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OSCILLATION AND NONOSCILLATION OF QUASILINEAR
DIFFERENCE EQUATIONS OF SECOND ORDER

E. Thandapani and L. Ramuppillai, Tamil Nadu, India

Abstract. In this paper the authors establish conditions for the oscillatory and nonoscillatory be-
havior of solutions of second order quasilinear difference equations

A(an——llA)’n—1|a_1A)’n—l) +qnflyn) =0

and

A(@n—1}Ayn—1|* " Ayp—1) + gnf(yp_y) = 0

when {gn}, {an} and the function f satisfy different type of conditions. Examples are inserted to illustrate
our results.

1. Introduction

This paper is concerned with the oscillatory and nonoscillatory behavior of
quasilinear difference equations of the forms

A(a,,_1|Ay,,_1|a—1Ay,,_1) +qnf(yn) =0, n=12,... (1

and

A(an—1|Ayn—1|* " Ayn_1) + Guf 1) =0, n=1,2,... (2)

where A is the forward difference operator defined by Ay, = Yn+1 — Yn, {a,,}
is a positive real sequence, {g,} is a real sequence, f : R — R is continuous,
nondecreasing and f(u) > 0 foru # 0, @ > 0 and A is a positive integer.

By a solution of equation (1) {(2)} we mean a nontrivial sequence {y,} satis-
fying equation (1) {(2)} foralln > 1 {n > 1 —I}. A solution {y,} is said to be
nonoscillatory if it is either eventually positive or eventually negative and osillatory
otherwise.

The problem of oscillation and nonoscillation of solutions difference equations
has received a great deal of attention in the last few years, e.g. see [1,2,6,8,12] which
cover a large number of recent papers. In particular, we refer to [4,5,13-21] where
oscillations of equations similar to equations (1) and (2) have been studied.

Mathematics subject classification (1991): 39A10.
Key words and phrases: Quasilinear difference equations, nonoscillatory solution, oscillation.
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Our aim in this paper is to obtain oscillation and nonoscillation results for the
equations (1) and (2) when {g,} is nonnegative and f(u) = |u|*"'u or {g,} may
change sign infinitely often. Some of our results include, as special cases, known
oscillation criteria for second order difference equations. Examples dewelling upon
the importance of our theorems are also included.

2. Preliminaries

Here we present some lemmas which are interesting in their own right and will
be used in proofs of our main results.
For simplicity, we list the conditions used in the sequel as:

(1) {gn} is a nonnegative real sequence with infinitely many positive terms,
(ii) {g} may change sign infinitely often forn > 1,

o0
(ifl) —oo < 3 gn < o0,

n=1
. n—l ]
(IV) Rn,no = E Ta’ Rn,no — ocoand R, = Rn,l,
s=no @
x 1
(V) Pw= ¥ —7z <0
n=no Q,

(vi) Jim 1)) = +oo.

LEMMA 1. Assume that conditions (i) and (iv) hold. If {y.} is a solution of
equation (1) such thaty, > Oforn 2 N > 1 then Ay, > 0 forn 2 N.

Proof. Since {a,|Ayn|*~'Ay,} is nonincreasing by equation (1), we see that
{Ayn} is eventually of constant sign, that is Ay, > O forn > N > 1 or there is
Ny > N such that Ay, < 0 forn > N;. If Ay, < Oforn > N; we have

a,l,/"‘Ay,I < aN< Ayn, <0, for n =N, > Nj.
Dividing the last inequality by a,, ¢ and summing from N, to 1, we obtain
1
Yntl S YN +aN< Ay, Z s
—N-) aS
As n — oo we see that y, — —oo0, a contradiction. This completes the proof of the
lemma.

LEMMA 2. Assume conditions (ii) and (iii), (iv) and (vi) hold. If {y,} is a
nonoscillatory solution of equation (1), then

anIAynla—lAyn - Z ,+ Z a,|Ay1|°‘ lAy,Af(y,) n 2 1

fne1)

For the proof see Theorem 1 of Thandapani, Manuel and Agarwal [15] and also
see Lemma 2.2 of Zhang and Chen [21].

i=n+1 i=n+1 y'+l)
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LEMMA 3. Suppose conditions (i) and (v) hold. If {y.} is a nonoscillatory
solution of equation (1) then {y,} is bounded for n 2 N together with

p,‘fa,,|Ay,,|°‘_1Ay,,

|yn|“~'yn G)
Moreover p%a|5Apn] =1 Ays
B “)
and
lim sup Mi% <0. (5)

n—oo b’nla_l)’n

Proof. We may assume thaty, > 0 forn > N > 1. Since {a,|Ay,|* "' Ay,} is
nonincreasing by equation (1), we see that A{y,} is eventually of fixed sign, that is,
Ay, > O0forn > N or there is N; > N such that Ay, < 0 forn > Ny, and that

asl/“AyS < a,ll/“Ay,. for s>n>N.

