in Figure 2 is such that the pentagon (as oriented one) is positively oriented.

It is easy to see that generally there holds: If the numbering of the vertices of a k-tangential n-gon is such that the n-gon (as oriented one) is positively oriented, then $\varphi_{i}>0, \beta_{i}<0, i=1, \ldots, n$, but if the n-gon is negatively oriented, then $\varphi_{i}<0, \beta_{i}>0, i=1, \ldots, n$.

For convenience, in the following, where we shall mostly deal with $\beta_{1}, \ldots, \beta_{n}$, we shall suppose that the considered n-gon is negatively oriented, that is, all $\beta_{1}, \ldots, \beta_{n}$ are positive.

It can be easily proved that

$$
\sum_{i=1}^{n} \varphi_{i}=-2 k \pi \Longleftrightarrow \sum_{i=1}^{n} \beta_{i}=(n-2 k) \frac{\pi}{2}
$$

So, we can write

$$
-2 k \pi=\sum_{i=1}^{n} \varphi_{i}=\sum_{i=1}^{n}\left[-\pi+\left(\beta_{i}+\beta_{i+1}\right]=-n \pi+2\left(\beta_{1}+\cdots+\beta_{n}\right)\right.
$$

from which follows that $\beta_{1}+\cdots+\beta_{n}=(n-2 k) \frac{\pi}{2}$.
First, we prove the following theorem which is a completion of Theorem 1 in [1].
Theorem 1. Let t_{1}, \ldots, t_{n} be any given lengths (in fact, positive numbers), where $n \geq 3$. Then for each

$$
\begin{equation*}
k \in\left\{1,2, \ldots\left[\frac{n-1}{2}\right]\right\} \tag{4}
\end{equation*}
$$

there is a k-tangential n-gon $A_{1}^{(k)} \ldots A_{n}^{(k)}$ such that

$$
\left|A_{i}^{(k)} A_{i+1}^{(k)}\right|=t_{i}+t_{i+1}, \quad i=1, \ldots, n .
$$

Proof. We need to prove that there are $\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}$ and length (radius) r_{k} such that for each k given by (4) it holds

$$
\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}=(n-2 k) \frac{\pi}{2}, \quad \tan \beta_{i}^{(k)}=\frac{r_{k}}{t_{i}}, \quad i=1, \ldots, n
$$

First, it is clear that for r enough large it holds

$$
\sum_{i=1}^{n} \arctan \frac{r}{t_{i}} \approx n \frac{\pi}{2}
$$

Thus, there are lengths (radii) $r_{1}, r_{2}, \ldots, r_{m}$, where $m=\left[\frac{n-1}{2}\right]$, such that

$$
\begin{aligned}
\sum_{i=1}^{n} \arctan \frac{r_{1}}{t_{i}} & =(n-2 \cdot 1) \frac{\pi}{2}, \\
\sum_{i=1}^{n} \arctan \frac{r_{2}}{t_{i}} & =(n-2 \cdot 2) \frac{\pi}{2}, \\
\cdots & \cdots \\
\sum_{i=1}^{n} \arctan \frac{r_{m-1}}{t_{i}} & =(n-2(m-1)) \frac{\pi}{2}, \\
\sum_{i=1}^{n} \arctan \frac{r_{m}}{t_{i}} & =(n-2 m) \frac{\pi}{2} .
\end{aligned}
$$

Here let us remark that

$$
\begin{aligned}
(n-2(m-1)) \frac{\pi}{2} & =3 \frac{\pi}{2} \text { if } n \text { is odd, } & (n-2(m-1)) \frac{\pi}{2}=2 \pi \text { if } n \text { is even, } \\
(n-2 m) \frac{\pi}{2} & =\frac{\pi}{2} \text { if } n \text { is odd, } & (n-2 m) \frac{\pi}{2}=\pi \text { if } n \text { is even. }
\end{aligned}
$$

In the following we shall use fundamental symmetric functions S_{j}^{n} and \hat{S}_{j}^{n}, first of t_{1}, \ldots, t_{n} and second of $\cot \beta_{1}^{(k)}, \ldots, \cot \beta_{n}^{(k)}$, that is

$$
\begin{aligned}
S_{j}^{n} & =\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n}^{n} t_{i_{1}} \cdot \ldots \cdot t_{i_{j}}, \quad j=, 1, \ldots, n \\
\hat{S}_{j}^{n} & =\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n}^{n} \cot \beta_{i_{1}}^{(k)} \cdot \ldots \cdot \cot \beta_{i_{j}}^{(k)}, \quad j=, 1, \ldots, n .
\end{aligned}
$$

