
1
Introduction

Modelling of dynamical systems by means of
computation automata is introduced by the physicists John
P. Crutchfield and his team of collaborators in the theory of

from the area of [1,
2]. Unlike the common way of solving the system
differential (difference) equations numerically, the theory
uses computing methods to analyse the time series emitted
from a system, and the computational automata to present
the system model. The introduced interdisciplinary
approach brings in new and challenging problems to be
analysed by the computational and information-theoretic
tools, and opens a great arena for practical programming.
This fusion of physics and computer science motivated our
work, too, from which in this paper we present a variety of
data structures and several original algorithms that were
implemented in our (DSA)
program. Programming of a comprehensive modelling tool
like this one requires a detailed knowledge of the theory
behind it. A more in-depth background of the -machines
theory modelling scheme, aimed for the readers from the
computing, information-theoretic, and broader area, can be
found in the author's paper [3].

The development of the DSA software started with the
work presented in [4]. From the beginning the program was
envisioned as more than just a theoretical tool with limited
practical usability. With its graphical user interface (GUI),
the DSA program enables interactive investigation of
several implemented 1-dimensional dynamical systems,
and should serve as a practical and user friendly scientific
tool. It finds out the system's computational models up to the
level of the stochastic finite automata, which present the
crucial deterministic step of the theory (see the next section,
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Razmatramo dizajn i vremensko-prostornu kompleksnost podatkovnih struktura i originalnih algoritama proisteklih iz DSA programa – alata
mata prema teoriji �-strojeva ava

i
kreirano stablo odabrane visine. U stablu odstabla ili morfo t
(pod)stabla . Teorijska analiza algoritama potkrijepljena je mjerenjem
vremena njihovog kako implementacija znanstveno-programskog alata za modeli

za modeliranje
dinamičkih sustava s pomoću stohastičkih konačnih auto . Učinkovita grupna iteracija generira točke sust i njihove binarne
simbole, te ih pohranjuje u . Riječima ekstrahiranim iz vremenskog niza hran mo dinamički

potom nalazimo morfološki i stohastički jedinstvena p ve, uz pomoć algori ma koji uspoređuje
prema njihovim topološkim odrednicama i uvjetnim vjerojatnostima čvorova nasljednika

izvođenja. Članak ilustrira ranje kao što je DSA, generira paletu specifičnih
algoritamskih rješenja za koje možebitno postoji i šira uporaba.
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or for details [5, 4]). Being based on the object oriented
programming paradigm, the DSA program's foundations
are prepared for easy upgrading, which includes installing
new dynamical systems, adding new data presentations, and
providing overall better functionality.

Aside the many interesting features and
capabilities of the DSAprogram from the programmer's and
user's aspects, in this paper we take the role of a computer
scientist who is interested in the implementation details of
the program, and particularly in the design and efficiency of
its core algorithms. Th will be the main

. To physicists interested in the modelling of
dynamical systems, such analysis can help to understand the
underlying computing complexity needed to build the
model, and to computer scientists it can offer an insight in
several original algorithms that are needed in a
comprehensive programming tool like this. Many of these
ideas and solutions can find their application in general use,
with little or no adaption. Furthermore, we have equipped
the program with time measurement functionality for all of
its key algorithms, so that, besides the modelling task, it can
serve for the performance tests.

The article is organized as follows. Sec. 2 is devoted to
an extra short expos of the -machines modelling scheme,
in order to provide an overview of the tasks that need to be
done by the main program modules. A brief introduction to
the iterative systems is aimed to illustrate how the time
series is obtained from a dynamical system. In Sec. 3 we
describe the algorithms of the program module that iterates
the system orbit points and provides their binary coding.
Here the concept of batch iterations based on the
implementation of a circular buffer is used to assure
efficient generation of millions and billions of points if
needed. In Sec. 4 we deal with the dynamically created
binary parse tree, which is fed with the words extracted
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from the time series. The tree-feeding process is time
consuming if one wants to achieve statistically relevant
number of substrings. This is followed by n original
nonrecursive algorithm for the (sub)tree comparison. The
final stage of the modelling is finding the unique subtrees or
morphs, which is presented in Sec. 5. The theoretical analysis
is backed up by the concrete time measurements and
concluded in ec. 6.

Because of the high volume of this algorithmic
odyssey, in several places we shall be forced to skip more
detailed approach in order to round up the . We hope
this will be recognized not as a deficiency, but as a prospect
for the future work. Also, we wish that a few original
algorithms and programming solutions that follow will make
the rest of the paper an interesting and useful reading.

To build computation automata models of dynamical
systems, their orbit point coordinates should be encoded in
symbolic presentation. The strings of symbols can then be
analysed in a way analogous to the operation of computer
language processors. Physically and epistemologically we
can depict this as a that is installed by
an observer and model er of a dynamical system. The
instrument measures the point coordinates and encodes them
suitably, transforming the orbit into a . This is
generally a string of symbols of indefinite length, in which a
new symbol is added upon every discrete system iteration.
From the time series we extract the strings of defined length,
which shall be called words, and build our automata-based
computational model. In the process we check the model size
on different levels and try to make minimal. On the other
hand, we determine the quantity of information received
from the measuring instrument and tune it in a way that the
information received from the instrument is maximal. What
we have described here briefly is known as the

[5, 3].
We shall elaborate shortly on each of the measuring and

modelling stages, which are implemented in the three main
modules of the DSA program. This will give us an insight in
which data structures and algorithms should be used in each
of the stages and the related modules.

The above described scheme depicts a general procedure
in which we receive a time series from an system.
In order to test the model-building process and the algorithms
it is based on, we shall start from some well known
dynamical system. For this we provide numerical simulation
by of their orbit points. After an orbit point is
determined, it can be "measured" and encoded, which
simulates the tasks of the measuring instrument.