Dividing the last inequality by a}’® and summing it from r to j — 1 gives
i1 1
0<y<ynt+al®byy —p, j2n>N. (6)

s=n Qs
If Ay, > O for n > N, then we have from (6)
0 < yj < Yn+ 0/ *Ayaps, j>n>N,
which shows that {y,} is bounded forn > N. If Ay, < O forn > Ni then {y,} is
clearly bounded and letting j — oo in (6), we have
0 < Yn + 3/*Ayapr, n 2 N.
In either case, we obtain

pna,l,/a %
Yn
of which (4) is an immediate consequence.

The relation (5) clearly holds if Ay, < 0 for n 2 N, since in this case the
function (3) itself is negative for n > N;. If Ay, > 0 for n > N, then there exist
positive constants ¢; and ¢ such that y, > ¢ and a,|Ay,|*'Ay, < ¢z forn > N,
which implies

>2-1, n2N,

an|Ays|* Ay, _ 2

a—1 =
')’n, Yn
Since p, — 0 as n — oo, we then conclude that

L n ?N
a

lim pganlA)’nla_lA}’n

n—oo  |yn|®ly,

This proves (5) and the proof of the lemma is complete.

=0.

Finally, we need the following well known inequality due to Hardy, Littlewood
and Polya [7, Theorem 41].
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LEMMA 4. Ifx,y > Othenx’ —y’ < vx"" Y (x —y) forv > landx* —y¥ <
wlx—y)forO<v< 1

3. Oscillation and nonoscillation of equation (1)

In this section we establish criteria for the nonoscillation and oscillation of
solutions of equation (1) subject to the condition f(u) = |u|* u.
It is convenient to rewrite the equation (1) in the form

Alan—1(Ayn-1)) + a5 =0, n>1 (7)
by introducing the notation

|a—1

= Iz zn = |z|%sgnz, o >0. (8)

THEOREM 1. Assume conditions (i), (iii) and (iv) hold. Then equation (7) has
nonoscillatory solution if and only if there is a sequence {un} which satisfies

= lol{[(2) " 1) 1)

Uy = Z PRI - + 2 gi; for n=zN2>21. (9)
i=ntl [(——) + 1] Ent1
a—

Proof. Assume that there is a sequence {u,} satisfying (9) forn > N. In view
of conditions (i) and (iil) we have u, > 0 for all n > N. Taking difference operator
on both sides of (9) shows that {u,} is a solution of

ol )
(i

Us—1

Aun—l +

+4.=0 (10)

n 1/a*
forn > Nand y, = J] [1 + ( ) } gives a nonoscillatory solution of
s=n+1 as—1

equation (7) for n > N, where the meaning of * is defined by (8).
Let {yn} be a nonoscillatory solution of equation (7) and suppose that y, > 0
for n > N since a similar argument holds if we suppose y, < 0 forn > N. Itcan

A a*
be easily verified that u, = a, (—yﬁ) satisfies equation (10) forn > N. Let n be
y

n
fixed but arbitrary and sum (10) from n + 1 to j, we obtain

[ui—-ll 1/a a

j i wialg (/) +1] -1

—un+._§+l qi+'_§+l 1 {Iz[<(|lzl_11| >1/a ]a }
—) +1]

=0, j>n2N. (11)
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We claim that

< 0. (12)

i=n+1 [(]:_il)l/a%— l]a

. 1/a -4
o ual{ [(E2t) 4 ]" 1)
2 -
. 1
A [(ley g
a1
then, in view of (11), there is N; 2> n large enough such that

o0 |ui_1|{{(%‘;:—il)l/a + l]a - 1}

If

] . 1
[(M) /“+1]"
ai—
- 1/a a
L {2 )
= uy — qi — it < -1
nT i lui_1]\ /@ o =
i=n+1 i=n+1 [( ) + 1]
ai—1
forj > Ny, or
i 1/a [4
e[ ) -
—u 21+ luA’_1| a = v JZ M. (13)
()
ai—1

It follows that Ay; < 0forj > Ni, a contradiction to Lemma 1. Therefore (12) must
hold.

