A NOTE ON STEFFENSEN'S AND IYENGAR'S INEQUALITY

Vera Čuljak and Neven Elezović, Zagreb, Croatia

Abstract. Taking Steffensen's inequality as a starting point, we obtain some generalizations of classical lyengar's inequality.

1. Introduction

If f is a differentiable on [a, b] and $|f'(x)| \leq M$, then classical Iyengar's inequality [2] states that it holds

$$\left| \int_{a}^{b} f(x)dx - \frac{f(a) + f(b)}{2}(b - a) \right| \leq \frac{M(b - a)^{2}}{4} - \frac{1}{4M}(f(b) - f(a))^{2}.$$
 (1)

Recently, Agarwal and Dragomir [1] applied Steffensen's inequality to obtain inequality which is stronger than Iyengar's one:

$$\left|\frac{1}{b-a}\int_{a}^{b}f(x)dx - \frac{f(a) + f(b)}{2}\right| \\ \leqslant \frac{[f(b) - f(a) - m(b-a)][M(b-a) - f(b) + f(a)]}{2(M-m)(b-a)}$$
(2)

where $m \leq f'(x) \leq M$ for all $x \in [a, b]$. In fact, (2) reduces to (1) if one takes $-m = M = \sup_{a \leq x \leq b} |f'(x)|$.

Inequality (1) has been generalized in various ways. From the point of this note, the following one will interest us ([3], Theorem 1).

THEOREM 1. Let the function $f : [a, b] \rightarrow \mathbf{R}$ satisfies the following conditions (i) $f^{(n-1)} \in C_{\alpha}$ (with constant M and $0 < \alpha \leq 1$) for some $n \in \mathbf{N}$; (ii) $f^{(k)}(a) = f^{(k)}(b) = 0$, (k = 1, ..., n - 1). Then it holds

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{f(a) + f(b)}{2} \right| \\ \leqslant \frac{M(b-a)^{\alpha+n-1}}{(\alpha+n)^{(n)}} \left(\zeta^{\alpha+n-1} - \frac{q}{2} [1 + (\alpha+n-1)(2\zeta-1)] \right),$$
(3)

Mathematics subject classification (1991): 26D10.

Key words and phrases: Steffensen's inequality, Iyengar's inequality, integral inequalities.

where ζ is the real root of the equation

$$\zeta^{\alpha+n-1}-(1-\zeta)^{\alpha+n-1}=q$$

and

$$q = \frac{(\alpha + n - 1)^{(n-1)}}{M(b-a)^{\alpha + n - 1}} (f(b) - f(a)), \quad p^{(m)} = p(p-1) \cdots (p - m + 1), \quad m \in \mathbb{N}.$$

We shall use Steffensen's inequality to obtain result similar, but simpler than (3).

2. Main results

The starting point is Hayashi's modification of the well-known Steffensen's inequality:

THEOREM 2. Let $F : [a, b] \to \mathbf{R}$ be a nonincreasing mapping on [a, b] and $G : [a, b] \to \mathbf{R}$ an integrable mapping on [a, b] with $0 \leq G(x) \leq A$, for all $x \in [a, b]$. Then, the following inequality holds

$$A \int_{b-\lambda}^{b} F(x) dx \leq \int_{a}^{b} F(x) G(x) dx \leq A \int_{a}^{a+\lambda} F(x) dx, \qquad (4)$$

where $\lambda = \frac{1}{A} \int_{a}^{b} G(x) dx.$

We shall suppose that $f: I \subseteq \mathbf{R} \to \mathbf{R}$ satisfies following conditions: $1^{\circ} f \in C^{(n-1)}(I^{\circ}), [a, b] \subseteq I^{\circ}$, and

$$m \leq f^{(n)}(x) \leq M, \qquad \forall x \in [a, b];$$
 (5)

2° $f^{(k)}(a) = f^{(k)}(b)$ for odd $k \ge 1$, k < n and $f^{(k)}(a) = -f^{(k)}(b)$ for even $k \ge 2, k < n$.

THEOREM 3. Let n be an even number and let f satisfies conditions 1° and 2° . Then it holds

$$\left| \int_{a}^{b} f(x)dx - \frac{f(a) + f(b)}{2}(b-a) - \frac{M+m}{2^{n+1}(n+1)!}(b-a)^{n+1} \right| \\ \leq \frac{M-m}{(n+1)!} \left(\frac{b-a}{2}\right)^{n+1} \left[1 - \left(\frac{|\Delta|}{M-m}\right)^{n+1} \right]$$
(6)

where

$$\Delta = \frac{2}{b-a} \left(f^{(n-1)}(a) - 2f^{(n-1)}\left(\frac{a+b}{2}\right) + f^{(n-1)}(b) \right). \tag{7}$$

Proof. Denote c = (a + b)/2. We shall apply Theorem 2 for

$$F(x) = \begin{cases} (x-c)^n, & a \leq x \leq c, \\ -(x-c)^n, & c \leq x \leq b. \end{cases}$$
(8)

and

$$G(x) = \begin{cases} M - f^{(n)}(x), & a \le x \le c, \\ f^{(n)}(x) - m, & c \le x \le b. \end{cases}$$
(9)

Then it holds

$$0 \leqslant G(x) \leqslant M - m =: A$$

and

$$\lambda = \frac{1}{A} \left(\int_{a}^{c} (M - f^{(n)}(x)) dx + \int_{c}^{b} (f^{(n)}(x) - m) dx \right)$$

= $\frac{b - a}{2} \left(1 + \frac{\Delta}{M - m} \right),$ (10)

where Δ is defined in (7).

Two cases are possible: (a) $\Delta \leq 0$; and (b) $\Delta > 0$.

