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ABSTRACT 

Thermodynamics – contrary to its name – is not a dynamic theory. However, some relatively new 

developments, like finite time, endo-reversible or ordinary thermodynamics introduce time into 

thermostatics. In this framework the Second Law becomes a set of conditions ensuring the asymptotic 

stability of equilibrium. In this manuscript some examples are shown, how this basic conceptual 

change can lead to a profound understanding. 
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TIME IN THERMODYNAMICS 

Equilibrium thermodynamics is sometimes called thermostatics [1,2] eliminating the 

contradiction in the name: a theory dealing with equilibrium states cannot be a dynamical one. 

According to the classical approach the basic concepts of equilibrium thermodynamics 

(entropy, temperature) are introduced and interpreted for equilibrium states only. Therefore 

dynamical problems in a thermodynamic theory can be treated only in one of the continuum 

frameworks. There we have well defined dynamical laws: partial differential equations of the 

different balances together with the corresponding constitutive functions. However, there is 

no time, there is no equation of motion in thermodynamics of discrete, homogeneous systems, 

which is therefore also called as equilibrium thermodynamics. 

There are several reasons why one cannot simply restrict the continuum descriptions to a 

homogeneous one and get the analogous theory (e.g. by a spatial homogenization). The most 

important one is the lack of real processes in equilibrium thermodynamics, and the lack of 

clear operational distinction between the so called quasistatic and irreversible processes. To 

keep the universality, the First Law and the Second Law classically refer to starting and final 

states of thermodynamic systems. However, since only equilibrium is considered meaningful, 

the theory is a continuous struggle to avoid real dynamics. Our everyday experience shows 

that the description of the temperature change of a room, the cooling of a cup of coffee etc. 

do not always require the machinery of partial differential equations of continuum 

thermodynamics, because the bodies in the processes can be considered as homogeneous. 

This level of description exists and if necessary is somehow considered (e.g. Newton“s law of 

cooling). However, without the proper theoretical frame one does not know the conditions of 

validity, do not understand the role of the most important thermodynamic concepts (how the 

entropy changes in dry friction?), and most importantly, one cannot develop proper models 

for complex situations, when e.g. for several interacting thermodynamic bodies. 

The birth of “finite time” and “endoreversible” thermodynamics can be connected to the 

conceptual vacuum created by the above mentioned situation. In the reality we have only 

finite time to get the work or the power from a machine but some ideal „equilibrium 

thermodynamic process“ need infinite time. What is the maximal power, that we can get, if 

we do not have enough time to operate with an „equilibrium machine“ [3,4,5]? This is a 

question related to the evolution of the system. The situation is similar with the 

endoreversible hypotheses: a part of the system is considered as an „equilibrium“ one, and 

the irreversibilities are usually supposed to occur between the „equilibrium part“ and the 

environment. This is a conceptualization of the meaning of “equilibrium” and “quasistatic” in 

the more conventional descriptions. 

Therefore looking for processes in “finite time” it is worth to reconsider where the infinite 

times can occur in „equilibrium thermodynamics“. We can find at least three different ways: 

 one may suppose that there are no „internal inhomogeneities“ in the body and no 

additional, „internal variables“ are necessary for the description of processes [6,7]. That is, 

the thermodynamic body is homogeneous and the equilibrium variables and equilibrium 

state functions (equations) properly characterize the system. This property is analogous to 

the hypotheses of „local equilibrium“ in continuum theories. The local equilibrium can be 

a good approximation, if the inhomogeneities and the internal variables vanish fast, 

compared to the characteristic times of the „equilibrium processes“. 

 if a homogeneous thermodynamic body (without internal variables) is open to a single 

environment characterized by constant intensive variables, then the state of our body tends 

to equilibrium and this equilibration process frequently needs infinite time. A typical 
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example is a body thermally connected to an environment with constant temperature and 

obeying Newton“s law of cooling. 

 infinite times appear also in idealized processes with constant intensive quantities. As an 

example let us see an isothermal process in our previous system, but now assume that 

there are more interactions between the body and the environment beyond the thermal one. 

Performing a little change in the non-thermal intensive parameters we wait for the 

temperature equilibration. Then step by step the temperature changes, a process is initiated 

and governed by this kind of „external control“. This is the fiction of an 

“equilibrium“ process as considered in some textbooks. Because of the infinitesimal steps 

one may naively expect that an ideal isothermal process requires infinite time. Is this what 

we see e.g. in a nuclear power plant? However, the power plants are designed by a theory 

operating with these concepts… 

The first infinity can be excluded by the endoreversible hypothesis (the irreversibilities are at 

the interactions, they are not inside the body). The second one is not eliminated in this way, 

but from a practical point of view it is not a problem, but it is crucial for the right 

interpretation of the Second Law. In the following we will eliminate the third kind of infinity, 

give a dynamical understanding to the second one and weakening the endoreversible 

hypothesis we will show an example to deal with some „real“ irreversible processes, too. 