We now let j — oo in (11). Using (12) and the summability of {g,}, we find
that u; tends to a finite limit uo,. But u, must be zero, since otherwise (12) would
fail to hold. Thus we are led to the equality (9). This completes the proof of the
theorem.

THEOREM 2. Assume conditions (i), (iii) and (iv) hold. Then all solutions of
equation (7) are oscillatory if

lim supRY Z g > 1. (14)

n—oo
i=n+1

Proof. Suppose to the contrary that equation (7) has a nonoscillatory solution
{yn}. Without loss of generality we may assume that y, > 0 for » > N, since the
proof for the case {y.} is eventually negative is similar. By Lemma 1, Ay, > 0 for
n 2 N, so that the equation (7) can be written as

A(@n-1(Ayn-1)*) + gnyy =0, n2=N. (15)
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Divide (15) by y% and use summation by parts formulae [1, Lemma 1.7.4], we have

(A A (A A
aj( Z]) _ ( )’n " Z i+ Z aj.. 1 Yi— 1) )’, 1 -0 (16)
yj yn et 1 imnt1 yt yx 1

forj > n+ 1 > N. Let n be fixed but arbitrary and let j — oo. Because of the
Ay )2
summability of {g,}, if follows from (16) that (12) holds and the limit lim “—(yi)—
j—oo
exists and is finite. This limit must be zero, for, otherwise (12) would fail to hold
Hence we obtain

e (Ayio1)*Ay® \
(Bn) o 3 g 3 2R sy )

i=n+1 i=n+1 i y' 1

which implies that

1/a a 0
A
e S R P (18)
e
n i=n+1

since the second sum in (17) is positive. From (15), we see that {ay, 1/a *Ay,} is
nonincreasing for n > N and so we have

ai .
Yn=YN+ Z —ll/—a— = aylx/aAyan,N, n2N. (19)
a

Combining (18) and (19) give 1 > RSy > gi» n > N, from which it follows that
i=n+1

lim supR? > g; < 1. This contradicts (14) and the proof is complete.

n—oo i=n+1

Remark 1. If a, = 1 then Theorems 1 and 2 are discrete analogue of Theorem
1 of Kusano and Yoshida [9] and Theorem 2.2 of Kusano, Yuki and Akio [10]
respectively.

Example 1. Consider the difference equation

(zn_llAy,. 1“7 ‘Ayn 1) +302% ) yal*lya =0, nx1 (20)

where a > 0. All conditions of Theorem 2 are satisfied and hence every solution of

equation (20) is oscillatory. In fact {y,} = {(—1)"} is such a solution of equation
(20).

Remark 2. The results obtained in {5, 14-19] cannot be applied to equation
(20) to get our results.

THEOREM 3. Suppose conditions (i) and (v) hold. If

Zpa+1¢h = 0 (21)
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then every solution of equation (7) is oscillatory.
Proof. Let {y,} be a nonoscillatory solution of equation (7). Define
_ anAya|*" Ay,
|yal*~'yn

then {un} is a solution of (10) for n > N, we now multiply (10) by p&*! and
summing from N + 1 to n, we obtain

a+1 a+1 a+1
P Un— u + -é us —Ap; § Ps
s=N+1 s=N+1

n pewus-a{[(t,";—:z')"%11“—1}

+ ) PR INYCT =0. (22)
[
as—1
In view of boundedness of pZu, (cf. Lemma 3), we see that
P u, = pu(pZu,) - 0 as n — oo.
By mean value theorem
o0
a+1
] Z a-H Z ]u;l (Z+l ps = Z Wlpgus| < 00.

s=N+1 s=N+1 s=N+1 s

By Lemma 4, we have

I -l (=)
i ) as—1
s=N+1 (|u5_1|)1/a+1
- iy e
N l{[( as_1> +1 1} <) ifa>l
1/ = LN\ e
s=N+1 [(M) a+1r o 10 fus_ |a(|_“x__1|)
(273 Z as—1
=N+ Klux—xl)‘/“H]“
as—1
\ fo<axl
1\ Ve
Since (I—u’—l—l) + 1 > 1, the above inequality yields
as—-1
_ 1/a a
o ol {[(E) ) -] o
Z N < Z lpfu| = < oo.

