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WHICH CONDITIONS FOR AN APPROXIMATE

RESOLUTION ARE ESSENTIAL?

B. Cervar and N. Uglesie, Split, Croatia

Abstract. Among aU conditions which characterize an approximate polyhedral resolution of a
topological space, only two ((AS) and (B1)) are essential.

1. Introduction

The notion of a resolution of a topological space was introduced by S. Mardesie
[2]' [3]. The idea was to improve some lacks of the inverse limit theory in the
noncompact case. A few years later S. Mardesie and L. R. Rubin [4] introduced
the notion of an approximate (inverse) system. The intention was to relax the
commutativity condition, which has been too rigid for some purposes even in the
compact nonmetric case. Finally, S. Mardesie and T. Watanabe [6] put the both ideas
together, introducing the notion of an approximate resolution of a space.

In any case, the basic idea (due to P. S. Aleksandrov, 1920's) did not change:
to express a "bad" object (an arbitrary space) in terms of "nice" ones (polyhedra,
ANRs, ...) on purpose of much easier studying some of its properties.

By a space we mean a topological space, and by a mapping, a continuous func
tion. A covering tft of a space X is an indexed family of its subsets whose union
equals X. If A ~ X and tft is a covering of X, then st(A, tft) denotes the union of
all U E tft meeting A. If tft and 1/ are coverings of X, then st(tft, 1/) denotes the
covering {st( U, 1/) I U E tft}; sttft and st"+ 1tft are the abbreviations for st( tft , tft)
and st(st"tft, tft), Il E N, respectively. tft :::;1/ means that tft refines 1/. Cov(X)
denotes the collection of all normal (or numerable) coverings of a space X. Every nor
mal covering tft of a space X admits a normal covering 11of X such that st1/ :::;tft. If
f, g : Y ~ X are tft -near mappings, i.e., for any y E Y there is aU E tft withf (y),

g(y) E U, we write (j,g) :::; tft.
By a polyhedron we mean a triangulable space (CW-topology; [7]). If (K, h) is a

triangulation of a polyhedron P, we formally identify P with the geometric realization
IKI. A subspace Q ~ P is a subpolyhedron of P, if there exist a triangulation K of P

and a subcomplex L ~ K such that Q = ILl.
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Recall now the basic definitions (comp. [6], [1]).
An approximate (inverse) system X = (Xa,Paa"A) consists of the following

data: A preordered set A = (A,~) which is directed and unbounded; for each
a E A, a space Xa; for each pair a ~ d, a mapping Paa' : Xa' -+ Xa (Paa = Ix.).
Furthermore, one condition is required:

(A2) (Va E A) (Vo(£ E Cov(Xa)) (:ld ;? a) (Vaz ;? al ;? a') (PaaIPala2,Paa2) ~

0(£.

If each Xa is a polyhedron, a E A; we speak of an approximate polyhedral system. An
approximate system X admits meshes iffor each a E A there exists a O(£aE Cov(Xa)
satisfying two additional conditions:

(AI) (Va ~ a' ~ a") (Paa'Pa'a",Paa") ~ O(£a;

(A3) (Va EA) (Vo(£E Cov(Xa)) (:la';? a) (Va";? a') O(£a"~p~),O(£.

An approximate system X which admits meshes is unifornl provided it satisfies the
following condition:

(AU) (Va ~ a') O(£a'~ P~)O(£a.

An approximate map p of a space X into an approximate system X, P = (Pa) :
X -+ X, is a collection of mappings Pa : X -+ Xa, a E A, such that the following
condition holds:

(AS) (Va E A) (Vo(£E Cov(Xa) (:la' ;? a) (Va" ;? d) (Paa"Pa",Pa) ~ 0(£.

An approximate resolution of a space X is an approximate map P = (Pa) : X -+ X
which satisfies two following conditions:

(BI) (Vo(£E Cov(X)) (:la E A) (3-r E Cov(Xa)) p;;l-r ~ 0(£;
(B2) (Va E A) (Vo(£E Cov(Xa)) (:la' ;? a) Paa'(Xa,) ~ st(pa(X), 0(£).

If each Xa is a normal space, (B2) is equivalent to

(B3) (Va E A) (V open U ~ Xa with CI(pa(X)) ~ U) (:ld ;? a) Paa'(Xa,) ~ U.