In the description of 1-dimensional dynamical systems
we normally use the iterative equations of the form:
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Modelling of dynamical systems – from binary strings to the
stochastic finite automata

2.1
Simulation of dynamical systems

measuring instrument

time series

measuring
and modelling channel

unknown

iteration
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Here is the system orbit point in the discrete time , and
is the point in the next moment + 1, obtained by the

action of some mapping function . A standard textbook
example of nonlinear dynamical system with chaotic
behaviour is the famous logistic function:
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As we shall later, in order to speed everything up, organize all the tasks

through the concept of , so that a bulk of orbit points will
be iterated first, and only after that, all of them will be measured by
binary instrument.

batch procedures
the
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For it, the interesting range of parameter is 0 4.
The function can be plotted in the versus graph,

yielding the parabola as shown in Fig. 1. The graphical
solution of the equation (2) with = 4,0 is given for the first
13 points of the system orbit. The superimposed identity
line = serves to provide the iteration by mapping the
function result = ( ) back to the abscissa domain, and
to enable finding of the next point = ( ). In the
example shown, we start with the = 0,2 and
make 12 iterations for the total of 13 points. The last iterated
point is 0,99993842…. The system progresses further
with a fully chaotic behaviour. The "graphical" solution
presented in Fig. 1 is in fact drawn after the numerical
calculations done by the DSA iteration module with the
standard double floating precision.
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Figure 1 Graphical analysis of the logistic equation with = 4,0.
Starting from the seed = 0,2, the first 13 points are presented showing
irregular behaviour. The points are "measured" by a course instrument

and then encoded as binary string:  0110111001011…
(6 zeros follow before the next 1).

r
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Here we departure from the classical numerical
description of dynamical systems and from now on use the
language of [6]. In order to discretize the
state variable, the system's phase space is partitioned. To
each of the partitions a symbol is attributed. The basic and
simplest partitioning is binary, i.e. to the left and right
subsets of a domain, measured from
defined by ( ) 0. To each subset we then attribute a
symbol from a binary alphabet, like 0 and 1. In our example

0,5. Thus the seed point is encoded as 0, because [0,
1/2 , and the next point = 0,64 is encoded as 1. The 13 orbit
points are then encoded as the binary string in the figure
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length , our parse tree is a special binary tree with all its
leaves at the same level = . We call it , or
simply , and within it we define of height

. For both of these a leaf is every node at level . Many
of the conclusions made for our specialized (sub)trees are
valid also for the general trees by releasing the leaf criterion
to the standard one (for details on (sub)trees see [11]).

By providing abundant feeds of our parse tree with long
enough portions of the time series, we assure to record all
the word prefixes that appear in the language of the
observed dynamical system. Furthermore, from the counts
that record the prefix appearances in the tree nodes we can
calculate their full statistics. This includes the a-posteriori
probabilities for the next symbol or a string conditioned to
some previous prefix (node).

The must be an unbiased model based solely
on the data received from the system. Within the structure of
our parse tree we search for subtrees of height 1
which are unique in either their "morphology", or in their
stochastic properties. We shall call such unique subtree a

.
Precisely stated, a morph is a class of -equivalence for

all subtrees having the same topology of nodes, and having
all the node probabilities conditioned to the subtree root
within some parameter , 0 1. Since every subtree can
be identified by the string that describes its root node
starting from the parse tree root, two subtrees defined by
and are -equal if the probabilities for the same
downward paths or branches coming from and
are within

, ,

:
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2.3
The structure within structure – morphs and the stochastic
finite automata

δ

δ δ

δ

δ

caption. ore detailed formalism of the symbolic
dynamics in the context of the theory of -machines can be
found in [4].

From some final portion of the time series we extract
words of constant length and analyse their interrelationship
to insight in the system language. Because we yet
have to learn the language, we build our fundamentally
simple by feeding the words of binary
symbols into the . For the basic binary
alphabet is a with all branches of equal
length. To simplify the terminology and to emphasize the
tree similarity to language parsers, we shall call the tree
shortly . Similarly, the process of the tree growing
and of the (sub)word counting will be called or

, according to the context.
The notion of

is recursive
per se. The tree can be also very simply defined recursively
[7, 8], meaning that it is recursive by its very nature. Thus
the tree is indeed the right data structure for the first and
crucial level of our model. And within the main parse tree
we shall search for the smaller trees of fixed height to
explore the "structure within structure", which will be
explained in the next subsection.

As was hinted above, in difference to predefined parse
trees associated with predefined languages, the �-machine
parse tree is initially empty. Its purpose is, at least at first, to
learn the system language by reading the words extracted
from the time series that was emitted by the system. So, we
feed the tree with words of length extracted from the
time series. For every new word and its substrings not
previously found in the time series, the tree will grow new
nodes, while for the repeating words (and its substrings) the
counts in the corresponding nodes will be incremented.

More precisely, every prefix of the word with
length defines a node in the parse tree. Including the
empty prefix which defines the root node, and the word
itself which defines a leaf, there are + 1 prefixes in every
such word. So when we parse the word, its prefixes relate to
nodes. If a node did not exist before, it is created and its
counter is set to 1. If node already existed, its counter is
incremented. The sum of counts on all tree levels is the same
(preserved). Obviously, which nodes will be created and
how much they will be fed, is dependent on the structure of
the time series.

Feeding of the grow and parse tree of height (depth) =
5 from a source that can be described as "no consecutive
zeros" is shown in Fig. 2. The source is in the sense
of the theory of computation, since it can be described by the
regular expression: (0 + e)(1 + 10)*. This simple system of
regular behaviour is more suitable to guide us through the
modelling procedure than thelogistic mapping. There are 16
substrings or words of length 5 that could be fed from the
above series of 20 symbols. Each of the words defines a
unique path and unique leaf among the 2 possible leaves
at the depth 5. Here every word defines 6 nodes, including
the root node at zeroth level. E.g. for the first word in our
example the nodes encountered are: e, 0, 01, 011, 0110,
01101. The non-existing nodes are designated by thin
circles. There are no paths leading to them from the root.

Normally, a leaf of a binary tree is a terminal node with
no descendants. Since all our input words are of the same
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Figure 2 Feeding of the binary �-tree of depth = 5 with words from
the time series = 01101011011110110101… generated by the system
"no consecutive zeros". The first word  01101 creates the nodes on the

bolded path. The last word defines the sixth leaf from the left. The nodes
and paths that are allowed by the rule, but do not (yet) appear in are

shown in dotted lines.
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The downward branches are all possible paths
leading to the roots of the possible subtrees of depth ,
which themselves define further subtrees, etc. The subtree

which is different from any previously found morph
according to the condition (3), defines a new class of -
equivalence and becomes its representative. A morph
represents past-independent -equal prospects for the
future. In other words, it is a causal state with equal
conditional probabilities for its substrings. As such, morphs
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are a natural choice for the description of the system states
[5].

