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On some algebraic equations in connection with

one kind of tangential polygons

Mirko Radić∗

Abstract. This article can be considered as an appendix to ar-
ticle [1]. Here article [1] is completed and extended, where some new
relations concerning one kind of tangential polygons and algebraic equa-
tions are established.
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The whole article is in some way connected with the following definition which
is a completion of Definition 1 in [1].

Definition 1. Let A1 . . . An be a tangential n-gon and let C be a denoted center
of the inscribed circle into A1 . . . An. Then we say that A1 . . . An is a k-inscribed
tangential n-gon or, shortly, k-tangential n-gon if it has the following properties:

1. No two of its consecutive vertices are the same, that is, Ai �= Ai+1 for each
i = 1, . . . , n.

2. All of the angles
�CAiAi+1, i = 1, . . . , n (1)

have the same orientation, that is, all of them are positively or negatively
oriented.

3. It holds
β1 + · · · + βn = (n − 2k)

π

2
, (2a)

where
βi = measure of �CAiAi+1, i = 1, . . . , n (2b)

k ∈
{

1, 2, . . . ,

[
n − 1

2

]}
, (2c)

[
n − 1

2

]
=

n − 1
2

if n is odd,

[
n − 1

2

]
=

n − 2
2

if n is even. (2d)

Of course, indices of vertices Ai, Ai+1 are calculated modulo n. Thus, An+1 = A1.
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Notice 1. In the following we shall take the measure of an oriented angle with
sign + or − depending on whether the angle is positively or negatively oriented.
Also, let us remark that measures will be expressed by radians.

From the following examples it will be easily seen that for a k-tangential n-gon
it holds

|ϕ1 + · · · + ϕn| = 2kπ, (3)

where ϕi = measure of oriented �AiCAi+1, i = 1, . . . , n.
Example 1. Pentagon A1 . . . A5 shown in Figure 1 has a property that all of

the angles �CAiAi+1, i = 1, . . . , n, are positively oriented and there holds

2β1 + · · · + 2β5 = (5 − 2)π

or
β1 + · · · + β5 = (5 − 2 · 1)

π

2
.

Thus, A1 . . . A5 is a 1-tangential pentagon.
In this connection let us remark that all of the angles �AiCAi+1, i = 1, . . . , n,

are negatively oriented and that

|ϕ1 + · · · + ϕ5| =
5∑

i=1

[π − (βi + βi+1)]

= 5π − (2β1 + · · · + 2β5)
= 5π − 3π = 2π = 2 · 1 · π.

Figure 1.

Now let us consider the pentagon shown in Figure 2. As can be seen, all of
the angles �CAiAi+1, i = 1, · · · , 5, are negatively oriented, and all of the angles
�AiCAi+1, i = 1, · · · , 4, are positively oriented. Therefore, for example,

β1 + β2 = −(π − ϕ1) since β1 < 0, β2 < 0, ϕ1 > 0.

Hence

2β1 + · · · + 2β5 =
5∑

i=1

(βi + βi+1) =
5∑

i=1

(−π + ϕi) = −5π + 4π
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which can be written as

|β1| + · · · + |β5| = −(−5π + 4π) = (5 − 2 · 2)
π

2
.

Thus, the pentagon shown in Figure 2 is a 2-tangential pentagon. In this connection
let us remark that ϕ1 + · · · + ϕ5 = 2 · 2π.

Figure 2.

Now let us remark that the numbering of vertices of the pentagon shown in
Figure 1 is such that the pentagon (as oriented one) is negatively oriented, and
that the numbering of vertices of the pentagon shown in Figure 2 is such that the
pentagon (as oriented one) is positively oriented.

It is easy to see that generally there holds: If the numbering of the vertices of
a k-tangential n-gon is such that the n-gon (as oriented one) is positively oriented,
then ϕi > 0, βi < 0, i = 1, . . . , n, but if the n-gon is negatively oriented, then
ϕi < 0, βi > 0, i = 1, . . . , n.

For convenience, in the following, where we shall mostly deal with β1, . . . , βn, we
shall suppose that the considered n-gon is negatively oriented, that is, all β1, . . . , βn

are positive.
It can be easily proved that

n∑
i=1

ϕi = −2kπ ⇐⇒
n∑

i=1

βi = (n − 2k)
π

2
.

