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Abstract. Sensitivity analysis in data envelopment analysis (DEA)
is studied for the case of the proportionate change of a subset of outputs
or/and of a subset of inputs of an efficient decision making unit (DMU)
according to the Charnes–Cooper–Rhodes (CCR) ratio model. Sufficient
conditions for an efficient DMU to preserve its efficiency under the pro-
portionate change of a subset of inputs or/and of outputs are obtained.
An illustrative numerical example is provided.
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1. Introduction

Sensitivity analysis in Data Envelopment Analysis (DEA) for the Charnes–Cooper–
Rhodes (CCR) ratio model (see Charnes and Cooper [1], Cooper et al. [5]) for the
cases (a) with the proportionate change (increase) of all inputs and (b) with the
proportionate change (decrease) of all outputs were studied by Charnes and Neralić
[3]. In (a) sufficient conditions for an efficient DMU to preserve its efficiency after
the proportionate change (increase) of all inputs were obtained and in (b) sufficient
conditions for an efficient DMU after the proportionate change (decrease) of all
outputs were given. The case of the simultaneous proportionate change (increase)
of all inputs and proportionate change (decrease) of all outputs of an efficient DMU
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preserving its efficiency for the CCR ratio model was studied by Charnes and Ner-
alić [4] and sufficient conditions for efficiency preservation of efficient DMU were
established. Similar results for the additive model were obtained by Neralić [7].
Sufficient conditions for an efficient DMU to preserve efficiency for the case of the
proportionate change (increase) of all inputs or/and the proportionate change (de-
crease) of all outputs for the CCR ratio model and for the Additive model with
different coefficients of proportionality for all inputs or/and for all outputs were
obtained by Neralić and Sexton [8].
The aim of this paper is firstly to study the case of the simultaneous propor-

tionate change (decrease) of a subset of outputs or/and the proportionate change
(increase) of a subset of inputs of an efficient DMU preserving its efficiency for the
CCR ratio model. Secondly, the case of the proportionate change (decrease) of a
subset of outputs or/and the proportionate change (increase) of a subset of inputs
for the CCR ratio model with different coefficients of proportionality for outputs
and/or for inputs will be studied too. Sufficient conditions for an efficient DMU
according to the CCR ratio model to preserve efficiency after the simultaneous pro-
portionate change (decrease) of a subset of outputs or/and of the proportionate
change (increase) of a subset of inputs are given for the first case. (Similar results
can be obtained for the second case.) In that way a measure of stability of efficiency
for an efficient DMU is obtained.
The paper is organized as follows. Results in sensitivity analysis for the pro-

portionate change (increase) of a subset of inputs or/and the proportionate change
(decrease) of outputs for two considered cases are contained in Section 2. Sec-
tion 3 gives an illustrative example. The last Section contains some conclusions
and suggestions for further research.

2. Sensitivity analysis of a subset of outputs or/and of a
subset of inputs

2.1. Let us suppose that there are n Decision Making Units (DMUs) with m inputs
and s outputs. Let xij be the observed amount of ith type of input of the jth DMU
( xij > 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n) and let yrj be the observed amount of
output of the rth type for the jth DMU (yrj > 0, r = 1, 2, . . . , s, j = 1, 2, . . . , n). Let
Yj , Xj be the observed vectors of outputs and inputs of the DMUj , respectively,
j = 1, 2, . . . , n. Let e be the column vector of ones and let T as a superscript denote
the transpose. In order to see if the DMUj0 = DMU0 is efficient according to the
CCR ratio model the following linear programming problem should be solved:

min 0λ1 + · · ·+ 0λ0 + · · ·+ 0λn − εeT s+ − εeT s− + θ
subject to

Y1λ1 + · · ·+ Y0λ0 + · · ·+ Ynλn − s+ = Y0

−X1λ1 − · · · −X0λ0 − · · · −Xnλn − s− + X0θ = 0
λ1, . . . , λn, s

+, s− ≥ 0,
(1)

with Y0 = Yj0 , X0 = Xj0 , λ0 = λj0 and θ unconstrained. The symbol ε represents
the infinitesimal we use to generate the non-Archimedean ordered extension field.
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In this extension field ε is less than every positive number in our base field, but
greater than zero. DMU0 is DEA efficient if and only if for the optimal solution
(λ∗, s+∗, s−∗, θ∗) of the linear programming problem (1) both of the following are
satisfied (for details see Charnes and Cooper [1]):