The concept of an “equilibrium process“ – connected to the third type of infinities – deserves 

a closer look. Let us imagine the same in classical mechanics: a point mass is moving and is 

in an equilibrium at every instant. If our point mass represents an arrow, then we are at the 

contradictory concept of the motion of Zeno of Elea, we have formulated the arrow paradox. 

However, similar conceptual contradictions in mechanics were eliminated long time ago by 

the introduction of the velocity. Following the mechanical analogy we can easily realize, that 

an isothermal process between an environment and a homogeneous thermodynamic body 

requires a fast heat exchange. The faster is the heat exchange compared to the other processes 

in the system the more isotherm is the process. Anyway, we may recognize that the lacking 

concept of real dynamics reveals the original paradoxical statements of Zeno about the 

impossibility of – in our case – thermodynamic processes. 

Let us stop her for a minute and look back to the previous sentences. In the previous 

reasoning several times we were speaking about thermodynamic quantities as time dependent 

functions. Therefore, we could not avoid to step out of equilibrium. 

OPTIMIZATION REQUIRES A DYNAMIC THEORY 

According to the endoreversible hypotheses, the thermodynamic quantities are time 

dependent, but we are in an „equilibrium theory“, because only quasistatic processes are 

admitted, the equilibrium variables and state functions are properly characterize the time 

development of the system. Let us put aside the usual question about the existence of entropy 

and temperature. (In continuum theories it is not a problem at all.) Let us focus on a practical 

optimization question e.g. how could we get e.g. maximum power from a Carnot machine in 

finite time. What we need is an optimal solution. In their famous paper Curzon and Alhborn 

[3] (and before that Novikov [4]) suppose that during an isothermal process the temperature 

of a thermodynamic body is not equal to the temperature of the environment. Their 

calculation gives the value of that temperature to achieve a maximum power output in a 

Carnot engine. However, how can we fix a constant temperature for our machine? In an 

equilibrium process when the temperature of the body and the environment is equal the 

method is clear (but not very practical): wait for the equilibration. But what should we do in 

this clearly non-equilibrium situation? How can we accomplish an optimal process? The 
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optimization theory gives clear answers, if and only if we know the dynamics of the system... 

Therefore with this disguised step time is already introduced in thermostatics. One may think 

that we are considering cycles only. However, why should we not start in another way, take 

the next step and try to understand the consequences and conditions of a thermodynamic 

description without cycles? If we want to optimize we need more, we have to introduce a real 

dynamics. To make real dynamics, we need a differential equation. If we have a differential 

equation and processes run according to its solutions, what is the meaning of the Second 

Law? Only a dynamic theory can provide a solid background for the optimization problem. 

ORDINARY THERMODYNAMICS – QUASISTATIC PROCESSES 

The theoretical need of a reinterpretation of thermostatics as a part of non-equilibrium 

thermodynamics is expressed clearly in [8]. The key of the reformulation is the understanding 

of the role of the Second Law as a stability requirement [9,10] and entropy as a Liapunov 

function of the equilibrium. Putting everything together one can solve the conceptual 

difficulties and get a firm mathematical framework [11,12]. 

The non-equilibrium approach to thermodynamics interprets the usual differentials as time 

derivatives and distinguishes static constitutive functions - the traditional equations of state, 

like the equation of state of an ideal gas – from the dynamic constitutive functions 

characterizing the interaction of a thermodynamic body with the environment – like the 

Fourier heat exchange law. The two kinds of equation of states are treated in a common 

framework. For example the First Law of thermodynamics is written as: 

 WQE
t


d

d
, (1) 

Here E is the energy of a thermodynamic body, Q is the heat exchange between the body 

and the environment and W is the mechanical work per unit time. (1) is a differential equation 

if the dynamic constitutive functions W and Q are given. A possibility is to introduce 

Newton’s cooling law 

 )( 0TTQ   , (2) 

and the classical form of work W = pdV/dt, where T and p are the pressure and the 

temperature of a thermodynamic body in an environment characterized by the temperature 

and pressure T0 and p0. V denotes the volume of the body and  is the nonnegative heat 

exchange coefficient. Then we can get a solvable set of differential equations for the energy 

and volume changes if we are able to specify a second differential equation for the volume. 