1 2
s=N+1 [(luiﬂ) o + 1]a s=N+1 & /a
as—|



230 E. THANDAPANI AND L. RAMUPPILLAI

Therefore, letting n — oc, we find that

pilun =Y ortlant ) ua(=dpgt)

n=N-+1 n=N+1
e 1/a a
et [ (L=t 7 1) 1]
ap—1

> PR YT
NS

An—1

From the last equation, we obtain

oo
Z Pff“% <o
n=N+1

a contradiction to (21). This completes the proof of the theorem.

Remark 3. Theorem 3 is discrete analogue of Theorem 2.4 of Kusano and Naito
[11].

Exa;;zple 2. Theorem 3 implies that all solutions of the difference equation
AP Ay 1| ) + 025yl =0, n2 1 (23)

are oscillatory.
In the following we establish oscillation criteria for equation (1) when f e js
of superlinear type.

THEOREM 4. Assume conditions (ii)—(iv) and (vi) hold. If

7 du i du
°< / 7wy’ / Filagyy <o Jorany €>0, (24)
€ —£
« is a ratio of odd positive integers, (25)

and

n | & la

lim > (- > q,~> = o0 (26)
e s=1 s i=5+1

then every solution of equation (1) is oscillatory.

Proof. Assume that equation (1) has a nonoscillatory solution {y,} and we
may suppose that {y,} is eventually positive. Under our assumption Lemma 2 is
true. Since f is nondecreasing, the second sum in Lemma 2 is nonnegative. Hence

[Ayn—-1|a_lAyn S 1 &
f (yn-H) ~ an =

or
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Summing the last inequality from N 2 1 to n, we get

n

1/a
Ay
Zm >S(a2e) @)

s=N i=s41
Define r(t) =y, + (t —n)Ayp,n <t <n+ 1. IfAy, > Otheny, < r(t) € yn11
and ,
Ayn r'(2) < Ayn

F18(yner) = f12(r(0)) T o Om)
If Ay, < 0, then yp11 < y, and (28) also holds. From (27) and {28) we obtain

+1
_dr(r)
/ 7w 2 ] P 2 Z( Z"') @

(N) ¥ i=s+1

(28)

Let G(s) = f

du
then (29) implies that
s fl/a(u) ( ) P

n 1 o l/a
>(L5a) <ovm
s=N \"* i=st1

which contradicts condition (26). Similarly, one can prove that equation (1) does
not possess eventually negative solutions. This completes the proof.

Remark 4. When o = 1 and a, = | then Theorem 4 reduces to Theorem 3.1
of Zhang and Chen [21].

Example 3. The difference equation

_ 2%((n+ 1)* + n®
where B > a > 1 and a, B are ratio of odd positive integers, satisfying all conditions
of Theorem 4, and hence all of its solutions are oscillatory. In fact, {y,} = {(—1)"}
is such a solution of equation (30).

We conclude this section with another oscillation criteria for the equation (1)
when f(u) = |u/fsgnu.

=0, nx1 (30)

THEOREM 5. With respect to the difference equation (1), assume that o < f8
o0
and conditions (ii)—(iv) hold. If @, = >_ qs 2 Oforalln > N > 1 and

s=n+1

3 o oy G B R e

then all solutions of equation (1) are oscillatory.

Proof. Assume that equation (1) has a nonoscillatory solution {y,} and we
may suppose that {y,} is eventually positive. From the proof of the Theorem 4, we
have

A o (—Q—")l/a >0

Bla =
yn+1 @n
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Summing the above inequality from N to n and using (28) we obtain

3 (2)" <o (32)

s=N

since ¢ < B. Again from Lemma 2, we have

(o] B
an(Ayn)* a;(Ayi)* Ayi
AN E Z0EJ T

N,
Z ByoB ’
)’fﬂ i=n+1 ()’i)(}’i+1)
and hence
Ay)® 1 X A
W) Ly, y,;, n:N. (33)
Ynt1 n S Vi
By mean value theorem
Ayn = éﬂMIA)’n when y, < 5 < Yn+1
and therefore
AyE > ByS ™ Ayn. (34)

Using (34) in (33) we obtain

(A;;n)a > i i QsB)’?_lAy: ﬁ Z QsAy.r
Ynr1 L — s iz VSt

ﬁ Z Q:(Qs)llays:‘, RSN

"s =n+1

By~+1 Z QS(Q‘) for n3> N,

s=n+1 as

or

A 1/
ﬁ);:: 2 (BYN+1) ’ [ Z Ql/a} for n>N.