θ∗ = 1
s+∗ = s−∗ = 0, in all alternative optima. (2)

Linear programming problem (1), with discussion about its use, can be found in
Cooper et al [5], pp 73-75. As it is pointed out in that book on p. 73, representing
the non-Archimedean infinitesimal ε > 0 by a small real number could get erroneous
results. Because of that, a two-phase procedure for solving (1) is suggested (see
Cooper et al [5], p. 43-45, 50-51). In Phase I we solve the LP problem

min θ (3)

subject to the constraints in (1). Using the optimal value θ∗ = min θ of the LP
problem (3) from Phase I, in Phase II we solve the LP problem

min(−eT s+ − eT s−) (4)

subject to the constraints in (1) with the substitution θ = θ∗. DMU0 is called CCR
efficient if an optimal value of (3) and (4) satisfies θ∗ = 1 and s+∗ = 0, s−∗ = 0
respectively (see Cooper et al [5], p. 45).

2.2. We are interested in the proportionate change of a subset of outputs or/and
of a subset of inputs of an efficient DMU0 preserving its efficiency. An increase of
any output cannot worsen an already achieved efficiency rating. Upward variations
of outputs are not possible in the efficiency rating for an efficient DMU0. Hence,
without loss of generality, we can restrict attention to the proportionate decrease
of the subset of the first s̄ (s̄ < s) outputs which can be written as

ŷr0 = α̂yr0, 0 < α̂ ≤ 1, r = 1, 2, . . . , s̄, (5)

with the last s− s̄ outputs fixed

ŷr0 = yr0, r = s̄+ 1, s̄+ 2, . . . , s. (6)

Similarly, a decrease of any input cannot worsen an already achieved efficiency
rating. Downward variations of inputs are not possible in the efficiency rating for
an efficient DMU0. Hence we can restrict attention to upward variations of inputs
of an efficient DMU0. Without loss of generality, let us consider the proportionate
increase of the subset of the first m (m < m) inputs, with the last m −m inputs
fixed. It can be written as

x̂i0 = β̂xi0, β̂ ≥ 1, i = 1, 2, . . . ,m, (7)

and
x̂i0 = xi0, i = m+ 1,m+ 2, . . . ,m. (8)
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Let us introduce the following substitution

α̂ = 1− α, 0 ≤ α < 1. (9)

Using (9) in (5) we have

ŷr0 = yr0 − αr > 0, r = 1, 2, . . . , s̄, (10)

with
αr = αyr0, αr ≥ 0, r = 1, 2, . . . , s̄. (11)

Because of (6) we have

α̂ = 1, α = 0, αr = 0, r = s̄+ 1, s̄+ 2, . . . , s. (12)

Let us also introduce the substitution

β̂ = 1 + β, β ≥ 0. (13)

Using (13) in (7) we have

x̂i0 = xi0 + βi, i = 1, 2, . . . ,m, (14)

with
βi = βxi0, βi ≥ 0, i = 1, 2, . . . ,m. (15)

Because of (8) we have

β̂ = 1, β = 0, βi = 0, i = m+ 1,m+ 2, . . . ,m. (16)

It means that the proportionate change of a subset of outputs (5), with the
other outputs fixed (6), can be considered as the additive change (10), with αr in
(11) and (12). Similarly, the proportionate change of a subset of inputs (7), with
the other inputs fixed (8), can be considered as the additive change (14) with βi

in (15) and (16). Because of that we will consider additive changes (10) of outputs
together with (11) - (12) or/and additive changes (14) of inputs together with (15)
- (16).