-"equivalence" is not a true equivalence
relation, because generally it is not transitive . This can
influence the completeness of certain algorithms for finding
them (confer 5.2). By allowing certain -tolerance in
equation (3), i.e. by putting > 0, we comply to the
experimental and computational reality that only finite
precision is achievable. When modelling, approximations
are unavoidable. Without them the models would diverge in
the number of states and in complexity.

The procedure of finding morphs starts with the root
node and the subtree it defines. As the first one, it is always
unique and hence a morph. Then the root's left and right
child subtrees are compared to the root morph. If they are
different (and unique), the process continues with their
subtrees while there are new morphs and while we can go
further down the parse tree.

In the example from Fig. 2 we search for the subtrees of
height = 2. There we can spot 3 different subtrees, as
shown in Fig. 3. is the root morph, which corresponds to
the initial state when no previous symbols are emitted from
the system and no symbols are received by the model er.
Because of that, the probabilities for emitting 0 or 1 are
based on the fact that on average our system emits twice as
much 1s as 0s. On the morph diagram this is denoted as

l

δ

δ
δ

2)

L
A

The above analysis leads us to the fully defined
(SFA) for the "no consecutive

zeros" system, presented by the cyclic directed labelled
graph (LDG) in Fig. 4. The SFA accurately depicts the
system behaviour, and does that with the minimal number of
states. SFA are analogous to the finite automata (FA)
with addition of the transition probabilities and the lack of
the final state. Adefinition of the SFAs and their comparison
to the FAs is given in [4].

The algorithms from the DSA program that will be
presented here are implemented in C++ language by
strictly obeying the object-oriented paradigm. They can be
pictured as parts of the three program modules which follow
the modelling stages depicted in the three subsections of the
previous section The model er picks up one of the
implemented systems, initiates the generation of the time
series, and gets the model in the form of an SFA with given
parameters. Thus, as initial step mentioned in 2.1, the
program is expected to provide the iteration of dynamical
systems and the generation of the time series This serves
the purpose of testing the program in the developing phase,
and the research of the systems later on. Also we need to
simulate the binary instrument measurements to make our
measuring and modelling channel complete. So we start
with description of dynamical system iteration.

The basic functionality for dynamical system iteration
is encapsulated in the abstract base class
( ). The class is realized
through its two-level subclasses as is illustrated in Fig. 5.
The 2 level abstract subclasses with extensions and

unify the functionality for dynamical systems with
zero and one parameter, while does for the
rule-defined systems with randomly generated numbers.
Their subclasses finally implement the concrete 1-
dimensional dynamical systems with their specific iteration
functions ( ) (confer eq. (1)).

In order to achieve the statistical relevance of the
reconstructed models, abundant feeds of the parse tree are
required. This in turn requires a very large number of orbit
points to be iterated. To have words of length

Stochastic Finite Automaton
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Simulation of the System and Measuring Channel: From
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does not necessarily imply that because

of the possible buildup of the -tolerance.
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|1 . B Ais  the  left  subtree  of that  occurs

after a 0 is received. The system rule says that a 0 must be
followed by a 1, and hence the sure transition to the right
node. Because of the morphological difference to the root
morph this is the second morph.After 1, the system can emit
either a 0 or a 1 with equal probabilities. Subtree is
morphologically equal to since it has exactly the same
transitions and consequently the same nodes. But,
according to the system rule, because it occurs after 1 was
received, it has equal probabilities for emitting a 0 or a 1. In
other words, it has equal probabilities for going to its left or
right submorph.

If we look to what states the system goes after emitting a
0 or a 1, we can easily conclude the transitions from the
system states. From on emitting a 0 we get to , and on
emitting a 1 we get to . From the only, sure, transition is
to , and from we can get to either or with equal
probabilities. We note that the state is transient. After
leaving it – and that happens immediately after receiving the
first symbol when the phase is caught – the system oscillates
between the and states only.

C
A

A B
C B

C C B C
A

B C

a

Figure 3 Subtrees of height (depth) = 2 found as unique morphs
(system states) in the parse tree from Fig. 2. is the root morph, and
are its left and right subtrees. Having the same structure of nodes, and

are morphologically equivalent, but with different transition
probabilities for the generation of 0s and 1s.

L
A B C

A
C

Figure 4 Stochastic Finite Automata (SFA) for the rule-defined system
"no consecutive zeros". The states are circles. he double circle
denotes the start state (in FA it usually the final or accepting

state!). Each transition is labelled with the symbol that initiates it,
and with the transition probability.

Here t
denotes
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batch iteration
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CB,max
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+ – 1 points must be generated. To assure enough

counts in the leaves of tall and diversified trees, 10 10 ,
or even more, words may be needed.

In our modelling, once the words are fed into the tree,
the points are not needed any more. Hence the idea to
implement a circular buffer which will enable the iteration
of arbitrarily large

reducing the algorithm space
complexity.

To minimize the execution time, every detail is adjusted
for the greatest speed of the algorithm. Thus, the main array
for storing the orbit points is organized as a class-bound
(non-dynamic) member, with fixed number of
maximal elements of type . The user can change the
actual size of the buffer to a number smaller than the
provided maximum (e.g. for the testing purposes). Of
course, because the array is not dynamic, a new compilation
of the program is required to change the maximal buffer
size, but this is a small sacrifice for having the fastest
possible access to the array elements. The present choice is

= 2M + 32 elements.
Naturally connected to the circular buffer data structure

is the concept of , in which the whole buffer is
filled with the orbit points regardless of how many of them
are momentarily requested by the tree feed process (see
4.1). The rationale for this is obvious: what may seem a
redundant approach when a small number of points is
needed, will pay its way when millions and billions of
iterations are needed. For such demanding calculations we
need to reduce the number of intermittent function calls and
other slowing mechanisms to minimum. Modern
computers have the higher levels cache memories that can
contain considerable amounts of data and programming
code, which can further contribute to the efficiency of the
batch iteration concept.