For example

$$
S_{1}^{3}=t_{1}+t_{2}+t_{3}, S_{2}^{3}=t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}, S_{3}^{3}=t_{1} t_{2} t_{3}
$$

Theorem 2. The radii of these $\left[\frac{n-1}{2}\right]$ tangential n-gones described in Theorem 1 are positive roots of the equation

$$
\begin{equation*}
S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s_{1}} S_{n}^{n}=0, \quad n \text { is odd } \tag{5a}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{1}^{n} x^{n-2}-S_{3}^{n} x^{n-4}+S_{5}^{n} x^{n-6}-\cdots+(-1)^{s_{2}} S_{n-1}^{n}=0, \quad n \text { is even } \tag{5b}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{1}=(1+3+5+\cdots+n)+1, \quad s_{2}=(1+3+5+\cdots+(n-1))+1 \tag{5c}
\end{equation*}
$$

Proof. Let $\beta_{i}^{(k)}=\arctan \frac{r_{k}}{t_{i}}, i=1, \ldots, n$. Then

$$
\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}=(n-2 k) \frac{\pi}{2} .
$$

Hence

$$
\begin{array}{ll}
\cot \left(\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}\right)=0 & \text { if } n \text { is odd. } \\
\tan \left(\beta_{1}^{(k)}+\cdots+\beta_{n}^{(k)}\right)=0 & \text { if } n \text { is even. } \tag{6b}
\end{array}
$$

Relation (6a) can be written as

$$
\begin{equation*}
\hat{S}_{1}^{n}-\hat{S}_{3}^{n}+\hat{S}_{5}^{n}-\cdots+(-1)^{s_{1}} \hat{S}_{n}^{n}=0 \tag{7}
\end{equation*}
$$

from which, replacing $\cot \beta_{i}^{(k)}$ by $\frac{t_{i}}{r_{k}}$, we get equality

$$
\begin{equation*}
S_{1}^{n} r^{n-1}-S_{3}^{n} r^{n-3}+S_{5}^{n} r^{n-5}-\cdots+(-1)^{s_{1}} S_{n}^{n}=0 \tag{8}
\end{equation*}
$$

Thus, in the case when n is odd, each $r_{k}, k=1, \ldots \frac{n-1}{2}$, is a root of equation (5a).
Similarly holds in the case when n is even, namely, relation (5b) can be written as

$$
\begin{equation*}
\hat{S}_{1}^{n}-\hat{S}_{3}^{n}+\hat{S}_{5}^{n}-\cdots+(-1)^{s_{2}} \hat{S}_{n-1}^{n}=0 \tag{9}
\end{equation*}
$$

from which, replacing $\cot \beta_{i}^{(k)}$ by $\frac{t_{i}}{r_{k}}$, we get equality

$$
\begin{equation*}
S_{1}^{n} r^{n-2}-S_{3}^{n} r^{n-4}+S_{5}^{n} r^{n-6}-\cdots+(-1)^{s_{2}} S_{n-1}^{n}=0 \tag{10}
\end{equation*}
$$

So Theorem 2 is proved.
Here is an example.
Example 2. Let $t_{i}=i, i=1, \ldots, 5$. Then

$$
S_{1}^{5}=15, S_{3}^{5}=225, S_{5}^{5}=120
$$

and

$$
15 r_{k}^{4}-225 r_{k}^{2}+120=0, \quad k=1,2
$$

for $r_{1} \approx 3.800818595, r_{2} \approx 0.74416262$.
It can be checked that

$$
\sum_{i=1}^{5} \arctan \frac{r_{1}}{t_{i}}=3 \frac{\pi}{2}, \quad \sum_{i=1}^{5} \arctan \frac{r_{2}}{t_{i}}=\frac{\pi}{2}
$$

Theorem 3. Let $t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{2 n}$ be any given lengths such that

$$
\begin{equation*}
t_{n+i}=t_{i}, \quad i=1, \ldots, n \tag{11}
\end{equation*}
$$