2.3. We will also consider the proportionate decrease of a subset of the first
s̄ (s̄ < s) outputs with different coefficients of proportionality which can be written
as

ŷr0 = α̂ryr0, 0 < α̂r ≤ 1, r = 1, 2, . . . , s̄, (17)

with the last s− s̄ outputs fixed
ŷr0 = yr0, r = s̄+ 1, s̄+ 2, . . . , s. (18)

Similarly, we will consider the proportionate increase of the subset of the first
m (m < m) inputs with different coefficients of proportionality and the last m−m
inputs fixed. It can be written as

x̂i0 = β̂ixi0, β̂i ≥ 1, i = 1, 2, . . . ,m, (19)
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and
x̂i0 = xi0, i = m+ 1,m+ 2, . . . ,m. (20)

Let us introduce the following notation

α̂r = 1− ᾱr, 0 ≤ ᾱr < 1. (21)

Using (21) in (17) we have

ŷr0 = yr0 − αr > 0, r = 1, 2, . . . , s̄, (22)

with
αr = ᾱryr0, αr ≥ 0, r = 1, 2, . . . , s̄. (23)

Because of (18) we have

α̂r = 1, ᾱr = 0, αr = 0, r = s̄+ 1, s̄+ 2, . . . , s. (24)

Similarly, let use introduce notation

β̂i = 1 + β̄i, β̄i ≥ 0. (25)

Using (25) in (19) we have

x̂i0 = xi0 + βi, i = 1, 2, . . . ,m, (26)

with
βi = β̄ixi0, βi ≥ 0, i = 1, 2, . . . ,m. (27)

Because of (20) we have

β̂i = 1, β̄i = 0, βi = 0, i = m+ 1,m+ 2, . . . ,m. (28)

So, the proportionate change of a subset of outputs with different coefficients
of proportionality (17), with the other outputs fixed (18), can be considered as the
additive change (22), with αr in (23) and (24). Similarly, the proportionate change
of a subset of inputs with different coefficients of proportionality (19), with the
other inputs fixed (20), can be considered as the additive change (26) with βi in
(27) and (28). Because of that we will consider additive changes (22) of outputs
together with (23) - (24) or/and additive changes (26) of inputs together with (27)
- (28).

2.4. For an efficient DMU0 because of (2) vectors [ Y0 −X0 ]
T and [ 0 X0 ]

T

must occur in some optimal basis, which means that there is a basic optimal solution
to (1) with λ∗0 = 1 and θ

∗ = 1. Similarly to Charnes and Neralić [2], simultaneous
changes (10) - (12), and changes (14) - (16), are then accompanied by alterations
in the inverse B−1 of the optimal basis matrix

B =
[

YB −I+B 0 0
−XB 0 −I−B X0

]
, (29)
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which corresponds to the optimal solution (λ∗, s+∗, s−∗, θ∗) of (1) with λ∗0 = 1 and
θ∗ = 1. Let

B−1 =
[
b−1
ij

]
, i, j = 1, 2, . . . , s+m,

be the inverse of the optimal basis matrix B in (29). Let Pj , j = 1, 2, . . . , n+ s+
m+ 1 be the columns of the matrix and let P0 be the right-hand side of the linear
programming problem (1). We will use the following notation:

Γj = B−1Pj , j = 0, 1, . . . , n+ s+m+ 1,
ωT = cTBB

−1,

zj = cTBB
−1Pj

= ωTPj , j = 0, 1, . . . , n+ s+m+ 1.

The simultaneous change of outputs (10) together with (11) - (12) and of inputs
(14) together with (15) - (16) leads to the following change of the optimal basis
matrix B

B̂ = B +�B (30)

with

�B =




k
↓

s+m
↓

0 · · · 0 −α1 0 · · · 0
...

...
...

...
...

