Multipliers and factorizations for bounded \mathcal{I} -convergent sequences

SEYHMUS YARDIMCI*

Abstract. Connor, Demirci and Orhan [5] studied multipliers for bounded statistically convergent sequences. In this paper we get analogous results for \mathcal{I} -convergent sequences.

Key words: statistical convergent sequence, \mathcal{I} -convergent sequence, \mathcal{I} -limit point of sequences of real numbers

AMS subject classifications: Primary 40A05; Secondary 26A03, 11B05

Received December 13, 2006

Accepted December 28, 2006

1. Introduction

Kostyrko, Mačaj and Šalát [12], [13] introduced the concept of \mathcal{I} -convergence of sequences of real numbers based on the notion of the ideal of subsets of \mathbb{N} . Some results on \mathcal{I} -convergence may be found in [6], [13]. In this paper we study multipliers for \mathcal{I} -convergence. So we show that our results are a non-trivial generalization of well-known results in classical convergence, statistical convergence, A-statistical convergence.

If K is a subset of natural numbers \mathbb{N} , K_n will denote the set $\{k \in K : k \leq n\}$ and $|K_n|$ will denote the cardinality of K_n . The natural density of K [17], is given by $\delta(K) := \lim_n \frac{1}{n} |K_n|$, if it exists. Fast introduced the definition of statistical convergence using the natural density of a set. The number sequence $x = (x_k)$ is statistically convergent to L provided that for every $\varepsilon > 0$ the set $K := K(\varepsilon) := \{k \in \mathbb{N} : |x_k - L| \geq \varepsilon\}$ has natural density zero [7]. Hence x is statistically convergent to L iff $(C_1\chi_{K(\varepsilon)})_n \to 0$, (as $n \to \infty$, for ever $\varepsilon > 0$), where C_1 is the Cesáro mean of order one and χ_K is the characteristic function of the set K. Properties of statistically convergent sequences have been studied in [2], [3], [9], [10], [15], [18].

Statistical convergence can be generalized by using a nonnegative regular summability matrix A in place of C_1 .

Following Freedman and Sember [8], we say that a set $K \subseteq \mathbb{N}$ has A-density if $\delta_A(K) := \lim_n (A\chi_K)_n = \lim_n \sum_{k \in K} a_{nk}$ exists where $A = (a_{nk})$ is a nonnegative regular matrix.

^{*}Department of Mathematics, Faculty of Science, Ankara University, Tandogan 06 100, Ankara, Turkey, e-mail: Seyhmus.Yardimci@science.ankara.edu.tr

The number sequence $x = (x_k)$ is A-statistically convergent to L provided that for every $\varepsilon > 0$ the set $K(\varepsilon)$ has A-density zero [2], [8], [11], [15].

Also Connor has introduced μ -statistical analogue of these concepts using a finitely additive set function μ taking values in [0,1] defined on a field Γ of subsets of \mathbb{N} such that if $|A| < \infty$, then $\mu(A) = 0$; if $A \subset B$ and $\mu(B) = 0$, then $\mu(A) = 0$ and $\mu(\mathbb{N}) = 1$ [4].

The number sequence $x = (x_k)$ is μ -statistically convergent to L provided that $\mu(\{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}) = 0$ for every $\varepsilon > 0$ [4].

2. Definition and notations

Now we introduce some notation and basic definitions used in this paper. A sequence space is a linear subspace of the collection of all scalar valued sequences, we let c, c_0 , and ℓ^{∞} denote the normed by $||x|| = \sup_n |x_n|$.

We first recall the concepts of an ideal and filter of sets.

Definition 1 [see [12], [13], [14, p.34]]. Let $X \neq \phi$. A class $S \subseteq 2^X$ of subsets of X is said to be an ideal in X provided that S is additive and hereditary, i.e if S satisfies the conditions:

- (i) $\phi \in S$,
- (ii) $A, B \in S \Rightarrow A \cup B \in S$,
- (iii) $A \in S, B \subseteq A \Rightarrow B \in S$.

An ideal is called non-trivial if $X \notin S$.

Definition 2 [see [12], [13], [16, p.44]]. Let $X \neq \phi$. A non-empty class $F \subseteq 2^X$ of subsets of X is said to be a filter in X provided that:

- (i) $\phi \notin F$,
- (*ii*) $A, B \in F \Rightarrow A \cap B \in F$,
- (iii) $\phi \in F$, $A \subseteq B \Rightarrow B \in F$.

The following proposition expresses a relation between the notions of an ideal and a filter :

Proposition 1 [see [6], [12], [13]]. Let S be a non-trivial in $X, X \neq \phi$. Then the class

$$F(S) = \{ M \subseteq X : \exists A \in S : M = X \setminus A \}$$
(1)

is a filter on X (we will call F(S) the filter associated with S).

Definition 3 [see [6], [12], [13]]. A non-trivial ideal S in X is called admissible if $\{x\} \in S$ for each $x \in X$.

As usual, \mathbb{R} will denote the real numbers.