Ynt+1 s=n+1 Qs

As above we obtain

oM [Z( > Q’Mﬂ (35)

t=s+1 %t

since @ < B. Combining (35) and (32) give a contradiction to (31). This completes
the proof.

Remark 5. Theorem 5 is a discrete generalization of an oscillation theorem of
Butler [3] for the superlinear discrete Emden—Fowler equation (1) (a=1and § > 1)
subject to the condition 9, > 0.
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4. Oscillation theorems for equation (2)

Here, we shall obtain sufficient conditions for all solutions of equation (2) to
be oscillatory.

THEOREM 6. Assume conditions (i) and (iv) hold. If

lim inf'f—LE:—). >d>0, (36)

Ju] =00

there exists a positive sequence {h,} such that

n
lim > hyg, = +o0, (37)
n—oo :=1
and
“~ ag(Ahgyy)*t!
s=1 s+1

then every solution of equation (2) is oscillatory.

Proof. Let {y,} be a nonoscillatory solution of equation (2), say y, > O for
n 2 N 2 1, since the proof for the case y, < O forn > N is similar. Let

_1(Ayn_1)®
zn_lza_" I(ay" 1) , n2N+1
Yn_i
since Ay,—; > 0 by Lemma 1. Then
SOn1) _ an(Ayn)® a

a 73 a n—!
Yn—1 yn+1—-1yn—l

Az, = —¢gy

and hence

A a
PO d = B €T O S V) (39)

a a
Yn—1 Yn—t

Since Ay, > O forn 2 N + 1, lim y, exists (finite or infinite). If lim y, = b,
n—oo

FOnt) _ F(B) .

then lim ———= = === > 0. If lim y, = +oo then, in view of condition (36),
n—oo y"_’ b n—oo
n— . rd f(b
lim inf]y =d 2d>0.Leth* = rnm(—, m), from (39) we have
n—oo ¥, 27 b
Ayltlz—l *
Azn1 +2n—— +0°¢. <0, n2N+L (40)
n—1|

From the mean value theorem, we have
A > ays Ay, ifa>l ()
etz ay,‘f_:ll_lAy,,_l fo<a<l1
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forn 2 N + I. Hence from (40) and (41), we obtain

Ay

n—I

Az, + zat +b*q, <0, «

\Y

—
i
=

and )
Ayg—(-_l—lAy"—l

a
n—I

Azp_1 + zZp0 +b*'¢2 <0, O<a<l. (43)

Since {y,} is nondecreasing, we have from (42) and (43)

ZnAyn_y
Ynt+1-1

Az, +a + b*qn <0 (44)

foro > Oandn > N+I+1. Since A(an—1(Ay,—1)") € 0, wehave a,_ 1 {Ay,—1)* 2
an—1(Ay,—1)® and so (44) gives

l/a
1/

a, i

Az,,1+a +b*qg, <0 nZ2N2N+I1+1. (45)

Multiply (45) by #, and summing, we obtain

n
h z
b* > hsgs < Zh;AzS_l -« Z sz = —Nyy1Zq + b, zn, -1

s=N, s=Ny s—l

Z": ahs | e Ahsal® 2, +_1—( Ah, )a+1 e
1/(1 s ahs o (a+l)hs a1

s=N; A5
n
(Ah:)a+1
+ ) la T e
jorvd (a + 1)a+1pg
Using Lemma 4 we obtain

* . as— l Ah ot
b Z hsqs < hN‘ZN‘ 1+ Z a + 1 a+1h
s=N;

This gives contradiction to conditions (37) and (38) and the proof is complete.

Remark 6. When o = 1, Theorem 6 reduces to Theorem 1 of Yang and W.
Zhang [20].

Example 4. The difference equation
A(® (Ayn—1)®) +2%(n® + (n+ 1)*)y2_, =0, n3x1 (46)
where f > o and B, o are ratio of odd positive integers and [ is an even positive

1
integer, satisfy all conditions of Theorem 6 if we take h, = T and hence all of

its solutions are oscillatory. In fact, {y,} = {(—1)"} is such a solution of equation
(46).
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Next assume that conditions (i) and (iii) are satisfied. Let

ho(n Zq, and ‘_(u_)’ >M>0 for |uf=>8>0.
i=n+1 u®
Define
‘ o h1+1/a
o+ i— i
hiin)=M 7+ « ! 1;2) + Mho(n), j=1,2,...
i=n+1 4
and
1
En= Z 1/a
i=1 iy

THEOREM 7. Assume conditions (i), (iit) and (iv) hold. Further assume that
(vii)

and that one of the following conditions hold.