0 · · · 0 −αs̄ 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 −β1 0 · · · β1
...

...
...

...
...

0 · · · 0 −βm 0 · · · βm

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0




(31)

and the following change of the right-hand side vector

P̂0 = P0 + [−α1 − α2 . . .− αs̄ 0 . . . 0 ]
T
, (32)

where indices k and s + m correspond to the optimal basic variables λ∗0 = 1 and
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θ∗ = 1, respectively. Using matrices

U = U(s+m)×2 =




α1 α1

...
...

αs̄ αs̄

0 0
...

...
0 0
β1 0
...

...
βm 0
0 0
...

...
0 0




(33)

and

V T = V T
2×(s+m) =

( k
↓

s+m
↓

0 · · · 0 −1 0 · · · 0 1
0 · · · 0 0 0 · · · 0 −1

)
(34)

we can write the perturbation matrix (31) as

�B = UV T . (35)

As in Charnes and Neralić [2], because of (30) and (35) we can use the Sherman-
Morrison-Woodbury formula (see, for example, Golub and Van Loan [6], p. 3) to
get the following perturbed basis matrix inverse

(B̂)−1 = (B + UV T )−1

= B−1 −B−1U(I + V TB−1U)−1V TB−1. (36)

Using the abbreviation

D = U(I + V TB−1U)−1V T (37)

we can write (36) as

(B̂)−1 = B−1 −B−1DB−1

= B−1(I −DB−1)
= (I −B−1D)B−1. (38)

Also, using (33), (34) we can get V TB−1U and

M = I + V TB−1U (39)
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with

detM = 1−
s̄∑

t=1

b−1
k,tαt +

m∑
t=1

(−b−1
k,s+t + b

−1
s+m,s+t)βt +

+ (
s̄∑

t=1

b−1
s+m,tαt)(

m∑
t=1

b−1
k,s+tβt)− (

s̄∑
t=1

b−1
k,tαt)(

m∑
t=1

b−1
s+m,s+tβt). (40)

It is easy to get inverse M−1 of the matrix M and matrix D = UM−1V T in the
form

D =




0 . . . 0 d1k 0 . . . 0 d1,s+m

...
...
...

...
...
...

0 . . . 0 ds̄k 0 . . . 0 ds̄,s+m

0 . . . 0 0 0 . . . 0 0
...

...
...

...
...
...

0 . . . 0 0 0 . . . 0 0
0 . . . 0 ds+1,k 0 . . . 0 ds+1,s+m

...
...
...

...
...
...

0 . . . 0 ds+m,k 0 . . . 0 ds+m,s+m

0 . . . 0 0 0 . . . 0 0
...

...
...

...
...
...

0 . . . 0 0 0 . . . 0 0




, (41)

with

dt,k = − 1
detM

(1 +
m∑

t=1

b−1
s+m,s+tβt)αt, t = 1, 2, . . . , s̄, (42)

ds+t,k =
1

detM
(−1 +

s̄∑
t=1

b−1
s+m,tαt)βt, t = 1, 2, . . . ,m, (43)

dt,s+m =
1

detM
(

m∑
t=1

b−1
k,s+tβt)αt, t = 1, 2, . . . , s̄, (44)

ds+t,s+m =
1

detM
(1−

s̄∑
t=1

b−1
k,tαt)βt, t = 1, 2, . . . ,m. (45)

Now we can prove the following
Theorem 1. Let us suppose that DMU0 is efficient. Conditions

ωTDΓj ≥ zj − cj, j an index of nonbasic variables, (46)

are sufficient for DMU0 to continue to be efficient after the simultaneous propor-
tionate changes of a subset of outputs (5) - (6) and of a subset of inputs (7) -
(8).
The proof is omitted because it is similar to the proof of Theorem 1 in Charnes

and Neralić [2].