So, we can write

−2kπ =
n∑

i=1

ϕi =
n∑

i=1

[−π + (βi + βi+1] = −nπ + 2(β1 + · · · + βn),
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from which follows that β1 + · · · + βn = (n − 2k)π
2 .

First, we prove the following theorem which is a completion of Theorem 1 in [1].
Theorem 1. Let t1, . . . , tn be any given lengths (in fact, positive numbers),

where n ≥ 3. Then for each

k ∈
{

1, 2, . . .

[
n − 1

2

]}
(4)

there is a k-tangential n-gon A
(k)
1 . . . A

(k)
n such that

∣∣∣A(k)
i A

(k)
i+1

∣∣∣ = ti + ti+1, i = 1, . . . , n.

Proof. We need to prove that there are β
(k)
1 , . . . , β

(k)
n and length (radius) rk

such that for each k given by (4) it holds

β
(k)
1 + · · · + β(k)

n = (n − 2k)
π

2
, tanβ

(k)
i =

rk

ti
, i = 1, . . . , n.

First, it is clear that for r enough large it holds

n∑
i=1

arctan
r

ti
≈ n

π

2
.

Thus, there are lengths (radii) r1, r2, . . . , rm, where m =
[

n−1
2

]
, such that

n∑
i=1

arctan
r1

ti
= (n − 2 · 1)

π

2
,

n∑
i=1

arctan
r2

ti
= (n − 2 · 2)

π

2
,

· · · · · ·
n∑

i=1

arctan
rm−1

ti
= (n − 2(m − 1))

π

2
,

n∑
i=1

arctan
rm

ti
= (n − 2m)

π

2
.

Here let us remark that

(n − 2(m − 1))
π

2
= 3

π

2
if n is odd, (n − 2(m − 1))

π

2
= 2π if n is even,

(n − 2m)
π

2
=

π

2
if n is odd, (n − 2m)

π

2
= π if n is even.

✷
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In the following we shall use fundamental symmetric functions Sn
j and Ŝn

j , first

of t1, . . . , tn and second of cotβ
(k)
1 , . . . , cotβ

(k)
n , that is

Sn
j =

n∑
1≤i1<···<ij≤n

ti1 · . . . · tij , j =, 1, . . . , n

Ŝn
j =

n∑
1≤i1<···<ij≤n

cotβ
(k)
i1

· . . . · cotβ
(k)
ij

, j =, 1, . . . , n.

For example

S3
1 = t1 + t2 + t3, S3

2 = t1t2 + t2t3 + t3t1, S3
3 = t1t2t3.

Theorem 2. The radii of these
[

n−1
2

]
tangential n-gones described in Theo-

rem 1 are positive roots of the equation

Sn
1 xn−1 − Sn

3 xn−3 + Sn
5 xn−5 − · · · + (−1)s1Sn

n = 0, n is odd (5a)

or
Sn

1 xn−2 − Sn
3 xn−4 + Sn

5 xn−6 − · · · + (−1)s2Sn
n−1 = 0, n is even, (5b)

where

s1 = (1 + 3 + 5 + · · · + n) + 1, s2 = (1 + 3 + 5 + · · · + (n − 1)) + 1. (5c)

Proof. Let β
(k)
i = arctan rk

ti
, i = 1, . . . , n. Then

β
(k)
1 + · · · + β(k)

n = (n − 2k)
π

2
.

Hence
cot

(
β

(k)
1 + · · · + β(k)

n

)
= 0 if n is odd. (6a)

tan
(
β

(k)
1 + · · · + β(k)

n

)
= 0 if n is even. (6b)

Relation (6a) can be written as

Ŝn
1 − Ŝn

3 + Ŝn
5 − · · · + (−1)s1 Ŝn

n = 0, (7)

from which, replacing cotβ
(k)
i by ti

rk
, we get equality

Sn
1 rn−1 − Sn

3 rn−3 + Sn
5 rn−5 − · · · + (−1)s1Sn

n = 0. (8)

Thus, in the case when n is odd, each rk, k = 1, . . . n−1
2 , is a root of equation (5a).