Note that the notion of an approximate resolution (which admits uniform
meshes) includes conditions (A2), (AS) (BI) and (B2) (and (AI), (A3), (AU)).
Although they are mutually independent, only two of them, (AS) and (BI), are
essential (at least in the polyhedral case). More precisely, we are proving that,
taking appropriate subpolyhedra and the restriction mappings, all the conditions can
be obtained by means of (AS) and (B 1).

2. Construction of the resolution

Let us state our main result:

THEOREM. Let A be an unbounded and directed preordered set, and let X =
(Xa,Paa', A) be a collection consisting of polyhedra Xa. a E A, and of mappings
Paa' : Xa' -+ Xa. a ~ a' (Paa = Ix.). Let P = (Pa) : X -+ X be a collection of
mappings Pa : X -+ Xa. a E A, satisfying conditions
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(AS) (\;;faE A) (\;;fo//E Cov(Xa)) (3a' ~ a) (\;;fa"~ a') (PooIlPall,Pa) ~ all;
(Bl) (\;;fo//E Cov(X)) (3a E A) (31/ E Cov(Xa)) p;;'1/ ~ all.

Then there exists an approximate polyhedral resolution q = (qb) : X -t Y
(Yb, qw, B) such that

(i) B = (B, ~) is partially ordered and cofinite;
(ii) (\;;fbE B) (3a E A) Yb ~ Xa is a subpolyhedron;

(iii) (\;;fb~ b') (3a ~ d) qw: Yb, -t Yb is the restriction mapping ofPaa';
(iv) Y admits uniform meshes;
(v) (\;;fbE B) (3a E A) qb = Pa : X -t Yb ~ Xa.

In addition, if X is a (commutative) system and (AS) of p is strengthened up to
commutativity, then (AS) of q turns into commutativity.

In order to prove the theorem, i.e., to construct a desired resolution, we need
two lemmata. The first one shows how to enlarge an indexing set to obtain a more
convenient one.

LEMMA 1. Let X = (Xa, Paa',A) be a collection of spaces Xa, a E A, and
mappings Paa' : Xa' -t Xa, a ~ a', over a preordered, directed and unbounded
set A = (A, ~). Then there exists a collection of spaces and mappings X'
(XLp~;." A) over A such that

(i) A = (A, ~) is partially ordered, directed, unbounded and cofinite;
(ii) (\;;fAE A) card(A;.) = card(A) ~ card(A),

where A;. = {A' E A I A' ~ A};
(iii) (\;;fAE A) card(A;.) ~ cw(X~),

where cw(X~) is the covering weight of X~;
(iv) (\;;fA E A) (3a E A) X~ = Xa;

(v) (\;;fA~ A') (3a ~ d) P~;.' = Paa',

Proof For each a E A choose a cofinal subfamily Ca ~ Cov(Xa), and let
.c = {(a, all) I a E A, all E Ca} = UaEA( {a} x Ca) (see [9], Sec. 2.). Apply now
the well known "Mardesie trick" on .c, i.e., let A = F(.c) be the set of all finite
subsets A ~ .c ordered by inclusion. Clearly, A satisfies conditions (i), (ii) and (iii)
(see [8], [5]). Furthermore, there exists an increasing surjection s : A -t A such that
s( {(a, o//)}) = a, (a, all) E .c. By putting X~ = Xs(;')' A E A, and P~;.' = Ps(;')s(;")
whenever A ~ A', one establishes (iv) and (v). 0

LEMMA 2. Let X = (Xa,Paa',A) be a collection of polyhedra Xa, a E A, and
mappings Poo' : Xa' -t Xa, a ~ a', over a preordered, directed and unbounded set
A = (A, ~). Let {o//a E Cov(Xa) I a E A} be a family of open coverings satisfying
condition

(A3) (\;;faE A) (\;;fo//E Cov(Xa)) (3d ~ a) (\;;fa"~ d) o//a" < p-;),o//.

Let X be a space and let p : X -t X be afamily of mappings Pa : X -t Xa, a E A,
satisfying condition
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1 a=a'

or

a ~' a'~ a ~ a', a # a' 1\

(AS) (Va E A) (Vo/£ E Cov(Xa)) (3a' ~ a) (Va" ~ a') (PaaIlPa",Pa) < 0/£.