Proportionate change of a subset of data in DEA 195

Remark 1. In conditions (46) there is detM in the denominator of elements
of matrix D. In order to get the system of inequalities in α1, . . . , αs̄, β1, . . . , βm we
have to multiply (46) by detM . So, if we suppose that detM > 0, multiplying (46)
by detM > 0 will keep the sign ≥ in (46). If we suppose that detM < 0, because
of multiplying (46) by detM < 0 the sign in (46) has to be changed to ≤. Besides,
constraints (10) - (12) and (14) - (16), should be added to conditions (46). The
solution set of the corresponding system of inequalities Sj0 will be a set of points
(α1, . . . , αs̄, 0, . . . , 0, β1, . . . , βm, 0, . . . , 0) in R

s×m. Because of (11) and (15) we can
get the corresponding system of inequalities in α, β and the solution set S̄j0. Using
substitutions (9) and (13) we can also get the corresponding system of inequalities
in α̂, β̂ and the solution set S∗

j0. For all points (α̂, β̂) in the solution set S
∗
j0 after

the changes of outputs according to (5) - (6) and the changes of inputs according to
(7) - (8) efficiency of DMU0 will be preserved. The solution set S∗

j0 gives an area
A∗

j0 in the plane with the coordinate system α̂Ôβ̂.
Remark 2. Using points (α̂, β̂) from the set S∗

j0 in (5), (7) with (6), (8) we can
get the corresponding region of efficiency Rj0 around DMUj0. The size of the region
of efficiency around efficient point, within which perturbations (5) - (6) and (7) -
(8) keep it efficient, is an important property of the (empirical) efficient production
function at this point. It is a measure of stability of efficiency at that point. If for
efficient DMU1 and DMU2 holds R1 > R2 it means that DMU1 is more stable than
DMU2 in preserving efficiency at the simultaneous proportionate changes (5) - (6)
and (7) - (8).
For the case with detM > 0 (see also Theorem 2 in Charnes and Neralić [4]) it

is easy to get from Theorem 1 the following
Corollary 1. Let us suppose that DMU0 is efficient and let

det M = 1− a1(1− α̂)+ (−b1+ b2)(β̂− 1)+ (a2b1 − a1b2)(1− α̂)(β̂− 1) > 0, (47)

with

a1 =
s̄∑

t=1

b−1
kt yt0, a2 =

s̄∑
t=1

b−1
s+m,tyt0, b1 =

m∑
t=1

b−1
k,s+txt0, b2 =

m∑
t=1

b−1
s+m,s+txt0.

(48)
Let

a3 =
s̄∑

t=1

ωtyt0, b3 =
m∑

t=1

ωs+txt0, (49)

dj = −a3Γkj + a1c̄j, ej = −b3(Γkj − Γs+m,j)− (−b1 + b2)c̄j , (50)

fj = (a2b3 − a3b2)Γkj + (a3b1 − a1b3)Γs+m,j − (a2b1 − a1b2)c̄j , (51)

j = 1, 2, . . . , n+ s+m+ 1,

with c̄j = zj − cj. Then the conditions

dj(1− α̂) + ej(β̂ − 1) + fj(1− α̂)(β̂ − 1) ≥ c̄j , (52)

j an index of nonbasic variables,
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are sufficient for DMU0 to preserve efficiency after the simultaneous proportionate
changes of a subset of outputs (5) - (6) and of a subset of inputs (7) - (8).
For fixed inputs, we can consider the proportionate change (decrease) of a subset

of outputs (5) with the other outputs fixed (6). In that case it is easy to get the
matrix D1 from the matrix D with elements in (42) - (45) taking βt = 0, t =
1, 2, . . . ,m. With the matrix D1 instead of matrix D from Theorem 1 we have the
following

Corollary 2. Conditions

ωTD1Γj ≥ zj − cj , j an index of nonbasic variables, (53)

are sufficient for DMU0 to be efficient after the proportionate changes of a subset
of outputs (5) with the other outputs and all inputs fixed.
For fixed outputs, we can consider the proportionate change (increase) of a

subset of inputs (7) with the other inputs fixed (8). In that case it is easy to get
the matrix D2 from the matrix D with elements in (42) - (45) taking αt = 0, t =
1, 2, . . . , s. With the matrix D2 instead of matrix D from Theorem 1 we have the
following

Corollary 3. Conditions

ωTD2Γj ≥ zj − cj , j an index of nonbasic variables, (54)

are sufficient for DMU0 to be efficient after the proportionate change of a subset of
inputs (7) with other inputs and all outputs fixed.