 

Figure 1. Sketch of relations accompanying expressions (1-3). 



P. Ván and Gy. Gróf 

70 
 

One can determine it in different ways, the simplest possibility may be assuming that the 

volume rate is proportional to the pressure difference with a positive coefficient . 

 )( 0
d

d
ppV

t
  . (3) 

In this way we can connect the mechanical and thermal interactions, and (1) and (3) is a 

solvable system of differential equations. We show a solution in case of van der Waals gas 

equation of state, where: 
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Here the critical variables are applied, that is the thermodynamic quantities are given in 

critical point units. The exchange coefficients are  = 1,  = 1, and the environmental 

temperature and pressure are T0 = 0,9 and p0 = 0,5. A solution with different initial conditions 

is shown on figure 1. We may observe, that the integral curves first start to converge to a 

definite curve and then toward the equilibrium along that curve, as it is apparent at the right 

hand side of the figure. This behaviour indicates two different characteristic times of the 

equilibration. The dynamical law specified by the differential equations (1) and (2) 

corresponds to quasistatic processes, because if we change the environmental pressure and 

temperature in a way that corresponds to the actual temperature and pressure of the 

thermodynamic body, the process stops. This is a precise interpretation of this expected 

property of classical thermodynamics in our dynamic framework. 

ORDINARY THERMODYNAMICS – BEYOND LOCAL EQUILIBRIUM 

From a mechanical point of view the behaviour of the previous thermodynamic system seems 

to be unsatisfactory. In case of adiabatic conditions, when the exchange heat is zero ( = 0 in 

(2)), the above differential equations never give oscillatory behaviour. Therefore we may 

introduce a different dynamic law and instead of (3) we may assume, that 

 )( 02
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  , (5) 

Applying the endoreversible hypothesis we can give a simple interpretation to . It can be 

connected to the exchange properties, therefore to the (reciprocal) mass of the cylinder. In 

more general situations  can characterise also internal inertial effects. 

A consequence of the theoretical assumptions is that now the state space of the 

thermodynamic body is larger. The time derivative of the volume U = V  is a variable, in 

addition to the energy E and volume V. Hence it is possible to introduce damping effects. 

Therefore we assume, that the equation of state is given in a modified form as 
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Here  is the coefficient of damping that corresponds to the (bulk) viscosity in case of a 

continuum theory. Assuming the value  = 100, the solution of (1) and (4) together with the 

equation of state (5) is shown on fig 2. We assumed that the gas starts form mechanical 

equilibrium, therefore the additional initial condition is U(0) = 0, but the other parameters and 

initial conditions are the same as they were in the previous calculations. A more detailed 

introduction of the above system, together with an analysis of the Second Law and stability 

properties is given elsewhere [12, 13]. 
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CONCLUSIONS 

“Finite time“ and “endoreversible thermodynamics“ introduces the time into thermostatics. 

Some conceptual problems require a differential equation governing the processes and a 

differential equation requires the reinterpretation of the role of some well known equilibrium 

concepts and theorems. A dynamic approach to equilibrium thermodynamics opens 

possibilities in modelling and optimization of processes and devices in engineering. This kind 

of development has been started already, independently of the above mentioned theoretical 

investigations [14] and goes far beyond the conventional exergy analyses. 

Ordinary thermodynamics – the non-equilibrium interpretation of thermodynamics of discrete 

systems – gives a clear concept of the Second Law as conditions related to asymptotic 

stability of equilibrium. This approach gives a conceptual change also in case of continuum 

systems. The Gibbs-Duhem inequality, the inequality of the entropy production will be a 

source of constitutive functions, that ensure the tendency to a homogeneous equilibrium state. 

This attitude can lead to original approaches in some important and less understood continua 

like the stability properties of the Schrödinger-Langevin equations treated from the point of 

view of Madelung fluids [15] or a simple resolution to the famous generic instabilities in first 

order relativistic fluid theories [16]. 
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SAŽETAK 

Termodinamika – suprotno svome imenu – nije dinamička teorija. Međutim, neki relativno novi pristupi, poput 

termodinamike konačnih procesa, endoreverzibilne ili ordinarne termodinamike, uvode vrijeme u termostatiku. 

U ovom pristupu drugi stavak termodinamike postaje skup uvjeta koji osiguravaju asimptotsku stabilnost 

ravnoteže. U radu su razmotreni primjeri koji pokazuju kako ova temeljna konceptualna promjena može dovesti 

do dubljeg razumijevanja. 
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