Then there exist an approximate polyhedral system X' = (X~'P~a"A') and an
approximate map p' = (P~) : X ~ X' satisfying

(i) A' = (A, ~') is a preordered, directed and unbounded set such that:

a~' a' =? a ~ a' and a~'a' ~ a" =? a~' a";
if ~ is a partial order, then so is ~';
if (A, ~) is cofinite, then so is (A, ~');

(ii) X~ is a subpolyhedral neighbourhood of Cl(pa (X)) in Xa, a E A;

(iii) p~, = Paa' I X~, : X~, ~ X~ ~ Xa, a~' a';
(iv) p~ = Pa : X ~ X~~ Xa, a EA.

Proof. Let Ka be a triangulation of Xa such that stSl'a < o/£a(see [7], p. 126;
[10]), where Sl'a = {st(v, Ka) I v E ~} E Cov(Xa), a E A. Let X~ = INal be
the minimal Ka-neighbourhood of Cl(pa(X)) in Xa. (INal is the union of all closed
simplexes of IKal meeting Cl(pa(X))),
Define a new relation ~' on A by putting

(Va" ~ a') Paa"(X~,,) ~ X~ 1\
(Paa"Pa",Pa) ~ Sl'a 1\

Sl'a" ~ p;"l,(SI'a)

We first show that the relation ~' contains more than the diagonal of A x A. Let

a EA. Since X~is a neighbourhood of Cl(pa(X)) in the normal space Xa, there exists
an open neighbourhood V of Cl(pa(X)) such that V ~ Cl(V) ~ Int(X~) ~ X~. Take
11/ = {Int(X~),Xa \ Cl(V)} E Cov(Xa). By (A3) and (AS), for a and 11/, there
exists an a; ~ a such that, for every a" ~ a;,

(1)

and

(2)

(3)

hold. In the same way, for a and Sl'a, there exists an a~ ~ a such that, for every
a" ~ a~,

and

(4)

hold. Take an a' ~ a;, a~, a' # a;, a~. In order to prove a ~' a', we need to verify

(5)

whenever a" ~ a'. Let~" E X~". Then there exist an Sa" E Sl'a" and a Ua" E o/£a"
such that
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Therefore, since Sail is open, Sail nPa" (X) =1= 0. Let Xa" E Sail nPa" (X) and let
x E X such that Pa" (x) = Xa". By (2), (PaaIlPall,Pa) ~ "fI/ holds, and thus

Paa" (xa") E W, (6)

for some W E "fI/. Note that W = Int(X~), since Xa == Pa(x) E Pa(X) ~ Int(X~) E
"fI/. Further, %'a" < p:a;,("fI/) implies Ua" ~ p:a;,lnt(X~). Hence,Paal(Ua") ~

Int(X~),andpaall(x',l') E Int(X~), which verifies (5).
The proof from the above also shows that A' = (A, ~/) is unbounded. Now, one
easily verifies all the properties of ~' stated in (i).
Let

and

I - I X' . X' X' ex/I IPaa' - Paa' a" a' -+ a _ a, a::::::a, (7)

P~ = Pa : X -+ X~ ~ Xa, a EA. (8)

Since p' inherits property (AS) ofp, it remains to prove that X' = (X~'P~a"A') is
an approximate system, Le., to verify condition

(A2) (Va E A) ('I%' E Cov(X~)) (:3a E A) (Va" ~' a' ~' a) (P~a'P~'all'P~all) ~
au.

Let a E A' and %' E Cov(X~). Since X~ ~ Xa is a subpolyhedron, it is normally
embedded, and there exists a covering "fI/ E Cov(Xa) such that

(9)

(10)

Choose a 1/ E Cov(Xa) such that

sr- 1/ ~ "fI/.

By (A3) and (AS), for a and 1/, there is an a E A' such that

sPa' ~ stsPa, ~ %'a' ~ p:a;(1/) and (Paa'Pa',Pa) ~ 1/, (11)

whenever a' ~ a. Let us show that, for all a" ~' a' ~' a,

(12)

holds. Let ~II E X~II' Then there exists an Sail E sPa" such that

X~II E Sail and Sail nPa" (X) =1= 0.

