A NOTE ON STEFFENSEN'S AND IYENGAR'S INEQUALITY

Vera Čuljak and Neven Elezović, Zagreb, Croatia

Abstract. Taking Steffensen's inequality as a starting point, we obtain some generalizations of classical Iyengar's inequality.

1. Introduction

If f is a differentiable on $[a, b]$ and $\left|f^{\prime}(x)\right| \leqslant M$, then classical Iyengar's inequality [2] states that it holds

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}(b-a)\right| \leqslant \frac{M(b-a)^{2}}{4}-\frac{1}{4 M}(f(b)-f(a))^{2} . \tag{1}
\end{equation*}
$$

Recently, Agarwal and Dragomir [1] applied Steffensen's inequality to obtain inequality which is stronger than Iyengar's one:

$$
\begin{align*}
\left\lvert\, \frac{1}{b-a} \int_{a}^{b} f(x) d x\right. & \left.-\frac{f(a)+f(b)}{2} \right\rvert\, \\
& \leqslant \frac{[f(b)-f(a)-m(b-a)][M(b-a)-f(b)+f(a)]}{2(M-m)(b-a)} \tag{2}
\end{align*}
$$

where $m \leqslant f^{\prime}(x) \leqslant M$ for all $x \in[a, b]$. In fact, (2) reduces to (1) if one takes $-m=M=\sup _{a \leqslant x \leqslant b}\left|f^{\prime}(x)\right|$.

Inequality (1) has been generalized in various ways. From the point of this note, the following one will interest us ([3], Theorem 1).

THEOREM 1. Let the function $f:[a, b] \rightarrow \mathbf{R}$ satisfies the following conditions
(i) $f^{(n-1)} \in C_{\alpha}$ (with constant M and $0<\alpha \leqslant 1$) for some $n \in \mathbf{N}$;
(ii) $f^{(k)}(a)=f^{(k)}(b)=0,(k=1, \ldots, n-1)$.

Then it holds

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}\right| \\
& \quad \leqslant \frac{M(b-a)^{\alpha+n-1}}{(\alpha+n)^{(n)}}\left(\zeta^{\alpha+n-1}-\frac{q}{2}[1+(\alpha+n-1)(2 \zeta-1)]\right) \tag{3}
\end{align*}
$$

Key words and phrases: Steffensen's inequality, Iyengar's inequality, integral inequalities.
where ζ is the real root of the equation

$$
\zeta^{\alpha+n-1}-(1-\zeta)^{\alpha+n-1}=q
$$

and
$q=\frac{(\alpha+n-1)^{(n-1)}}{M(b-a)^{\alpha+n-1}}(f(b)-f(a)), \quad p^{(m)}=p(p-1) \cdots(p-m+1), \quad m \in \mathbf{N}$.
We shall use Steffensen's inequality to obtain result similar, but simpler than (3).

2. Main results

The starting point is Hayashi's modification of the well-known Steffensen's inequality:

THEOREM 2. Let $F:[a, b] \rightarrow \mathbf{R}$ be a nonincreasing mapping on $[a, b]$ and $G:[a, b] \rightarrow \mathbf{R}$ an integrable mapping on $[a, b]$ with $0 \leqslant G(x) \leqslant A$, for all $x \in[a, b]$. Then, the following inequality holds

$$
\begin{equation*}
A \int_{b-\lambda}^{b} F(x) d x \leqslant \int_{a}^{b} F(x) G(x) d x \leqslant A \int_{a}^{a+\lambda} F(x) d x \tag{4}
\end{equation*}
$$

where $\lambda=\frac{1}{A} \int_{a}^{b} G(x) d x$.
We shall suppose that $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ satisfies following conditions:
$1^{\circ} f \in C^{(n-1)}\left(I^{\circ}\right),[a, b] \subseteq I^{\circ}$, and

$$
\begin{equation*}
m \leqslant f^{(n)}(x) \leqslant M, \quad \forall x \in[a, b] \tag{5}
\end{equation*}
$$