Case (a). In the case $\Delta \leq 0$ it holds $\lambda \leq (b-a)/2$. Therefore, the left term of Hayashi inequality (4) is

$$\alpha_{1} = (M-m) \int_{b-\lambda}^{b} F(x) dx = (M-m) \int_{b-\lambda}^{b} \left[-(x-c)^{n} \right] dx$$
$$= -\frac{M-m}{n+1} \left(\frac{b-a}{2} \right)^{n+1} \left[1 + \left(\frac{\Delta}{M-m} \right)^{n+1} \right].$$
(11)

It is easy to see that

$$\alpha_2 = (M-m) \int_a^{a+\lambda} F(x) dx = -\alpha_1.$$

In the case (b), it holds $\lambda > (b-a)/2$ and similar calculation gives

$$\alpha_1 = -\frac{M-m}{n+1} \left(\frac{b-a}{2}\right)^{n+1} \left[1 - \left(\frac{\Delta}{M-m}\right)^{n+1}\right].$$
 (12)

Now, we need only to calculate the middle term in Steffensen's inequality, using integration by parts and properties 2° of function f:

$$I = \int_{a}^{c} (x-c)^{n} (M-f^{(n)}(x)) dx - \int_{c}^{b} (x-c)^{n} (f^{(n)}(x)-m) dx$$

= $-n! \left[\int_{a}^{b} f(x) dx - \frac{f(a)+f(b)}{2} (b-a) - \frac{(b-a)^{n+1}}{2^{n+1}(n+1)!} (M+m) \right].$

This proves the theorem.

COROLLARY 1. If f satisfies 1° and 2°, then for even $n \in \mathbb{N}$ it holds

$$\left| \int_{a}^{b} f(x)dx - \frac{f(a) + f(b)}{2}(b - a) \right| \\ \leq \frac{\max\{|M|, |m|\}}{2^{n}(n+1)!}(b - a)^{n+1} - \frac{|\Delta|^{n+1}(b - a)^{n+1}}{2^{n+1}(M - m)^{n}(n+1)!}.$$
(13)

THEOREM 4. Let $n \ge 1$ be an odd number and let f satisfies conditions 1° and 2°. Then it holds

$$\left| \int_{a}^{b} f(x) dx - \frac{f(a) + f(b)}{2} (b - a) \right| \\ \leq \frac{M - m}{(n+1)!} \left(\frac{b - a}{2} \right)^{n+1} \left[1 - \left(\frac{M + m - 2\Delta}{M - m} \right)^{n+1} \right], \quad (14)$$

where

$$\Delta = \frac{f^{(n-1)}(b) - f^{(n-1)}(a)}{b - a}.$$
(15)

Proof. We use the same idea as in Theorem 3. But, in this case is sufficient to take

$$F(x) = -(x-c)^n \tag{16}$$

and

$$G(x) = f^{(n)}(x) - m$$
 (17)

Therefore, A = M - m again and since f satisfies 2°, we have

$$\lambda = \frac{1}{M-m} \int_{a}^{b} (f^{(n)}(x) - m) dx = \frac{\Delta - m}{M-m} (b-a),$$

$$\alpha_{1} = -(M-m) \int_{b-\lambda}^{b} (x-c)^{n} dx$$

$$= -\frac{M-m}{n+1} \left(\frac{b-a}{2}\right)^{n+1} \left[1 - \left(\frac{M+m-2\Delta}{M-m}\right)^{n+1}\right].$$

Since $\alpha_2 = -\alpha_1$ and the middle term in Steffensen's inequality is equal to

$$-\int_{a}^{b} (x-c)^{n} [f^{(n)}(x) - m] dx = -n! (x-c) f(x) \Big|_{a}^{b} + n! \int_{a}^{b} f(x) dx$$
$$= n! \left(\int_{a}^{b} f(x) dx - \frac{f(a) + f(b)}{2} (b-a) \right)$$

the theorem follows.

Remark. Let f satisfies conditions of Theorem 1 with $\alpha = 1$. As a corollary of Theorem 1, it is proved in [3] that

$$\left| \int_{a}^{b} f(x) dx \right| \leq \frac{M(b-a)^{n+1}}{2^{n}(n+1)!}.$$
(18)

holds, if an additional condition f(a) = f(b) = 0 is assumed. But, such an inequality holds under weaker conditions 1° and 2° . If *n* is even, this follows from Corollary 1, and for odd n it is sufficient to take $M = \sup |f^{(n)}(x)|$ and m = -M in Theorem 4. Therefore, for all $n \in \mathbb{N}$ we have:

COROLLARY 2. If f satisfies 1° and 2° then it holds

$$\left| \int_{a}^{b} f(x)dx - \frac{f(a) + f(b)}{2}(b - a) \right| \leq \frac{M(b - a)^{n+1}}{2^{n}(n+1)!}.$$
(19)
$$I = \sup |f^{(n)}(x)|, x \in [a, b].$$

where M $p[f^{(\prime)}(x)], x \in [u, v]$

REFERENCES

- [1] R. P. Agarwal, S. S. Dragomir, An Application of Hayashi's Inequality for Differentiable Functions,, Computers Math. Applic. 32, 6 (1996), 95–99.
- [2] K. S. K. Iyengar, Note on an inequality, Math. Student 6 (1938), 75-76.
- [3] G. V. Milovanović, J. Pečarić, Some considerations on Iyengar's inequality and some related applications, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No 544-576 (1976), 166-170.

Vera Čuljak Department of Mathematics Faculty of Civil Engineering Kačićeva 26 10000 Zagreb, Croatia e-mail: vera@master.grad.hr

Neven Elezović Department of Applied Mathematics Faculty of Electrical Engineering and Computing Unska 3 10000 Zagreb, Croatia e-mail: neven.elez@fer.hr