Remark 3. In the case of the proportionate change (decrease) of a subset
of outputs with different coefficients of proportionality (17) - (18) or/and the pro-
portionate change (increase) of inputs with different coefficients of proportionality
(19) - (20) of an efficient DMU0 similar results on its efficiency preservation as in
Subsection 2.4. (Theorem 1, Corollaries 1, 2 and 3) can be obtained.

3. Illustrative example

3.1. We will consider the following example taken from Rhodes [9] (see also Charnes
and Neralić [3]) with five DMUs, one output, two inputs and data in Table 1.

DMUj 1 2 3 4 5
Output/Input

y1j 2 4 2 3 2
x1j 4 12 8 6 2
x2j 6 8 2 6 8

Table 1. Data for the example

We are interested in the efficency of DMU4, with X0 = [6 6]T and Y0 = [3]. In
order to see if DMU4 is efficient, the following linear programming problem should
be solved:
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min 0λ1 + 0λ2 + 0λ3 + 0λ4 + 0λ5 − εs+1 − εs−1 − εs−2 + θ
subject to

2λ1 + 4λ2 + 2λ3 + 3λ4 + 2λ5 −s+1 = 3
−4λ1 − 12λ2 − 8λ3 − 6λ4 − 2λ5 −s−1 +6θ = 0
−6λ1 − 8λ2 − 2λ3 − 6λ4 − 8λ5 −s−2 +6θ = 0

(55)

λ1, λ2, λ3, λ4, λ5, s
+
1 , s

−
1 , s

−
2 ≥ 0.

According to (3), in Phase I the following LP problem should be solved:

min θ (56)

subject to the constraints of (55). The optimal solution of the LP problem (56) is
λ∗4 = 1, θ

∗ = 1, λ∗1 = λ
∗
2 = λ

∗
3 = λ

∗
5 = 0, s

+∗
1 = s−∗

1 = s−∗
2 = 0. Using θ∗ = 1 from

the optimal solution of the LP problem (56) in Phase II we solve the LP problem

min(−s+1 − s−1 − s−2 ) (57)

subject to the constraints of (55) with the substitution θ = θ∗ = 1. Optimal solution
of (57) is λ∗4 = 1, λ

∗
1 = λ

∗
2 = λ

∗
3 = λ

∗
5 = 0, s

+∗
1 = s−∗

1 = s−∗
2 = 0, which means that

DMU4 is efficient.
Using these results it is easy to reconstruct the optimum tableau for the problem

(55) which is given in Table 2 below. Namely, it is slightly changed optimum tableau
for the LP (56), where z′6 − c′6 = −(1/3), z′7 − c′7 = −(1/9) and z′8 − c′8 = −(1/18)
are changed to z6−c6 = −(1/3)+ε, z7−c7 = −(1/9)+ε and z8−c8 = −(1/18)+ε.
The optimal solution of problem (55) is λ∗0 = λ∗4 = 1, θ∗ = 1, λ∗1 = λ∗2 = λ∗3 =

λ∗5 = 0, s
+∗
1 = s−∗

1 = s−∗
2 = 0 with optimal basic variables λ∗3 = 0, λ

∗
4 = 1, θ

∗ = 1.
The optimal basis matrix is

B =


 2 3 0

−8 −6 6
−2 −6 6


 ,

with the inverse

B−1 =


 0 − 1

6
1
6

1
3

1
9 − 1

9
1
3

1
18

1
9


 , (58)

and the corresponding optimum tableau in Table 2. (Because of degeneracy, some
other optimal solutions can be obtained, as, for example, the one with basic variables
λ∗4 = 1, λ

∗
5 = 0, θ

∗ = 1.)

