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Multipliers and factorizations for bounded
7 —convergent sequences

SEYHMUS YARDIMCI*

Abstract. Connor, Demirci and Orhan (5] studied multipliers for
bounded statistically convergent sequences. In this paper we get analo-
gous results for T—convergent sequences.
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1. Introduction

Kostyrko, Mac¢aj and Salat [12],[13] introduced the concept of Z—convergence of
sequences of real numbers based on the notion of the ideal of subsets of N. Some
results on Z-convergence may be found in [6], [13]. In this paper we study multipliers
for Z-convergence. So we show that our results are a non-trivial generalization of
well-known results in classical convergence, statistical convergence, A-statistical
convergence and uniform statistical convergence.

If K is a subset of natural numbers N, K, will denote the set {k € K : k < n}
and |K,| will denote the cardinality of K,. The natural density of K [17], is
given by §(K) := lim, & |K,|, if it exists. Fast introduced the definition of sta-
tistical convergence using the natural density of a set. The number sequence
x = (wg) is statistically convergent to L provided that for every ¢ > 0 the set
K = K(¢) == {keN: |z — L| > ¢} has natural density zero [7]. Hence x is
statistically convergent to L iff (Cixx())n — 0, (as n — oo, for ever € > 0 ),
where C7 is the Cesdro mean of order one and xy is the characteristic function
of the set K. Properties of statistically convergent sequences have been studied in
2],13).19]. [10], [15] , [18].

Statistical convergence can be generalized by using a nonnegative regular sum-
mability matrix A in place of Cf.

Following Freedman and Sember [8], we say that a set K C N has A—density if
da(K) := lim, (Axx )n = lim, Y, o @ni exists where A = (anx) is a nonnegative
regular matrix.
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The number sequence x = (xy) is A—statistically convergent to L provided that
for every € > 0 the set K (¢) has A—density zero [2], [8],[11], [15].

Also Connor has introduced p—statistical analogue of these concepts using a
finitely additive set function p taking values in [0, 1] defined on a field ' of subsets
of N such that if |A] < oo, then u(A) =0;if A C B and u(B) =0, then u(A) =0
and p(N)=1 [4].

The number sequence z = () is p—statistically convergent to L provided that
p{keN: |z —L| >¢€}) =0 for every e >0 [4].

2. Definition and notations

Now we introduce some notation and basic definitions used in this paper. A se-
quence space is a linear subspace of the collection of all scalar valued sequences. we
let ¢, cp, and £*° denote the normed by ||z|| = sup,, |zx]|.

We first recall the concepts of an ideal and filter of sets.

Definition 1 [see [12], [13], [14,p.34]]. Let X # ¢. A class S C 2% of subsets
of X is said to be an ideal in X provided that S is additive and hereditary , i.e if S
satisfies the conditions:

(i) ¢ €5,
(ii) A, BeS= AUB¢€S,
(iti)) Ac S, BCA=BeS.

An ideal is called non-trivial if X ¢ S.
Definition 2 [see [12],[13], [16,p.44]]. Let X # ¢. A non-empty class f C 2%
of subsets of X is said to be a filter in X provided that:

(i) p&F,
(i) A,BelF = ANBeFf,
(iti)) pc F,ACB= BeFf.

The following proposition expresses a relation between the notions of an ideal
and a filter :
Proposition 1 [see [6], [12],[13]]. Let S be a non-trivial in X, X # ¢. Then
the class
F(S)={MCX:3AeS: M=X\A} (1)

is a filter on X (we will call F (S) the filter associated with S).

Definition 3 [see [6], [12], [13]]. A4 non- trivial ideal S in X is called admissible
if {z} € S for each z € X.

As usual, R will denote the real numbers.

Definition 4 [see [6], [12], [13]]. Let Z be a non- trivial ideal in N. Then
a sequence x = (x,) of real numbers is said to be T—convergent to L € R if for
every € > 0 the set A(e) ={n : |z, — L| > e} belongs to Z. In this case we write
Z—limz = L.
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By Fr and Fr (b) we denote the set of all Z-convergent sequences and all Z-
convergent bounded sequences. And by F2 (b) we denote all Z-convergent bounded
null sequences. Throughout the paper Z will be an admissible ideal.