Choose any Xa" E Sail n Pa" (X) and x E X such that Xa" = Pa" (X). By (11),
sPa" ~ %'a" ~ p:a;,(1/) holds (a" ~' a), and there exists a VI E 1/ such thatxa",

~II E p:a;,(VI), i.e.,

Further, (11) implies (PaaIlPall,Pa) ~ 1/, and there exists a V2 E 1/ such that

PaaIlPa"(X), Pa(x) E V2·

(13)

(14)
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By definition of ~', a' ~' a" implies 3"a" ~ P;;;~II (3"a' ). Thus there exists an
Sa' E 3"a' such that

Pa' a" (xa" ), Pa' a" (X~II) E Sa"

By the same argument, (PalaIlPall,Pa') ~ 3"a' holds, and there exists an S~I E 3"a'
such that

Pa'aIlPall(X) =Palall(Xall), Pa' (X) E S~I.

Similarly, a' ~' a implies 3"a' ~ p~) (11) (see (11)), and there are V3, V4 E 11 such

that Pa'a" (Xa"), Pa'a" (~II) E p~) (V3) and Pa' a"Pa" (x), Pa' (x) E p~) (V4), i.e.,

and

Paa'Pa'all(Xall), Paa'Pa'all(x~lI) E V3 (15)

(16)

Finally, a' ~' a~' a implies (Paa'Pa',Pa) ~ 11, and there exists a V E 11 such that

Paa'Pa,(X), Pa(x) E V.

Relations (13), (14), (15), (16) and (17) imply

(17)

Now, by (7), (9) and (10), we establish

(P~a'P~'a"' P~all) = ((Paa' I X~, ) (Pa'a" I X~II ), (Paall I X~II )) ~ 'W I X~ ~ 0/1.

Consequently, (12) holds true, i.e., condition (A2) for X' is verified, and the lemma
is proved. 0

Proof of the theorem. By Lemma 1, there is an X' = (X~ ,P~.v' A), associated
with X, having corresponding properties (i)-(v). Note that Lemma 1 (iii) is the
stability condition (C) (see [8], [5]), which (in the cofinite case) implies condition
(A3) for X'. Further, p : X ----+ X yields the collection of mappings p' = (P~ =
Ps().)) : X ----+ X'. Obviously, p' inherits conditions (AS) and (Bl) of p. Applying
Lemma 2 on X' and p' , one obtains an approximate polyhedral system X" =
(X~ ,P~)." A') and an approximate map p" = (pn : X ----+ X" having corresponding
properties (i)-(iv). We will now prove that p" : X ----+ X" is an approximate
resolution. It suffices to check conditions (Bl) and (B3). Note that (Bl) of p" is
inherited of the same condition of p'. In order to verify (B3) for p", let any)" E A'

and any open set U ~ Cl(P~(X)) in X~ s::; X~ = X.f().) are given. Choose an open
set W s::; X~ such that W nX~ = U. Since every polyhedron is a normal space, there
exists an open set V s::; X~ such that Cl(P~(X)) s::; V s::; Cl(V) s::; W n Int(Xn. Let
'W = {WI = Wnlnt(Xn, W2 = X~ \ Cl(V)}, and take a 'W' E Cov(X~) with st'W

, ~ 'W. By (A3) of X' and (AS) of p', for)" and'W " there is a it' ~ )"such that,
for every),," ~ ),,',

0/1).11 ~ (P~).II )-I'W' and (P~).IIP~II,P~) ~ 'W'.
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(Clearly, one may choose A' ?;' A, and then any A" ?;' A' .) Let xl" E X~II' Then
there exists an S).II E ..9').11 such that xl" E S).II and S)." nP).II (X) =j:. 0. Choose any
X).II E S)." nP).II (X). Since ..9').11 ::;; %').11 ::;; (p~).II)-I1I' I, there are an V).II E %')."
and a W' E 11' I such that

Take anx E X such thatp~lI(x) = X).II. Then (P~).IIP~",P~) ::;; 11' I implies

P~ (x), P~).IIP~II (x) = P~).II (x).,,) E W",

for some W" E 11' I. Obviously, W' n w" =j:. 0 and

P~ (x), P~)." (X~II) E W' U w" ~ st(W', 11' ') ~ WI,

consequently, P~)." (xl") E WI' Therefore,

P~).II(X~II) =p~).II(Xfll) ~ WI = Wnlnt(Xn ~ wnxf = V

which establishes condition (B3) for p" .
Finally, modifying ordering ::;;'into ::;;* (see [5]' Remark 2.10, and [6]' (1.6)

Remark), one also obtains condition (AI) and the uniformity condition (AU) for
X". To complete the proof, one only has to adapt the notations: B == (N)*,
Yb == X~, qw == P~).I' and qb == p~. The additional statement in the commutative
case is obviously true. D
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