Let $F_{1}(x), F_{2}(x)$ and $F(x)$ be polynomials given by

$$
\begin{aligned}
F_{1}(x) & =S_{1}^{n} x^{n-1}-S_{3}^{n} x^{n-3}+S_{5}^{n} x^{n-5}-\cdots+(-1)^{s_{1}} S_{n}^{n}, \quad n \text { is odd, } \\
F_{2}(x) & =S_{1}^{n} x^{n-2}-S_{3}^{n} x^{n-4}+S_{5}^{n} x^{n-6}-\cdots+(-1)^{s_{2}} S_{n-1}^{n}, \quad n \text { is even } \\
F(x) & =S_{1}^{2 n} x^{2 n-2}-S_{3}^{2 n} x^{2 n-4}+S_{5}^{2 n} x^{2 n-6}-\cdots+(-1)^{s} S_{2 n-1}^{2 n}
\end{aligned}
$$

where s_{1} and s_{2} are given by (5c), and s is given by

$$
s=(1+3+5+\cdots+(2 n-1))+1
$$

Then

$$
\begin{array}{ll}
F_{1}(x) \mid F(x) & \text { if } n \text { is odd, } \\
F_{2}(x) \mid F(x) & \text { if } n \text { is even, }
\end{array}
$$

where \mid stands for is the divisor of.
Proof. By Theorem 1 there are $m=\left[\frac{n-1}{2}\right]$ tangential n-gons whose tangent lengths are t_{1}, \ldots, t_{n}. Let

$$
r_{1}^{(n)}, r_{2}^{(n)}, \ldots, r_{m}^{(n)}
$$

denote radii of these m tangential n-gons, and let

$$
r_{1}^{(2 n)}, r_{2}^{(2 n)}, \ldots, r_{m}^{(2 n)}
$$

denote radii of $2 m\left(=n-1=\frac{2 n-2}{2}\right)$ tangential $2 n$-gons whose tangent lengths are $t_{1}, \ldots, t_{2 n}$ for which (11) holds. Then

$$
r_{i}^{(n)}=r_{2 i}^{(2 n)}, \quad i=1, \ldots, m
$$

It is because $r_{2 i}^{(2 n)}$ is the radius of a $2 i$-tangential $2 n$-gon which is a double i tangential n-gon whose radius is $r_{i}^{(n)}$. For example, if $n=5$, then

$$
r_{2}^{(5)}=r_{4}^{(10)}
$$

since a 4 -tangential 10 -gon (in the case when $t_{5+i}=t_{i}, i=1, \ldots, 5$) is a double 2-tangential 5-gon. (See Figure 3)

Figure 3.

Here let us remark that

$$
\sum_{i=1}^{10} \arctan \frac{r_{4}^{(10)}}{t_{i}}=(10-2 \cdot 4) \frac{\pi}{2}
$$

or

$$
2 \sum_{i=1}^{5} \arctan \frac{r_{4}^{(10)}}{t_{i}}=(10-2 \cdot 4) \frac{\pi}{2}
$$

from which there follows

$$
\sum_{i=1}^{5} \arctan \frac{r_{4}^{(10)}}{t_{i}}=(5-2 \cdot 2) \frac{\pi}{2}
$$

But also

$$
\sum_{i=1}^{5} \arctan \frac{r_{2}^{(5)}}{t_{i}}=(5-2 \cdot 2) \frac{\pi}{2}
$$

Corollary 1. Let $t_{1}, \ldots, t_{3 n}$ be any given lengths such that

$$
t_{n+i}=t_{2 n+i}=t_{i}, \quad i=1, \ldots, n
$$

Let $F_{1}(x)$ and $F_{2}(x)$ be as in Theorem 3, and let $G(x)$ and $H(x)$ be given by
$G(x)=S_{1}^{3 n} x^{3 n-1}-S_{3}^{3 n} x^{3 n-3}+S_{5}^{3 n} x^{3 n-5}-\cdots+(-1)^{u} S_{3 n}^{3 n} \quad$ if n is odd
$H(x)=S_{1}^{3 n} x^{3 n-2}-S_{3}^{3 n} x^{3 n-4}+S_{5}^{3 n} x^{3 n-6}-\cdots+(-1)^{v} S_{3 n-1}^{3 n} \quad$ if n is even,
where

$$
u=(1+3+5+\cdots+3 n)+1, \quad v=(1+3+5+\cdots+(3 n-1))+1
$$

Then

$$
\begin{array}{ll}
F_{1}(x) \mid G(x) & \text { if } n \text { is odd, } \\
F_{2}(x) \mid H(x) & \text { if } n \text { is even. } \tag{15}
\end{array}
$$

Proof. It holds

$$
r_{i}^{(n)}=r_{3 i}^{(3 n)}, \quad i=1, \ldots, n
$$

Notice 2. Concerning Theorem 3, it can be easily seen that there are many other cases where one equation is the divisor of the other, which may be interesting in the theory of algebraic equations.

References

[1] M. Radić, Some relations and properties concerning tangential polygons, Mathematical Communications 4(1999), 197-206.

[^0]: *Department of Mathematics, University of Rijeka, HR-51 000 Rijeka, Omladinska 14, Croatia, e-mail: mradic@ffri.hr