$2^{\circ} f^{(k)}(a)=f^{(k)}(b)$ for odd $k \geqslant 1, k<n$ and $f^{(k)}(a)=-f^{(k)}(b)$ for even $k \geqslant 2, k<n$.
THEOREM 3. Let n be an even number and let f satisfies conditions 1° and 2°. Then it holds

$$
\begin{align*}
\left\lvert\, \int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}\right. & \left.(b-a)-\frac{M+m}{2^{n+1}(n+1)!}(b-a)^{n+1} \right\rvert\, \\
& \leqslant \frac{M-m}{(n+1)!}\left(\frac{b-a}{2}\right)^{n+1}\left[1-\left(\frac{|\Delta|}{M-m}\right)^{n+1}\right] \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=\frac{2}{b-a}\left(f^{(n-1)}(a)-2 f^{(n-1)}\left(\frac{a+b}{2}\right)+f^{(n-1)}(b)\right) \tag{7}
\end{equation*}
$$

Proof. Denote $c=(a+b) / 2$. We shall apply Theorem 2 for

$$
F(x)= \begin{cases}(x-c)^{n}, & a \leqslant x \leqslant c \tag{8}\\ -(x-c)^{n}, & c \leqslant x \leqslant b\end{cases}
$$

and

$$
G(x)= \begin{cases}M-f^{(n)}(x), & a \leqslant x \leqslant c \tag{9}\\ f^{(n)}(x)-m, & c \leqslant x \leqslant b\end{cases}
$$

Then it holds

$$
0 \leqslant G(x) \leqslant M-m=: A
$$

and

$$
\begin{align*}
\lambda & =\frac{1}{A}\left(\int_{a}^{c}\left(M-f^{(n)}(x)\right) d x+\int_{c}^{b}\left(f^{(n)}(x)-m\right) d x\right) \\
& =\frac{b-a}{2}\left(1+\frac{\Delta}{M-m}\right) \tag{10}
\end{align*}
$$

where Δ is defined in (7).
Two cases are possible: $(a) \Delta \leqslant 0$; and $(b) \Delta>0$.
Case (a). In the case $\Delta \leqslant 0$ it holds $\lambda \leqslant(b-a) / 2$. Therefore, the left term of Hayashi inequality (4) is

$$
\begin{align*}
\alpha_{1} & =(M-m) \int_{b-\lambda}^{b} F(x) d x=(M-m) \int_{b-\lambda}^{b}\left[-(x-c)^{n}\right] d x \\
& =-\frac{M-m}{n+1}\left(\frac{b-a}{2}\right)^{n+1}\left[1+\left(\frac{\Delta}{M-m}\right)^{n+1}\right] . \tag{11}
\end{align*}
$$

It is easy to see that

$$
\alpha_{2}=(M-m) \int_{a}^{a+\lambda} F(x) d x=-\alpha_{1}
$$

In the case (b), it holds $\lambda>(b-a) / 2$ and similar calculation gives

$$
\begin{equation*}
\alpha_{1}=-\frac{M-m}{n+1}\left(\frac{b-a}{2}\right)^{n+1}\left[1-\left(\frac{\Delta}{M-m}\right)^{n+1}\right] \tag{12}
\end{equation*}
$$

Now, we need only to calculate the middle term in Steffensen's inequality, using integration by parts and properties 2° of function f :

$$
\begin{aligned}
I & =\int_{a}^{c}(x-c)^{n}\left(M-f^{(n)}(x)\right) d x-\int_{c}^{b}(x-c)^{n}\left(f^{(n)}(x)-m\right) d x \\
& =-n!\left[\int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}(b-a)-\frac{(b-a)^{n+1}}{2^{n+1}(n+1)!}(M+m)\right] .
\end{aligned}
$$

This proves the theorem.
Corollary 1. If fatisfies 1° and 2°, then for even $n \in \mathbf{N}$ it holds

$$
\begin{align*}
\mid \int_{a}^{b} f(x) d x & \left.-\frac{f(a)+f(b)}{2}(b-a) \right\rvert\, \\
& \leqslant \frac{\max \{|M|,|m|\}}{2^{n}(n+1)!}(b-a)^{n+1}-\frac{|\Delta|^{n+1}(b-a)^{n+1}}{2^{n+1}(M-m)^{n}(n+1)!} \tag{13}
\end{align*}
$$