Definition 4 [see [6], [12], [13]]. Let \mathcal{I} be a non-trivial ideal in \mathbb{N} . Then a sequence $x = (x_n)$ of real numbers is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ if for every $\varepsilon > 0$ the set $A(\varepsilon) = \{n : |x_n - L| \ge \varepsilon\}$ belongs to \mathcal{I} . In this case we write \mathcal{I} -lim x = L. By $F_{\mathcal{I}}$ and $F_{\mathcal{I}}(b)$ we denote the set of all \mathcal{I} -convergent sequences and all \mathcal{I} convergent bounded sequences. And by $F_{\mathcal{I}}^0(b)$ we denote all \mathcal{I} -convergent bounded
null sequences. Throughout the paper \mathcal{I} will be an admissible ideal.

3. Multipliers

Assume that two sequence spaces, E and F are given. A multiplier from E into F is a sequence u such that $ux = (u_n x_n) \in F$ whenever $x \in E$. The linear space of all such multipliers will be denoted by m(E, F).

Bounded multipliers will be denoted by M(E, F). Hence $M(E, F) = \ell^{\infty} \cap m(E, F)$. If E = F, then we write m(E) and M(E) instead of m(E, F) and M(E, F), respectively.

Connor, Demirci and Orhan [5] studied multipliers for bounded statistically convergent sequences.

This section is devoted to multipliers on or into $\mathcal{F}_{\mathcal{I}}(b)$ and $\mathcal{F}_{\mathcal{I}}^{0}(b)$. Before we begin, we note that if E and F are subspaces of ℓ^{∞} that contain c_{0} , then $c_{0} \subset m(E, F) \subset \ell^{\infty}$. The first inclusion follows from noting that if $u \in c_{0}$ and $x \in \ell^{\infty}$, then $ux \in c_{0} \subset F$. The second inclusion follows from noting that $u \in m(E, F)$, then $ux \in F \subset \ell^{\infty}$ for all $x \in c_{0} \subset E$, and hence $u \in \ell^{\infty}$.

We have the following

Theorem 1. Let \mathcal{I} be an admissible ideal in N. Then

- (i) $m(\mathcal{F}^0_{\mathcal{I}}(b)) = M(\mathcal{F}^0_{\mathcal{I}}(b)) = \ell^{\infty},$
- (ii) $m(\mathcal{F}_{\mathcal{I}}(b)) = \mathcal{F}_{\mathcal{I}}(b).$

Proof. (i) We show that $m(\mathcal{F}_{\mathcal{I}}^0(b)) = \ell^{\infty}$. The observation preceding the theorem yields that $m(\mathcal{F}_{\mathcal{I}}^0(b)) \subset \ell^{\infty}$. Note that if $u \in \ell^{\infty}$ and $z \in \mathcal{F}_{\mathcal{I}}^0(b)$, then

$$\left\{k : |u_k \ z_k| \ge \varepsilon\right\} \subseteq \left\{k : |z_k| \ge \frac{\varepsilon}{||u||_{\infty} + 1}\right\}$$

and the right set belongs to \mathcal{I} , so $\{k : |u_k z_k| \ge \varepsilon\} \in \mathcal{I}$. Also note uz is bounded and hence $\ell^{\infty} \subseteq m(\mathcal{F}_{\mathcal{I}}^0(b))$.

(*ii*) First observe that $\chi_N \in \mathcal{F}_{\mathcal{I}}(b)$ implies that $m(\mathcal{F}_{\mathcal{I}}(b)) \subset \mathcal{F}_{\mathcal{I}}(b)$. Conversely, if $u \in \mathcal{F}_{\mathcal{I}}(b)$, then $ux \in \mathcal{F}_{\mathcal{I}}(b)$ for any $x \in \mathcal{F}_{\mathcal{I}}(b)$. Hence $u \in m(\mathcal{F}_{\mathcal{I}}(b))$, which proves the claim.

Before proving theorem 3, we observe that, in general $c_0 \subset m(\mathcal{F}_{\mathcal{I}}(b), c) \subseteq c$. The first inclusion follows from noting $ux \in c_0 \subseteq \mathcal{F}_{\mathcal{I}}(b)$ for any $u \in c_0$ and $x \in \ell^{\infty}$. The second inclusion follows from $\chi_N \in \mathcal{F}_{\mathcal{I}}(b)$. Note that if $\mathcal{F}_{\mathcal{I}}(b) = c$, then $m(c, \mathcal{F}_{\mathcal{I}}(b)) = c$. The next theorem shows that this the only situation for which $m(\mathcal{F}_{\mathcal{I}}(b), c) = c$.