Before getting into performance details we shall inspect
a few basic organizational aspects of the batch iteration. The
used functions are presented in Listing 1. The function

sets the pointer to the array of orbit points
of the type , resets the number of batch iterations
done to 0, and the number of iterated points to 1 (to account
for the seed point). This and the function
make the , which simply fills the
point array to the full. Every next batch iteration must be

�

to

as

a

8 9

)

double

InitIteration

double

BatchIteration

FirstBatchIteration

4

number of points (limited only by the
integer data type that counts them – e.g. in the parse tree root
node), while in the same time

done with , which uses the
function to move the last

points to the beginning of the circular buffer. This is
necessary to maintain consistency of the extracted words of
length = . The further iterations that are done by the

function will start from the point with
index as the initial value (complying to the zero-
based C/C++ indexing style), and calculate the points with
indices from up till the end of the circular buffer
array.

RepeatBatchIteration

PrepBatchIterRepeat uStrl

– 1

uStrl

BatchIteration

uStrl–2

uStrl–1

D
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given

by

To illustrate the functionality of the above base class
functions, we give the batch iteration functions for the two
exemplary systems from 2.1. The first one is 1-parameter
logistic mapping presented in Listing 2. The algorithms are

directly in the C++ code, counting on the good
language definement, precision, and readability by most of
the readers. The first argument is the single parameter
for this dynamical system class, and the second is the string
length . The accessor function provides the
pointer to the base class orbit point array and
gets the number of points in the circular buffer. Let us note
that after all the preparations, the batch iteration boils down
to a loop with the simplest and fastest possible
realization of the iteration function. The access to the array
elements is always done dereferenced pointers, and all
unnecessary operations and

dPar

uStrl Getpdx

GetuNArrPts

for

function calls are strictly
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Figure 5 The hierarchy of the Dynamical System Classes. The abstract,
base, classes are underlined. New concrete classes can be added by

providing the overrides for the iteration functions only. All other
functionality is implemented in the base classes.

4)
The term Listing will be used for the literal or slightly modified excerpts

or integral parts of a program code.

Listing 1 The base class functions used in the dynamical
system batch iterations
CDynSys1D

Listing 2 The concrete batch iteration for the logistic mapping
implemented by overloading the base class functionBatchIteration
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avoided. After the points are calculated in the for loop, the
base class function is called which does the common jobs of
keeping track of the total number of iterated points, counting
the finished batch iterations, and providing the debug
asserts.

The other mentioned override of the
function in the starts in the
same way, as shown in the ListingA2 of Appendix A. For all
subclasses of class the orbit points are
within the unity interval [0, 1], = 0, 1, 2, …, and are
obtained by adequately normalized random numbers.
Because of the calls the random generator function and the
need to obey the system rule, the resulting algorithm is more
complex than for the logistic map. Not shown in the
Listing A2 (because of the length), is that the actual version
of these functions enable also probability-biasing by setting
parameter [0, 1] to different 1/2 for the fair
coin. sets the probability that an orbit point, which is
randomly picked from the unity interval, is in its first half:

BatchIteration

CDS1DRR_NoConsec0s

CDynSys1D_RlRnd

class

of

the one
s

a value from

x n

b

b

n �

�
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The definition is motivated by a simple idea: if the ob-
tained point is to be differentiated later by a binary
instrument adjusted to the middle of the unity interval (see
below), is the probability for 0s, and 1 – is the probability
for 1s. The interesting analysis of the probability-bias
implementation will be omitted from here.

As a quick discourse let us note that despite the rule
defined iterations are algorithmically much more complex
than the quadratic functions like the presented logistic map,
regarding the richness and complexity of the phenomena
produced the situation is just the opposite. The iteration of
the logistic equation leads to incomparably wider range of
orbits: from the simple fixed point, to periodic and very
complex, and finally to fully chaotic and almost random
behaviour [6].

The functionality of the measuring instrument is
provided by the class. According to the
name, its only purpose is to make the binary discrimination
of the system orbit points according to the binary
measurement and encoding function:

x

b b

n

, -

3.2
Binary measurement

CBinInstrument

integer type BYTE) is filled with binary values 0 or 1. With
this, the dynamical system's time series is determined and
prepared for further analysis Its continuity and consistency
for the extraction of the words of length is assured by the

function – here the points are
only encoded. The function is placed right after the batch
i t e r a t i o n w i t h i n t h e a g g r e g a t e f u n c t i o n s

which runs one, and
which runs specified number of

batch iterations. These functions wrap all the
functionality needed for the system batch iteration(s). The
first of them is shown in Listing A1, illustrating also the
implementation of the time measurements.

We shall analyze the space-time complexity of the
iteration and other algorithms by introducing functions:

(  ) = (  ), and (  ) = (  ). Both crucial algorithms
from this program module: for the calculation of orbit points
and for their binary encoding, are simple algorithmic

(IT) with time complexity ( ) being linear in
the number of points :

.

up
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3.3
Complexity analysis of iteration algorithms

TIME SPACE

IT p

p

The constant in front of the linear term in comprises
the time needed for the calculation of one iteration point,
and is the initial preparatory time needed for the first
batch iteration. / is integer division with result for

< ( + 1) , = 0, 1, 2, ….
A total of + 1 new batch iterations are done to assure

that the buffer points are ed (confer 3.1). refers to
the time needed to prepare every next batch iteration after
the first one for the words of length , i.e. to remove – 1
points from the end to the beginning of the buffer. It depends
on the word length as = – 1), where is the time
constant for removal of one point. We can expect that

. When / , the integer division in (6a) can be
approximated with normal fraction to rearrange the
formula as:
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[0, 1] is adjustment point of the binary instrument.
In most cases it must be kept equal to the critical point of the
system: , in order to fulfill the requirement that the
partition of the phase space is [6, 4 ch. 2].
However, for the rule-defined systems of the class

this can be freely altered. One purpose
of tempering the instrument adjustment to a value different
from the standard one in this case = 0,5 could be to
provide compensation for an "unfair" bias with parameter

0,5, as was discussed in the previous subsection.
The binary measurement and encoding (5) is realized

by the simple function in the batch
manner, i.e. for all the orbit points of the circular
buffer at once. An array of bytes (Visual C++ specific 8-bit

� the

(

CDynSys1D_RlRnd

BinMeasurement

)

class’s
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As stated above, is the time needed to call a few concrete
class functions and their base class versions that are
performed just once before the group of batch iterations.
This can be ignored for >> 1, and especially for >>
>> 1. The second term in the parenthesis can be disregarded
for >> , which is the condition for an efficient circular
buffer. E.g. for a with 2M points and the word
length = 16, after performing 2M iterations we make only
15 removals of the points from the end to the start of the
array (see Tab. 1 and the discussion preceding it).