3. Multipliers

Assume that two sequence spaces, E and F' are given. A multiplier from E into F'
is a sequence u such that uz = (upx,) € F whenever x € E. The linear space of
all such multipliers will be denoted by m(E, F').

Bounded multipliers will be denoted by M(E,F). Hence M(E,F) = (> N
m(E,F). If E = F, then we write m(F) and M(E) instead of m(E, F) and
M(E, F), respectively.

Connor, Demirci and Orhan [5] studied multipliers for bounded statistically
convergent sequences.

This section is devoted to multipliers on or into F 7(b) and F %(b). Before we
begin, we note that if £ and F' are subspaces of > that contain ¢,, then ¢y C
m(E, F) C £>°. The first inclusion follows from noting that if u € ¢y and x € £,
then ux € ¢g C F. The second inclusion follows from noting that « € m(E, F),
then ux € F C £ for all x € ¢y C E, and hence u € £*°.

We have the following
Theorem 1. Let T be an admissible ideal in N. Then

(1) m(F 7(b)) = M(F 7(b)) = £,
(i) m(F z(b)) = F z(b).

Proof. (i) We show that m(F %(b)) = £>°. The observation preceding the theo-
rem yields that m(f %(b)) C £>°. Note that if u € £>° and z € F 3(b), then

{k : |ukzk|25}§{k : |zk|2m}

and the right set belongs to Z, so {k : |uy zx| > e} € Z. Also note uz is bounded
and hence £°° C m(F %(b)).

(73) First observe that xn € F £(b) implies that m(F (b)) C F 7(b). Conversely,
if u € Fz(b), then ux € Fz(b) for any x € F z(b). Hence u € m(F (b)), which
proves the claim. O

Before proving theorem 3, we observe that, in general cg C m(F z(b), ¢) C c.
The first inclusion follows from noting uz € ¢ C F z(b) for any u € ¢y and = € £°°.
The second inclusion follows from xn € F 7(b). Note that if F z(b) = ¢, then m(c,
F z(b)) = c. The next theorem shows that this the only situation for which m(F z(b),
c)=c.

Theorem 2. Let I be an admissible ideal in N. Then

(i) If ¢ is a proper subset of I 7(b), then m( F z(b), ¢) = ¢,

(ii) m(c, Fz(b)) = F z(b).
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Proof. (i) Given the remarks preceding the theorem, all we need to establish is
that if uw € c and lima = £ # 0, then u € m( F z(b), ¢). Let z € F £(b), z ¢ ¢, and,
without loss of generality, suppose z is Z—convergent to 1. Then there is an € > 0
such that A :={k : | 2t — 1| > ¢} € Z. Define = by zx = xa-(k) and observe that
x is T—convergent to 1, hence x € F z(b). Also note zu converges to £ # 0 along
A¢ and to 0 along A, hence zu ¢ ¢ and thus u ¢ m( F z(b), c).

(i1) As xn ¢ ¢, m(c, Fz(b)) C F z(b). The reverse inclusion follows from noting
that if u € F z(b) and x € ¢ C F 7(b), then ux is Z—convergent. O
Theorem 3. Let I be an admissable ideal in N . Then m (co, F §(b)) = £>

Proof.

0 =m(co,c0) = {u:ux € ¢ for all x € ¢} (2)

in general ¢g C F %(b) and hence

0> =m (co, co) € m (co, F (b)) C £ (3)

It follows
m (co, F3(b)) = €. (4)
O

Further we will give some special cases.

4. Special cases

Case 1. Let Z be a class of all finite subsets of N. Then Z-convergence reduces to

a classical convergence.

Case 2. Let 7= {K CN:0(K)=0}. Then Z-convergence reduces to a statis-
ticall convergence.

Case 3. LetZ = {K €T : p(K) = 0}. Then Z-convergence reduces to a y—statistical
convergence.

Case 4. Let T = {K CN:d,(K)=0}see [12],[13]). Then Z-convergence
reduces to an A-statisticall convergence.

Case 5. Furthermore, let 7 = {K CN:u(K)=0}(see[l]). Then Then Z-
convergence reduces to an Z,,- convergence.

These special cases show that our results are non-trivial generations of well-
known results.
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