2M>0 for |u/>6>0

(c1) 3. gn = +o0o0, that is ho(0) does not exist;
n=1
(c2) there exists a positive integer j such that h(n) is defined for k =
0,1,2,...,j— 1 but hj{0) does not exist;
(c3)  there exists a nonnegative integer j such that h;(0) exists and

lim sup EZ/*  hi(n) > (M/a)®/e+!,
Then every solution of equation (2) is oscillatory.

Proof. Assume that {y,} is a nonoscillatory solution of equation (2) with
yn > 0forn >N+ 1. By Lemma 1, Ay, > Oforn 2 N + [. Now define

W, = an—l(Ayn—l)a

Va1
forn > N 4 I. Then from the proof of Theorem 6, we obtain
I—H/a
AW, 1 +a——— G + Mg, <0, 2N 2N+1+ 1 (47)
a,_
Summing the last inequality from N, to 1, we obtain
n 1+1/a
W, +az +MZq,\WM_1. (48)
s=N; Y5 l s=N;
W1+1/a W,
Ifz = +o0 then lim 1+——"—m <0or
s=N, a’ l n—oo n Ws
a E 1/a
s=N, a;_y
,,1.13.10 Sup— n1+1/a s-1
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oo 1+1/a
which contradicts W, > 0. Hence ). sl T < . On the other hand from (47),
s=N1a.,

we have AW,, 1 € 0 which imply l1m W, =c 2 0. If ¢ > 0O then it would imply

that E — < 00, a contradiction. Hence lim W, = 0.

n—oo
n=N an l

(c1) If ho(0) = +o00, then from (48) we have

n
Wn < Wy,—1 — MZ gs.
S"—‘Nl
This gives a contradiction.
(ca) If hg(n)is defined fork =0, 1,2,...,j— 1, letting n — oo in (48), we
have

1+1/a
>a Z + Mhg(n). (49)
s=n+1 A5 l
oo 1+1/a 1 co 1+1/a
5
and hence W, > Mho(n). If j = 1 then Z l/a M1+l/a Z e <
s=n+1 a5 s=n+l G5
oo which contradicts h;(0) = +o0. Ifj > 1, then
0 1+1/a
hi(n) = Mt/ g Z 1/a +Mho n)< o Z I + Mho(n) € W,
i=n+1 @i—| i=n+1  Q;_,
In a similar fashion, we can prove W,, > h(n) fork = 1,2, ...,j — 1. Therefore
o hHl/a(i) = yltl/e
j—1 i
Z 1/a S Z 1/a <o
i=nt1 il i=ntl  Fig
which contradicts (c3).
o 1+1/a n W1+l/a
(e3) Since ) < o0, we have for sufficiently large n: Z > <
/ 1/a
=N a, s=Ny G5y
. . , 1
—. Moreover, {W,} is decreasing, we have from the above inequality W) *1/¢ Z 7
s=N; A5}
aja+1
M LS| M/a)*+!
— and hence | ) < % Then, for n sufficiently large
04 s=Ny a /a Wn
(M/a)a/a"'l
hj(") <SWe < W or
a/a+l aja+l
E;z/a.th(n) < En (M/a)
[E,, _ ENI]a/a+1
Therefore

lim sup EZ/**h(n) < (M/a)*/*+,

n—oo
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which contradicts (c3). Thus the proof of the theorem is complete.

Remark 7. If {q,} is eventually negative in equation (2), then the oscillation
and nonoscillation of solutions are discussed in Wong and Agarwal [19].
We conclude this paper with the following example.

Example 6. Consider the difference equation
1iae a 22n* +2n+1) g '
A (": (Ayn—1) ) + TAmr 1 T 0, n>1 (50)

where f8 and o are quotient of odd positive integers. Clearly conditions (i), (iii),(iv)
and (vii) hold. Furthermore,

o0

2s% + 25 e+l

ho( > = p0+! — >0

o(n) ;HCI: Z s~(s+1 Z n+1 Z

and
o+l
o oo 2a+1 o
M% o Z
s=1 \ ¥ +1
111(0) = i + /10(0)

B k(1) = oo
= (s + l)Tl

Hence condition (c;) is satisfied with j = 1. It follows from Theorem 7 that all
solutions of equation (50) are oscillatory. One such solution is {y,} = {(—1)"}.

= M g i( sl
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