The algorithmic complexity is bounded from below by
the very nature of the problem, and since it is linear in it is
satisfactory. Our programming efforts described in the
previous subsections were aimed to assure the full
functionality of iterations for many different types of 1D
dynamical systems by as little repetition of the code as
possible, while in the same time keeping the time
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coefficients as low as possible. The improvements in the
constant factors do not show in the big -notation, since it
shows only the order of magnitude of the time dependency.
The litt le -notation ( ) ( ) checks if
lim ( (  )/  (  )) = , which for the polynomial functions
means that their highest order term factors are the same [9].
In our case it is the that is crucial for the large number of
iterations, so we can write ( ) = ( ).

Regarding the space complexity, by the use of the fixed
size circular buffer the lowest possible order of space
magnitude is accomplished. If is the memory space
needed for one orbit point, and is the size of a typical
variable, the iteration space is:

t
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The complexities ( ) and ( ) for the binary
measurements are fully analogous to the values derived in
(6) and (7), but with lower time constants. The
total cost of the system simulation and the preparation of the
times series is the sum of the complexities for the iteration
and binary measurement:

T n S nBI p BI p

and space

The base class uses the fundamental,
recursively defined class , which
implements a tree node as the basic constituent of a tree
(confer Listing 3 ). A tree node can be considered as a
minimal trivial subtree that has height 0. For the nodes
we have chosen dynamical allocation of memory. The
rationale for that is simple: the concrete trees of height
may extremely in their size, from the minimal nodes
for the fixed points 00 … 0 and 1 … 1, to the maximum of
2 – 1 nodes for the or tree that has all
possible nodes. Thus, in general case we must be prepared

CABinTree

CBinTreeNode

below
and

D
D

full complete

vary

for the growth that is exponential in . The penalty for the
dynamical allocation of nodes will be er execution time
constants in the tree feeding process, as will be seen in 4.1.

The main piece of information stored in the tree node is
the counter of the word prefixes, which are, as shown in ,
equivalent to the tree nodes. So they will be shortly called
node counts. Furthermore, to organize tree
structure, the minimal information needed is the position of
the two descendant nodes. Since the nodes are dynamically
created, the most natural realization of the tree structure is to
provide pointers to the node's left and right children. To
provide greater flexibility of several algorithms depending
on this fundamental class, two more member variables are
added. The first is the pointer to the parent node. It makes the
implementation of the nonrecursive traversals, as well as a
few other functions (e.g. for the moving among the tree
nodes), much simpler. The second is the node level that

D+1

D
bigg

2.2

a binary
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).1()( ..max, ONsNsnS VarLocvrCBppIT ��� (7)

The number of local and auxiliary variables can be
ignored. The requirement >> keeps the size of the
circular buffer significant, but independent of the number of
points. With the above choice of approx 2M points, the
space of 16 MB spent, which can be considered as quite
small for the modern computers.

Execution time measurements for the batch iterations
with different sizes of the circular buffer are provided in
Tab. 1. It is easily spotted that the small buffers are
inefficient he value of 30 drastic example. E.g. for the
logistic map, by enlarging the buffer size from 40 to 400
elements the speed increased 5,5 times. For the more
demanding iteration function of the no consecutive 0s
system, the time proportion of the buffer organizing
functions is lesser, so that improvement is 2,7 times. We can
conclude a rule of a thumb that by making the buffer 10
times as big as the word length, the improve
significantly, and by making it 100 times as big, we
approach the size of the very effective buffer. Further buffer
enlargements result in no significant improvements
(compare also Tab. 2 in subsection 4.1).

N

N D
Loc.Var.

CB

.
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times

time

Table 1 Execution times for batch iterations of the orbit points. The
word length was = 20. The circular buffer size varied from 30 to
10 000 points. The minimum number of batch iterations needed to

provide the total of 10 orbit points was done (shown in second
column). The third column presents the number of actually iterated

points. The left of the two time columns is the execution time in seconds,

and the right one is the average time per one point in microseconds.
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at least

D
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D = 20, Npts � 106 Logistic Map No Consec. 0s

Cir.
Bff.
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Batch
Iters.

Num. of
Iter. Pts. �t /s

ptsN

t�
/�s �t /s

ptsN
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/�s

30 90910 1000028 285,0 0,2850 337,0 0,3370
40 47620 1000038 152,0 0,1520 211,0 0,2110
50 32259 1000047 111,0 0,1110 165,0 0,1650
80 16394 1000052 65,4 0,0654 118,0 0,1170

100 12346 1000044 54,3 0,0543 106,0 0,1060
200 5525 1000043 35,2 0,0352 85,5 0,0855
400 2625 1000143 27,4 0,0274 77,4 0,0774

1000 1020 1000638 23,1 0,0231 73,2 0,0731
2000 505 1000423 21,3 0,0213 71,6 0,0716

10000 101 1008099 20,5 0,0203 70,6 0,0700

5)
The testing is performed on Wintel platform: Pentium 4 on 2 6 GHz, GB

RAM, with Windows XP operating system.
, 1

),()()()( ppBIpITpBIIT nOnTnTnT ���� (8a)
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The run time measurements for the iteration and binary
encoding as functions of the number of words are shown
in Tab. 2 . ince (see also the next section), the
results of constant time per word confirm (8a), because

( ) ( ) = ( )

The tree data structures are realized with three classes
whose hierarchy is shown in Fig. 6. The base class is
abstract class. The name is derived from

to distinguish our tree from the
general binary tree ( ec. 2.2, 2.3 [11]). The base class
contains all the common functionality for the two concrete
subclasses. implements the grow and
parse tree, which is in the programming context called the

. The realizes the general
concept of a subtree of some other tree. A tree can be its own
subtree. Subtrees are primarily needed in the process of
morph extraction, but serve also for other purposes.
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4
Tree Classes and the Parse Tree Feeding

CABinTree

CMainABinTree
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Figure 6 The hierarchy of the Binary Tree Classes
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simplifies and speeds up some functions needed in efficient
representation of the parse tree. The member variables of
the class are shown in Listing 3.