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ0

λ3 − 1
3

2
3 1 0 −1 0 1

6 − 1
6 0 0

λ4
8
9

8
9 0 1 4

3 − 1
3 − 1

9
1
9 0 1

θ − 2
9 − 2

9 0 0 − 1
3 − 1

3 − 1
18 − 1

9 1 1
zj − cj − 2

9 − 2
9 0 0 − 1

3 − 1
3 + ε − 1

18 + ε − 1
9 + ε 0 1

Table 2. Optimum tableau
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3.2. Let us consider the simultaneous proportionate change (decrease) of output

ŷ10 = 3α̂, 0 < α̂ ≤ 1, (59)

and proportionate change (increase) of input 1

x̂10 = 6β̂, β̂ ≥ 1 (60)

with input 2 fixed
x̂20 = 6 (61)

of DMU4 preserving its efficiency. So, we consider proportionate change of output
and of a subset of inputs of DMU4.
Using substitutions (9), with (10) - (12), (13) with (14) - (16) it is easy to get

ŷ10 = 3− α1 > 0, α1 = 3α, 0 ≤ α1 < 3. (62)

and
x̂10 = 6 + β1, β1 = 6β, β1 ≥ 0, (63)

x̂20 = 6. (64)

Because of s = 1, s̄ = 1, m = 2, m = 1, k = 2, s+m = 3, the optimal basis
perturbation matrix is

�B =

 0 −α1 0
0 −β1 β1

0 0 0


 , (65)

and the change of the right-hand side vector is

P̂0 = P0 + [−α1 0 0]
T
. (66)

Using matrices

U =


α1 α1

β1 0
0 0


 , (67)

and

V T =
[
0 −1 1
0 0 −1

]
, (68)

and (65) we can write the perturbed optimal basis matrix as

B̂ = B +�B = B + UV T . (69)

It is easy to get

M = I + V TB−1U =
[

1− (1/18)β1 0
(−1/18)(6α1 + β1) 1− (1/3)α1

]
,

detM = 1− (1/3)α1 − (1/18)β1 + (1/54)α1β1, (70)

M−1 =
1

detM

[
1− (1/3)α1 0

(1/18)(6α1 + β1) 1 + (1/18)(−β1)

]
,
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D = UM−1V T

=
1

detM


 0 −[1 + (1/18)β1]α1 [(1/9)β1]α1

0 [−1 + (1/3)α1]β1 [1− (1/3)α1]β1

0 0 0


 , (71)

ωT = cTBB
−1 = [0 0 1]B−1 = [1/3 1/18 1/9] , (72)

ωTD =
1

detM
[0 (−1/18)(6α1 + β1) (1/54)(α1β1 + 3β1)] . (73)

Let us suppose that

detM = 1− (1/3)α1 − (1/18)β1 + (1/54)α1β1 > 0. (74)

Using (73) with (74) and elements of Table 2 in (46) it is easy to get sufficient
conditions for DMU4 to preserve its efficiency as the system of inequalities in α1, β1

in the form
5α1 + β1 ≤ 3, 0 ≤ α1 < 3, β1 ≥ 0. (75)

The other constraints, including (74), are redundant. Using (62), (63) in (75) we
can get the corresponding system of inequalities in α, β

5α+ 2β ≤ 1, 0 ≤ α < 1, β ≥ 0. (76)

Using substitutions (9), (13) it is easy to get from (76) the corresponding system
of inequalities in α̂, β̂

5α̂− 2β̂ ≥ 2, 0 < α̂ ≤ 1, β̂ ≥ 1. (77)

Let us point out that in order to get the system of inequalities (77) we could use
conditions (52) from Corollary 1.
It is easy to see that the solution set S∗