ThEOREM 4. Let $n \geqslant 1$ be an odd number and let f satisfies conditions 1° and 2°. Then it holds

$$
\begin{align*}
\mid \int_{a}^{b} f(x) d x & \left.-\frac{f(a)+f(b)}{2}(b-a) \right\rvert\, \\
& \leqslant \frac{M-m}{(n+1)!}\left(\frac{b-a}{2}\right)^{n+1}\left[1-\left(\frac{M+m-2 \Delta}{M-m}\right)^{n+1}\right] \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=\frac{f^{(n-1)}(b)-f^{(n-1)}(a)}{b-a} \tag{15}
\end{equation*}
$$

Proof. We use the same idea as in Theorem 3. But, in this case is sufficient to take

$$
\begin{equation*}
F(x)=-(x-c)^{n} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x)=f^{(n)}(x)-m \tag{17}
\end{equation*}
$$

Therefore, $A=M-m$ again and since f satisfies 2°, we have

$$
\begin{aligned}
\lambda & =\frac{1}{M-m} \int_{a}^{b}\left(f^{(n)}(x)-m\right) d x=\frac{\Delta-m}{M-m}(b-a), \\
\alpha_{1} & =-(M-m) \int_{b-\lambda}^{b}(x-c)^{n} d x \\
& =-\frac{M-m}{n+1}\left(\frac{b-a}{2}\right)^{n+1}\left[1-\left(\frac{M+m-2 \Delta}{M-m}\right)^{n+1}\right] .
\end{aligned}
$$

Since $\alpha_{2}=-\alpha_{1}$ and the middle term in Steffensen's inequality is equal to

$$
\begin{gathered}
-\int_{a}^{b}(x-c)^{n}\left[f^{(n)}(x)-m\right] d x=-\left.n!(x-c) f(x)\right|_{a} ^{b}+n!\int_{a}^{b} f(x) d x \\
=n!\left(\int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}(b-a)\right)
\end{gathered}
$$

the theorem follows.
Remark. Let f satisfies conditions of Theorem 1 with $\alpha=1$. As a corollary of Theorem 1, it is proved in [3] that

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x\right| \leqslant \frac{M(b-a)^{n+1}}{2^{n}(n+1)!} . \tag{18}
\end{equation*}
$$

holds, if an additional condition $f(a)=f(b)=0$ is assumed. But, such an inequality holds under weaker conditions 1° and 2°. If n is even, this follows from Corollary 1 , and for odd n it is sufficient to take $M=\sup \left|f^{(n)}(x)\right|$ and $m=-M$ in Theorem 4. Therefore, for all $n \in \mathbf{N}$ we have:

Corollary 2. If fatisfies 1° and 2° then it holds

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}(b-a)\right| \leqslant \frac{M(b-a)^{n+1}}{2^{n}(n+1)!} . \tag{19}
\end{equation*}
$$

where $M=\sup \left|f^{(n)}(x)\right|, x \in[a, b]$.

REFERENCES

[1] R. P. Agarwal, S. S. Dragomir, An Application of Hayashi's Inequality for Differentiable Functions,, Computers Math. Applic. 32, 6 (1996), 95-99.
[2] K. S. K. Iyengar, Note on an inequality, Math. Student 6 (1938), 75-76.
[3] G. V. Milovanović, J. Pečarić,, Some consideratons on Iyengar's inequality and some related applicatons, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No 544-576 (1976), 166-170.

Vera Čuljak
Department of Mathematics Faculty of Civil Engineering

Kac̆ićeva 26
10000 Zagreb, Croatia
e-mail: vera@master.grad.hr
Neven Elezović
Department of Applied Mathematics Faculty of Electrical Engineering and Computing Unska 3
10000 Zagreb, Croatia
e-mail: neven.elez@fer.hr