In the implementation of the tree node as , a pointer
to nonexisting child is assumed to be . For the general
binary trees, f both pointers to children are the node is
a leaf. For our Automata Binary Trees or trees, the leaves
are all nodes at the level equal to the tree height (depth) as
is already commented in 2.2. So, when dealing with
subtrees, we can inspect the node absolute level, deduct
from it the absolute level of the subtree root, and get the
relative node level. If this is equal to the subtree height , the
node is a leaf regardless of the values of its child pointers.

Prior to moving to the main parse tree and its feeding,
let us briefly mention the tree traversal functions
implemented in the base class. In the initial
concept of the DSA program these functions were envisi-
oned to be nonrecursive. The reason for that was to prevent
possible stack overflows due to the nested recursive calls in
complex algorithms. The nonrecursive traversal functions
have more complex algorithms, but are easy to use. They
can be explicitly written for every type of traversal and,
furthermore, they can return the pointer to the next node that
has to be visited. The latter functionality cannot be
straightforwardly realized for the recursive traversals The
traversal order of recursive solutions is embodied in the
recursive function itself, as the relative position of the task
performing statements to the recursive calls [9, 10, 11]
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4.1
The tree feeding algorithm

Having prepared the class to accept
word from a time series, we are ready to grow and feed
the tree. The nodes are dynamically created and their counts
are incremented by Tree Feed ( ) algorithm, as outlined in

and in the description of the node class. Feeding of the
tree with one word is implemented by the function

shown in the Listing 4. The only
function argument is the pointer to the byte containing the
first symbol in the word. Other needed parameters are
mostly the member variables of the base class
and a few remaining are from the node class

. As can be read from the code, they are all
accessed by the accessor functions to straiten the
encapsulation of the classes. All trivial and simple
functions, and particularly the accessors, are declared

. Thus, regarding the access time to the variables,
it will be the same as they are directly addressed from the
place of the function call.

The algorithm follows the idea from Fig. 2. The
procedure is slightly different for the leaves, so we inspect
– 1 symbols first. If the first symbol is a 0 (1), the left (right)
child of the current node is checked. If it does not exist, it is
created with its level recorded and the counter set to 1. In
parallel we build the tree statistics stored in the base class
member variable of the type. It counts
the left and right nodes. The last symbol corresponding to a
leaf is treated separately, to avoid constant level checking.
The procedure is mostly the same, with only difference
that in the tree statistics the number of left right leaves is
updated.

When the model er requests that the parse tree is fed
with words, the function is cal-
led times within an iteration loop. The true solution gets
complicated because for large we also have to update
iteration and binary measurement circular buffers by doing
necessary new batch iterations. This job is done by separate
organizing functions within the class.
Despite the fact that batch iteration may produce more
points than needed (on average a half of the buffer size),
those functions assure that the
function will be executed exactly times, feeding words
into the main tree.

The Tree Feed algorithm time complexity for one word
, expressed by complexity or one symbol that

reduces to the time constant is:

CMainABinTree

FeedWithABinString

CABinTree,

CBinTreeNode

inline

CTreeStatistics

FeedWithABinString

CMainABinTree

FeedWithABinString

s " "

2.2

the
and

l

the

f
,

TF

6)

D

n

n

n

n n

T T

t

w

w

w

w w

TF,w TF,s

s

For each of the three main traversal types a nonrecur-
sive algorithm was designed, resulting in ,

, and nonrecursive
TravrsPreOrd

TravrsInOrd TravrsPostOrd

functions. They all utilize the self referenced pointers in our
tree nodes, including the pointer to the parent node. When
using these functions, each of them must be preceded by its
own initialization function: , , and

, respectively. The practical ability of the
nonrecursive traversal functions to return the pointer to the
next node was then used in the tree comparison algorithm
implemented in the subclass, and in some
other tasks. One of them is the manual step-by-step traversal
through the parse tree. The nonrecursive algorithms were
then compared against their recursive versions for a few
tasks organized within the testing functions. This interesting
subject of general applicability is discussed in a separate
paper [11].

InitPreOrd InitInOrd

InitPostOrd

CSubABinTree

6)
For pure accessors this was always possible. For the calls to subclass

overrides, this was sometimes prevented by the linker.

A comprehensive algorithm that needs time to extract one
word, has time complexity for words:

t
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TF w
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Listing 3 Member variables of the classCBinTreeNode
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All zero-order terms time constants were ignored here
= is the total number of symbols.

Although quite obvious, the derivation was made
explicit to prove that the Tree Feed algorithm s linear in the
total number of words and symbols that are fed into the tree.

, and
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The lower bound is for the two trivial systems with constant
points, and the upper bound is for the full tree. The average
case is, of course, still exponential in the tree height :D

R  Logozar. Algoritmi i podatkovne strukture za modeliranje dinamičkih sustava s pomoću stohastičkih konačnih automata

Listing 4 Feeding the parse tree with a word containing binary
symbols. The main tree height = =

D
D GetuHeight()

.21 l
FFw kn ��� � (11)

For the above criterion to hold also on the leaf level = ,
the request is to feed 2 words, and that is
exponential in . If we combine this with eq . (10), we can
summarize the best, worst and average time complexities of
the statistically proper or :
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The space complexity of the algorithm is proportional to
the number of nodes needed to represent the parse tree as:
= , where is the space needed to store one tree node.
Since the number of the tree nodes varies in the range from
to 2 – 1, the space complexity with the free terms ignored is:
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Let us stress that the exponential growth in the time and
space complexity is in the tree height , which is the size of
our model on this stage (confer 2), and not in the number
of symbols. So the exponential growth is not a consequence
of the algorithmic inefficiency, but the request the
modelling accuracy. For the theory of -machines the
important thing is that the space complexity in this stage of the
model becomes independent the number of words and
symbols emitted a system and read into the parse tree (at
least for the nondiverging systems). Having provided the
abundant tree feeds, we expect that >> , and furthermore

>> 2 . Thus, although the number of tree nodes may
grow exponentially with the tree height, it should be much
smaller than the number of words and symbols extracted from
the time series. We expect that is chosen to be relatively
small, so that the compression of the system presentation is
accomplished.