Similarly holds in the case when n is even, namely, relation (5b) can be written
as

Ŝn
1 − Ŝn

3 + Ŝn
5 − · · · + (−1)s2 Ŝn

n−1 = 0, (9)
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from which, replacing cotβ
(k)
i by ti

rk
, we get equality

Sn
1 rn−2 − Sn

3 rn−4 + Sn
5 rn−6 − · · · + (−1)s2Sn

n−1 = 0. (10)

So Theorem 2 is proved. ✷

Here is an example.
Example 2. Let ti = i, i = 1, . . . , 5. Then

S5
1 = 15, S5

3 = 225, S5
5 = 120

and
15r4

k − 225r2
k + 120 = 0, k = 1, 2

for r1 ≈ 3.800818595, r2 ≈ 0.74416262.
It can be checked that

5∑
i=1

arctan
r1

ti
= 3

π

2
,

5∑
i=1

arctan
r2

ti
=

π

2
.

Theorem 3. Let t1, . . . , tn, tn+1, . . . , t2n be any given lengths such that

tn+i = ti, i = 1, . . . , n. (11)

Let F1(x), F2(x) and F (x) be polynomials given by

F1(x) = Sn
1 xn−1 − Sn

3 xn−3 + Sn
5 xn−5 − · · · + (−1)s1Sn

n , n is odd,

F2(x) = Sn
1 xn−2 − Sn

3 xn−4 + Sn
5 xn−6 − · · · + (−1)s2Sn

n−1, n is even
F (x) = S2n

1 x2n−2 − S2n
3 x2n−4 + S2n

5 x2n−6 − · · · + (−1)sS2n
2n−1,

where s1 and s2 are given by (5c), and s is given by

s = (1 + 3 + 5 + · · · + (2n − 1)) + 1.

Then

F1(x)
∣∣∣F (x) if n is odd,

F2(x)
∣∣∣F (x) if n is even,

where
∣∣ stands for is the divisor of.

Proof. By Theorem 1 there are m =
[

n−1
2

]
tangential n-gons whose tangent

lengths are t1, . . . , tn. Let
r
(n)
1 , r

(n)
2 , . . . , r(n)

m

denote radii of these m tangential n-gons, and let

r
(2n)
1 , r

(2n)
2 , . . . , r(2n)

m
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denote radii of 2m
(
= n − 1 = 2n−2

2

)
tangential 2n-gons whose tangent lengths are

t1, . . . , t2n for which (11) holds. Then

r
(n)
i = r

(2n)
2i , i = 1, . . . , m.

It is because r
(2n)
2i is the radius of a 2i-tangential 2n-gon which is a double i-

tangential n-gon whose radius is r
(n)
i . For example, if n = 5, then

r
(5)
2 = r

(10)
4 ,

since a 4-tangential 10-gon (in the case when t5+i = ti, i = 1, . . . , 5) is a double
2-tangential 5-gon. (See Figure 3)

Figure 3.

✷

Here let us remark that
10∑

i=1

arctan
r
(10)
4

ti
= (10 − 2 · 4)

π

2
,

or

2
5∑

i=1

arctan
r
(10)
4

ti
= (10 − 2 · 4)

π

2
,

from which there follows
5∑

i=1

arctan
r
(10)
4

ti
= (5 − 2 · 2)

π

2
.

But also
5∑

i=1

arctan
r
(5)
2

ti
= (5 − 2 · 2)

π

2
.
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Corollary 1. Let t1, . . . , t3n be any given lengths such that

tn+i = t2n+i = ti, i = 1, . . . , n.

Let F1(x) and F2(x) be as in Theorem 3, and let G(x) and H(x) be given by

G(x) = S3n
1 x3n−1 − S3n

3 x3n−3 + S3n
5 x3n−5 − · · · + (−1)uS3n

3n if n is odd (12)
H(x) = S3n

1 x3n−2 − S3n
3 x3n−4 + S3n

5 x3n−6 − · · · + (−1)vS3n
3n−1 if n is even, (13)

where

u = (1 + 3 + 5 + · · · + 3n) + 1, v = (1 + 3 + 5 + · · · + (3n − 1)) + 1.

Then

F1(x)
∣∣∣G(x) if n is odd, (14)

F2(x)
∣∣∣H(x) if n is even. (15)

Proof. It holds
r
(n)
i = r

(3n)
3i , i = 1, . . . , n.

✷

Notice 2. Concerning Theorem 3, it can be easily seen that there are many
other cases where one equation is the divisor of the other, which may be interesting
in the theory of algebraic equations.
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