Theorem 2. Let \mathcal{I} be an admissible ideal in N. Then

(i) If c is a proper subset of $F_{\mathcal{I}}(b)$, then $m(F_{\mathcal{I}}(b), c) = c$,

(ii) $m(c, \mathcal{F}_{\mathcal{I}}(b)) = \mathcal{F}_{\mathcal{I}}(b).$

Y. YARDIMCI

Proof. (i) Given the remarks preceding the theorem, all we need to establish is that if $u \in c$ and $\lim x = \ell \neq 0$, then $u \in m(\mathcal{F}_{\mathcal{I}}(b), c)$. Let $z \in \mathcal{F}_{\mathcal{I}}(b), z \notin c$, and, without loss of generality, suppose z is \mathcal{I} -convergent to 1. Then there is an $\varepsilon > 0$ such that $A := \{k : |z_k - 1| \geq \varepsilon\} \in \mathcal{I}$. Define x by $x_k = \chi_{A^c}(k)$ and observe that x is \mathcal{I} -convergent to 1, hence $x \in \mathcal{F}_{\mathcal{I}}(b)$. Also note xu converges to $\ell \neq 0$ along A^c and to 0 along A, hence $xu \notin c$ and thus $u \notin m(\mathcal{F}_{\mathcal{I}}(b), c)$.

(*ii*) As $\chi_N \notin c$, $m(c, \mathcal{F}_{\mathcal{I}}(b)) \subseteq \mathcal{F}_{\mathcal{I}}(b)$. The reverse inclusion follows from noting that if $u \in \mathcal{F}_{\mathcal{I}}(b)$ and $x \in c \subseteq \mathcal{F}_{\mathcal{I}}(b)$, then ux is \mathcal{I} -convergent. \Box

Theorem 3. Let \mathcal{I} be an admissable ideal in \mathbb{N} . Then $m(c_0, \mathcal{F}_{\mathcal{I}}^0(b)) = \ell^{\infty}$ **Proof.**

$$\ell^{\infty} = m(c_0, c_0) = \{ u : ux \in c_0 \text{ for all } x \in c_0 \}$$
(2)

in general $c_0 \subset \mathcal{F}^0_{\mathcal{I}}(b)$ and hence

$$\ell^{\infty} = m\left(c_{0}, c_{0}\right) \subseteq m\left(c_{0}, \digamma_{\mathcal{I}}^{0}(b)\right) \subset \ell^{\infty}.$$
(3)

It follows

$$m\left(c_0, \mathcal{F}_{\mathcal{I}}^0(b)\right) = \ell^\infty. \tag{4}$$

Further we will give some special cases.

4. Special cases

Case 1. Let \mathcal{I} be a class of all finite subsets of \mathbb{N} . Then \mathcal{I} -convergence reduces to a classical convergence.

Case 2. Let $\mathcal{I} = \{K \subseteq \mathbb{N} : \delta(K) = 0\}$. Then \mathcal{I} -convergence reduces to a statistical convergence.

Case 3. Let $\mathcal{I} = \{K \in \Gamma : \mu(K) = 0\}$. Then \mathcal{I} -convergence reduces to a μ -statistical convergence.

Case 4. Let $\mathcal{I} = \{K \subseteq \mathbb{N} : \delta_A(K) = 0\}$ (see [12], [13]). Then \mathcal{I} -convergence reduces to an A-statisticall convergence.

Case 5. Furthermore, let $\mathcal{I} = \{K \subseteq \mathbb{N} : u(K) = 0\}$ (see[1]). Then Then \mathcal{I} -convergence reduces to an \mathcal{I}_{u} - convergence.

These special cases show that our results are non-trivial generations of well-known results.

References

- [1] V. BALAZ, T. ŠALÁT, Uniform density u and corresponding I_u -convergence, Mathematical communications **11**(2006), 1-7.
- [2] J. CONNOR, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32(1989), 194-198.

- [3] J. CONNOR, The statistical and strong p-Cesáro convergence of sequences, Analysis 8(1988), 47-63.
- [4] J. CONNOR, Two valued measures and summability, Analysis 10(1990), 373-385.
- [5] J. CONNOR, K. DEMIRCI, C. ORHAN, Multipliers and factorizations for bounded statistically convergent sequences, Analysis 22(2002), 321-333.
- [6] K. DEMIRCI, *I-limit superior and limit inferior*, Mathematical Communications 6(2001), 165-172.
- [7] H. FAST, Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
- [8] A. R. FREEDMAN, J. J. SEMBER, Densities and summability, Pacific J. Math. 95(1981), 293-305.
- [9] J. A. FRIDY, On statistical convergence, Analysis 5(1985), 301-313.
- [10] J. A. FRIDY, C. ORHAN, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(1997), 3625-3631.
- [11] E. KOLK, Matrix summability of statistically convergent sequences, Analysis 13(1993), 77-83.
- [12] P. KOSTYRKO, M. MAČAJ, T. ŠALÁT, *I-convergence*, Real Anal. Exchange 26(2000), 669-685.
- [13] P. KOSTYRKO, M. MAČAJ, T. ŠALÁT, M. SLEZIAK, *I-convergence and I-limit points*, Mathematica Slovaca 55(2005), 443-464.
- [14] C. KURATOWSKI, Topologie I, PWN, Warszava, 1958.
- [15] H. I. MILLER, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347(1995), 1811-1819.
- [16] J. NAGATA, Modern General Topology, North-Holland, Amsterdam-London, 1974.
- [17] I. NIVEN, H. S. ZUCKERMAN, An Introduction to the Theory of Numbers, 4th Ed., John Wiley and Sons, New York, 1980.
- [18] T. SALÁT, On statistically convergent sequences of real numbers, Math. Slovaca 30(1980), 139-150.