4 of the system of inequalities (77) is
the triangle ÂB̂Ĉ in the plane with the coordinate system α̂Ôβ̂, with Â(1, 1.5),
B̂(0.8, 1) and Ĉ(1, 1). For every point (α̂, β̂) which belongs to the triangle ÂB̂Ĉ the
efficiency of DMU4 will be preserved after the simultaneous proportionate change
(59) of output with the coefficient α̂ and proportionate change (60) of input 1
with the coefficient β̂ and input 2 fixed (61). The point Ĉ(1, 1) means that there
are no changes of output and of input 1, the point Â(1, 1.5) means the maximal
proportionate increase of input 1 of DMU4 for 50% preserving its efficiency and the
point B̂(0.8, 1) means the maximal proportionate decrease of output of DMU4 for
20% preserving efficiency of DMU4. Let us point out that these maximal changes
cannot be done simultaneously.
Using the solution set S∗

4 we can get the corresponding region of efficiency R4

around DMU4 as the triangle ABC in the coordinate system Ox1x2y1 (x1 = input
1, x2 = input 2, y1 = output 1) with A(9,6,3), B(6,6, 2.4), C(6,6,3). (Because input
2 is fixed, we can project triangle ABC into the plane x1Oy1 and get the triangle
A′B′C′, with A′(9, 3), B′(6, 2.4) and C′(6, 3).) The size of the region of efficiency R4

is 0.9 (which is the area of the triangle ABC or triangle ÂB̂Ĉ) and it is a measure
of stability of efficiency of DMU4.
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3.3. Let us consider the case of the proportionate change of a subset of outputs
or/and of a subset of inputs with different coefficients of proportionality in the
example from Subsection 3.1. For efficient DMU0 = DMU4 we can consider the
proportionate change (decrease) of output

ŷ10 = 3α̂1, 0 < α̂1 ≤ 1, (78)

and the proportionate change (increase) of input 1

x̂10 = 6β̂1, β̂1 ≥ 1 (79)

with input 2 fixed

x̂20 = 6 (80)

preserving its efficiency. So, we consider the proportionate change of output and
of a subset of inputs of DMU4 with different coefficients of proportionality. But,
this is just the case considered in Subsection 3.2. with α̂ = α̂1 and β̂ = β̂1. It
means that the results in that case are the same as results obtained in the case in
Subsection 3.2. with α̂ = α̂1 and β̂ = β̂1.

4. Summary and conclusions

The proportionate change of a subset of inputs and/or proportionate change of
a subset of outputs of an efficient DMU0 preserving efficiency for the case of the
CCR ratio model in DEA is studied in the paper. Sufficient conditions for an
efficient DMU0 to preserve efficiency are established for the case of the proportionate
decrease of a subset of outputs with the coefficient of proportionality α̂ or/and the
proportionate increase of a subset of inputs with the coefficient of proportionality
β̂. Similar results could be obtained for the case of the proportionate decrease of a
subset of outputs with different coefficients of proportionality α̂r, r = 1, 2, . . . , s < s
or/and the proportionate increase of a subset of inputs with different coefficients
of proportionality β̂i, i = 1, 2, . . . ,m < m. In the case with α̂ and β̂ sufficiency
conditions give for each efficient DMU0 region of efficiency and the area the size of
which is a measure of stability of efficiency at the proportionate change of a subset
of inputs or/and of a subset of outputs. A numerical example illustrating the results
is provided.
Sensitivity and stability analysis for the case of the proportionate change of a

subset of inputs or/and of a subset of outputs with two parameters (one for outputs
and the other for inputs) preserving efficiency of an efficient DMU0 according to
the BCC or Additive model is an interesting open question. The same holds for the
case of proportionate changes with different coefficients of proportionality. Also,
the question of efficiency preservation of all efficient DMUs according to the CCR
ratio model under the proportionate (or additive) changes of all data is open. An
application of the results in the paper using data for a real world problem seems to
be a challenge too.
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