Tab. 2 shows the results of the execution time mea-
surements for three different feeds, performed on our two
exemplary dynamical systems. The time measurement
function accuracy is below 10 s, but in the multitasking
environment the repeated measurements vary significantly.
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The expected precaution measures were done by turning off
all other applications and several unnecessary processes. Still,
in the functions relying on dynamically allocated memory,
like in the Tree Feed algorithm, fluctuations of up to ±10 %
can be observed.

Besides the unavoidable obstacles that influence the
stability of the measurements, the results are very informative.
The column of each feed shows the execution times per
one word. Batch iteration plus binary measurement times
were already discussed in 3.3. The results for the Tree Feed
algorithm prove that ( , ) = ( ), which is compliant
with (10). the Tree Feed algorithm gets faster
with the larger number of words, and this is probably because
the operating system dedicates the memory accessing

right

Furthermore,
T n D O nTF w w

It is the additional demand of the model precision that will
make the feed time critical in the modelling process.
Namely, if we want to provide statistical relevance of the
node-to-node transition probabilities, and achieve better
accuracy of the model by using lower parameter (eq. 3), a
sufficient number of counts must be recorded in the nodes of
the subtrees that will be compared. The number of nodes

a binary tree of th is in the range: 2

– 1, of which 1 to 2 are on the level , l =0, 1 … . If we want
to achieve the -accuracy, we must require that some
counts are in every leaf,
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where 1 is . E.g.
we can set it to 10 to assure sufficient number of counts and
conditional probability accuracy to be better than for about
an order of magnitude. Obviously the feed factor should be
set even higher , because we are just guessing how
the counts will be distributed in the nodes. In the best case
with only nodes, we shall need the feed with words,

or symbols. In the worst case with 2 nodes on the
level , by requiring on average counts in every node,
the conservation of counts gives:
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subtrees are not equal, we would like to know whether that
happened because of the morphological difference or
because of different transition probabilities for the
morphologically equal subtrees, as will be discussed soon.

The algorithm starts by setting the Boolean traversal
control variable to , and the floating point flag
of combined purpose to zero. Via the pointers and

we shall operate with two tree nodes: the first one
being from tree, and the other from the comparison
tree. Before starting the node by node comparison, we may
try to terminate the algorithm early. That is, if we have built
the tree statistics on creation of the subtree, we can now use it
to immediately discriminate the trees with different number
of the left and right nodes or the left and right leaves. In that
case the special flag value of 2 0 is returned as a sign of the
morphological difference. This can spare a lot of time for the
large subtrees, especially in the cases of the rich structured
parse trees with diversified subtrees. However, in the worst
case of a full parse tree, this will not help at all. In that case all
the subtrees will be full too, and they will have the same
statistics (check the Tab. 4 in 5.2).

If the tree statistics is not different, the subtrees are to be
compared node by node. We first initialize the node pointers
to the tree roots by applying function The
subtree root nodes are compared first and separately from
the other nodes because their relations to the parents must be
ignored (compare this to the definition of morphs as past
independent causal states in 2.3). The descendants in both
roots are checked by function for the four
possible outcomes: none, left only, right only, or both. If this
is not the same for both subtrees, the algorithm terminates

with . If the children structure is the same,
the nonrecursive preorder traversal move is made on both
nodes. If both of the traversals are not done (

) the loop is entered. For the
non-root nodes, besides checking the children structure, the
character of the nodes themselves with respect to their
parents is mutually compared. They should both be the same
type of children to their parent nodes: either both left or both
right child. If this is not true, the subtrees are
morphologically different and the is returned
again. Else, we calculate the both nodes' probabilities with
respect to their root nodes by function. It
gives the probability of a substring starting in the root and
ending in the observed node of the subtree. The absolute
value of the probability difference is stored in , and then
checked if it is greater than the maximal probability
difference . If , the node string relative to the
subtree root is determined by function
and stored in the variable. After the full
topological and stochastic comparison of the nodes, the
traversal move is made he loop is continued till at
least one of the traversal is done. On the exit from the

loop, the flag is set to the value if both
traversals ended at the same time, and if not, on the
morphologically-different flag value of

Let s summarize the flag values of the CT algorithm. If
the subtrees are morphologically different. If

the is within the domain [0, 1] of the probability
function, this is the maximal probability difference found
between two corresponding nodes of the two compared
subtrees, and is the substring which unique
defines the nodes position. From the algorithm it can be
easily proven that if the function returned
which is a valid probability, then the subtrees must be
morphologically identical. Namely, the same type of
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Table 2 Execution times for the batch iteration with binary measurement
(Itr. + B.M) and the Tree Feed algorithm, measured for the two exem-

plary dynamical systems. The tree was fed with 10 , 10 , and 10 words
of length = 20, after skipping the first 100 transient points. The
circular buffer size was 10124 for the first feed, and the

default value of 1048608 for the other two. T imes spent
on the overhead functions and total execution times are included.
The column of each feed is the average time per one word.
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Algorithm
�t /s
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Logist. Map

Itr. + B.M. 0,0004 0,035 0,0359 0,036 3,49 0,035

Tree Feed 0,0523 5,228 2,1636 2,164 119,79 1,198

Overhead 0,0012 0,121 0,0025 0,003 0,10 0,001

Total 0,0539 5,384 2,2020 2,203 123,38 1,234

No cons. 0s

Itr. + B.M. 0,0008 0,083 0,0826 0,083 8,20 0,082

Tree feed 0,0187 1,867 0,5460 0,546 51,20 0,512

Overhead 0,0016 0,163 0,0048 0,005 0,12 0,001

Total 0,0211 2,113 0,6334 0,634 59,52 0,595

mechanism to the currently running and dominating
process. This is followed by a significant decrease of the
overhead functions' average time per one word.

Another interesting thing is that the access to the tree
nodes by words from a chaotic system like logistic map is
more than 2 times longer than for the regular system no
consecutive zeros".

Additional measurements showed that the execution
time dependence on is linear for 12, i.e. for the total
occupied memory up to 80 KB. However, it tends to raise
more than we would expect fr a linear time complexity
for > 12 and for larger amounts of dynamically allocated
memory. We can suppose that is due to the behaviour of
the memory manager, but this requires further exploration
and confirmation.

