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Multipliers and factorizations for bounded

I−convergent sequences
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Abstract. Connor, Demirci and Orhan [5] studied multipliers for
bounded statistically convergent sequences. In this paper we get analo-
gous results for I−convergent sequences.
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1. Introduction

Kostyrko, Mačaj and Šalát [12] , [13] introduced the concept of I−convergence of
sequences of real numbers based on the notion of the ideal of subsets of N. Some
results on I-convergence may be found in [6] , [13]. In this paper we study multipliers
for I-convergence. So we show that our results are a non-trivial generalization of
well-known results in classical convergence, statistical convergence, A-statistical
convergence and uniform statistical convergence.

If K is a subset of natural numbers N, Kn will denote the set {k ∈ K : k ≤ n}
and |Kn| will denote the cardinality of Kn. The natural density of K [17], is
given by δ(K) := limn

1
n |Kn| , if it exists. Fast introduced the definition of sta-

tistical convergence using the natural density of a set. The number sequence
x = (xk) is statistically convergent to L provided that for every ε > 0 the set
K := K(ε) := {k ∈ N : |xk − L| ≥ ε} has natural density zero [7]. Hence x is
statistically convergent to L iff (C1χK(ε))n → 0, (as n → ∞, for ever ε > 0 ),
where C1 is the Cesáro mean of order one and χK is the characteristic function
of the set K. Properties of statistically convergent sequences have been studied in
[2] , [3] , [9] , [10] , [15] , [18].

Statistical convergence can be generalized by using a nonnegative regular sum-
mability matrix A in place of C1.

Following Freedman and Sember [8] , we say that a set K ⊆ N has A−density if
δA(K) := limn(AχK)n = limn

∑
k∈K ank exists where A = (ank) is a nonnegative

regular matrix.
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The number sequence x = (xk) is A−statistically convergent to L provided that
for every ε > 0 the set K(ε) has A−density zero [2], [8] , [11] , [15].

Also Connor has introduced µ−statistical analogue of these concepts using a
finitely additive set function µ taking values in [0, 1] defined on a field Γ of subsets
of N such that if |A| < ∞, then µ(A) = 0; if A ⊂ B and µ(B) = 0, then µ(A) = 0
and µ(N) = 1 [4] .

The number sequence x = (xk) is µ−statistically convergent to L provided that
µ({k ∈ N : |xk − L| ≥ ε}) = 0 for every ε > 0 [4].

2. Definition and notations

Now we introduce some notation and basic definitions used in this paper. A se-
quence space is a linear subspace of the collection of all scalar valued sequences. we
let c, c0, and �∞ denote the normed by ‖x‖ = supn |xn|.

We first recall the concepts of an ideal and filter of sets.
Definition 1 [see [12], [13], [14, p.34]]. Let X �= φ. A class S ⊆ 2X of subsets

of X is said to be an ideal in X provided that S is additive and hereditary , i.e if S
satisfies the conditions:

(i) φ ∈ S,

(ii) A,B ∈ S ⇒ A ∪ B ∈ S,

(iii) A ∈ S, B ⊆ A ⇒ B ∈ S.

An ideal is called non-trivial if X /∈ S.
Definition 2 [see [12] , [13] , [16, p.44]]. Let X �= φ. A non-empty class � ⊆ 2X

of subsets of X is said to be a filter in X provided that:

(i) φ /∈ �,

(ii) A,B ∈ � ⇒ A ∩ B ∈ �,

(iii) φ ∈ �, A ⊆ B ⇒ B ∈ �.

The following proposition expresses a relation between the notions of an ideal
and a filter :

Proposition 1 [see [6], [12] , [13]]. Let S be a non-trivial in X, X �= φ. Then
the class

�(S) = {M ⊆ X : ∃A ∈ S : M = X \ A} (1)

is a filter on X (we will call �(S) the filter associated with S).

Definition 3 [see [6], [12] , [13]]. A non- trivial ideal S in X is called admissible
if {x} ∈ S for each x ∈ X.

As usual, R will denote the real numbers.
Definition 4 [see [6], [12] , [13]]. Let I be a non- trivial ideal in N. Then

a sequence x = (xn) of real numbers is said to be I−convergent to L ∈ R if for
every ε > 0 the set A(ε) = {n : |xn − L| ≥ ε} belongs to I. In this case we write
I− limx = L.
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By FI and FI (b) we denote the set of all I-convergent sequences and all I-
convergent bounded sequences. And by F 0

I (b) we denote all I-convergent bounded
null sequences. Throughout the paper I will be an admissible ideal.

3. Multipliers

Assume that two sequence spaces, E and F are given. A multiplier from E into F
is a sequence u such that ux = (unxn) ∈ F whenever x ∈ E. The linear space of
all such multipliers will be denoted by m(E,F ).

Bounded multipliers will be denoted by M(E,F ). Hence M(E,F ) = �∞ ∩
m(E,F ). If E = F , then we write m(E) and M(E) instead of m(E,F ) and
M(E,F ), respectively.

Connor, Demirci and Orhan [5] studied multipliers for bounded statistically
convergent sequences.

This section is devoted to multipliers on or into �I(b) and �0
I(b). Before we

begin, we note that if E and F are subspaces of �∞ that contain co, then c0 ⊂
m(E,F ) ⊂ �∞. The first inclusion follows from noting that if u ∈ c0 and x ∈ �∞,
then ux ∈ c0 ⊂ F . The second inclusion follows from noting that u ∈ m(E,F ),
then ux ∈ F ⊂ �∞ for all x ∈ c0 ⊂ E, and hence u ∈ �∞.

We have the following
Theorem 1. Let I be an admissible ideal in N . Then

(i) m(�0
I(b)) = M(�0

I(b)) = �∞,

(ii) m(�I(b)) = �I(b).

Proof. (i) We show that m(�0
I(b)) = �∞. The observation preceding the theo-

rem yields that m(�0
I(b)) ⊂ �∞. Note that if u ∈ �∞ and z ∈ �0

I(b), then

{k : |uk zk| ≥ ε} ⊆
{
k : |zk| ≥ ε

||u||∞+1

}

and the right set belongs to I, so {k : |uk zk| ≥ ε} ∈ I. Also note uz is bounded
and hence �∞ ⊆ m(�0

I(b)).
(ii) First observe that χN ∈ �I(b) implies that m(�I(b)) ⊂ �I(b). Conversely,

if u ∈ �I(b), then ux ∈ �I(b) for any x ∈ �I(b). Hence u ∈ m(�I(b)), which
proves the claim. ✷

Before proving theorem 3, we observe that, in general c0 ⊂ m(�I(b), c) ⊆ c.
The first inclusion follows from noting ux ∈ c0 ⊆ �I(b) for any u ∈ c0 and x ∈ �∞.
The second inclusion follows from χN ∈ �I(b). Note that if �I(b) = c, then m(c,
�I(b)) = c. The next theorem shows that this the only situation for which m(�I(b),
c) = c.

Theorem 2. Let I be an admissible ideal in N . Then

(i) If c is a proper subset of �I(b), then m( �I(b), c) = c,

(ii) m(c, �I(b)) = �I(b).
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Proof. (i) Given the remarks preceding the theorem, all we need to establish is
that if u ∈ c and limx = � �= 0, then u ∈ m( �I(b), c). Let z ∈ �I(b), z /∈ c, and,
without loss of generality, suppose z is I−convergent to 1. Then there is an ε > 0
such that A := {k : | zk − 1| ≥ ε} ∈ I. Define x by xk = χAc(k) and observe that
x is I−convergent to 1, hence x ∈ �I(b). Also note xu converges to � �= 0 along
Ac and to 0 along A, hence xu /∈ c and thus u /∈ m( �I(b), c).

(ii) As χN /∈ c, m(c, �I(b)) ⊆ �I(b). The reverse inclusion follows from noting
that if u ∈ �I(b) and x ∈ c ⊆ �I(b), then ux is I−convergent. ✷

Theorem 3. Let I be an admissable ideal in N . Then m
(
c0, �

0
I(b)

)
= �∞

Proof.
�∞ = m (c0, c0) = {u : ux ∈ c0 for all x ∈ c0} (2)

in general c0 ⊂ �0
I(b) and hence

�∞ = m (c0, c0) ⊆ m
(
c0, �

0
I(b)

) ⊂ �∞. (3)

It follows
m

(
c0, �

0
I(b)

)
= �∞. (4)

✷

Further we will give some special cases.

4. Special cases

Case 1. Let I be a class of all finite subsets of N. Then I-convergence reduces to
a classical convergence.
Case 2. Let I = {K ⊆ N : δ (K) = 0}. Then I-convergence reduces to a statis-
ticall convergence.
Case 3. Let I = {K ∈ Γ : µ (K) = 0}. Then I-convergence reduces to a µ−statistical
convergence.
Case 4. Let I = {K ⊆ N : δA (K) = 0}(see [12] , [13]). Then I-convergence
reduces to an A-statisticall convergence.
Case 5. Furthermore, let I = {K ⊆ N : u (K) = 0}(see[1]). Then Then I-
convergence reduces to an Iu- convergence.

These special cases show that our results are non-trivial generations of well-
known results.
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[1] V.Balaz, T. Šalát, Uniform density u and corresponding Iu−convergence,
Mathematical communications 11(2006), 1-7.

[2] J.Connor, On strong matrix summability with respect to a modulus and sta-
tistical convergence, Canad. Math. Bull. 32(1989), 194-198.



Bounded I−convergent sequences 185

[3] J. Connor, The statistical and strong p−Cesáro convergence of sequences,
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