Once the parse tree is fed with words, we seek for the
subtrees of unique morphology and transition probabilities
(confer 2.3). In that process the subtrees must be mutually
compared. This is done by ( ) algorithm
implemented in the subclass function

, presented in the Listing 5. This nonrecursive
function operates on subtree and compares it to the
subtree defined by pointer. Before explaining it, let us
stress that the objects of the class use the
parse tree nodes that were formed in the tree feed process.
So, the subtrees do not create any additional nodes. On
creation, only the inherited base class member variables,
like height, root pointer, etc., and two more subclass
members are added. E.g. it is practical to have the root node
string, which, together with the height, uniquely defines the
subtree within the main tree. Another thing that may be, and
is normally done on the subtree construction, is gathering its
statistics. The (sub)tree statistics can be used for the tree
comparison, and can be also exposed in the DSA program
afterwards.

The function not only discriminates the
subtrees according relation in (3), it
provides the model er with more useful information. If the

"

om

this

also
l

D D

D

Compare Trees

≤

4.2
The tree comparison algorithm

CT
CSubABinTree

CompareTo

this

pSTr

CSubABinTree

CompareTo

δ-equivalence
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node comparison is performed. Thus, we possibly
overlook the bigger probability differences and even
morphological discrepancies further down the tree. In other
words, not only that such an algorithm does not provide
valuable modelling information (stated in the point (ii) above),
but it also cannot determine if the subtrees are
morphologically or only stochastically different.

The time complexity of the compare trees algorithm is
analogous to the space complexity of the tree feed algorithm in
4.1.

For subtree of height having from to 2 – 1
nodes, the time complexity ( ) of the tree comparison
algorithm is in the range:

can

It is linear in the number of the tree nodes: ( ) =

( ). a

N T N

O N

Nds Nds

Nds L L

T L

L+1

CT

traversal passed through all their nodes, showing the same
node topology for each node . So, the returned flag does
show the maximal probability difference between the nodes
defined by the string in the morphologically
equivalent subtrees.

Two important things must be stressed about the CT
algorithm as realized by the function:
i. It terminates either on the first morphological

(topological) difference found between the tree nodes, or:
ii. It does a complete comparison of all the nodes in two

morphologically equivalent subtrees, returning the
maximal probability difference and the corresponding
node string, as was just proven above.

Instead of solution (ii) above, the comparison could have
terminated as soon as the probability difference greater than
is found. But in that, on average faster solution, only the partial

pair

sMaxDiffNd

CompareTo

δ

Listing 5 Function that implements the Compare Trees (CT) algorithm
for comparison of two subtrees

),12()( 1 ��� �L
NdCCTNdC tLTLt (14a)

).2()()( 1��� L
CT OLTLO (14  )b

Here is the average time needed for comparison of one
pair of the related tree nodes. Taking into account that we can
discriminate two morphologically different subtrees by
comparing their tree statistics, we get even better lower bound:

tNdC

).()1( LTLtO CTNdC �� (14 )c

This leads to the average time complexity of:

).2(2)( LL
NdCaveCT OtLT �� (14d)

The CT algorithm operates on the space of two subtrees,
= ( ) plus the small fixed space for storing the subtree

data. Since the subtrees use the main tree nodes, its
space cost is ignorable: .

Being equipped with the (sub)tree comparison algorithm,
we are ready to search for all the subtrees which are either
morphologically unique, or have unique conditional
probabilities of their nodes. To assure proper encapsulation of
the extracted morphs, they are organized in class

(Automata Tree Morphs). The technical name
reflects the fact that in general we search and find several
unique subtrees, or morphs. f they satisfy the additional
condition that their transitions are mutually closed, i.e. that
each transition from every morph goes to another defined
morph, the object will present a regular SFA
model of the system. The class and its most important
member variables are shown in Listing 6. Most of the
variables used here have a clear meaning.

The concept of , a type of subtree which
the pointer points to, needs some
clarification. This

S O

traversal tree

CT 2 ,
actual

Only i

t
to

the

less than

L+1

S O

D L

L

D L

L

CT,cost = ( )

is a subtree that grows from the main tree
root node and has height – . eaves of the traversal tree
are the -level nodes ( lowest on the picture) from
which we can construct subtrees of height as potential
morph candidates. So, when the morph-finding algorithm
reaches the traversal tree leaf level = – , it cannot
continue further down because the subtrees below have
height and could not be regular morphs. For the
same reason the transitions from the traversal tree leaves to
their child subtrees cannot be considered as regular either. We
say that such transitions "do not close" to the previously found
morphs. Thus, as soon as the morph searching algorithm gets
to the leaf level of the traversal tree, the morphs do not

1

The l
maximal

would

5
Finding morphs and the system's SFA

CATrMorphs

CATrMorphs

m_pTravrsTree

l
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Appendix B (Listing B1). should be easily
readable by following the idea outlined in FM.2, and the
comments in the code. The whole algorithm is governed by

function, very elegantly rea-
lized in C++. The Listing 7 shows its slightly simplified
version without the general, prolonged argument list, and a
few statements for checking the internal consistency.
In short function creates the root
morph and returns the pointer to its root node (the same as the
main tree root node). If it is not , we start the morph
search and iteratively call function from
within the loop. member
variable is a dynamical pointer array template of type

, and it holds the pointers to the created
morphs. FM.3, n the condition we
compare the incremented index to the current size of
the dynamical array.

.
Having searched through the parse tree for all the unique

subtrees, our modelling result is finished.

Fig. 7 an example of
the model report from the DSA program. The SFA of the

"no consecutive 0s" system from 2 is fully and
accurately reproduced ( = 5, = 2, = 0,001). After an
abundant feed with 10 strings the reconstructed SFA is
with 10 of the predicted model from Fig. 4. The IDs of
the left and right submorph and their conditional
probabilities fully define the SFA. Several additional data
that are extracted during the modelling and are shown in the
SFA report window can help an intelligent model er (agent)
to obtain better results within acceptable modelling space and
time.

As first we shall comment on a special property of the
above algorithm. From the step (confer also Listing B1)
we conclude that the algorithm will not generate new morphs
if the morph candidates are recognized as equal to the already
existing morphs. in closing of the morphs
transitions between insofar found morphs and
termination of the algorithm. The subtrees that are lower than
the last compared morph candidates are not investigated at
all. In some branches of the main tree this may happen later,

in the others sooner, depending on the main tree structure.
We summarize the consequences of this in the following
conclusions:
. The FM algorithm is . In general case it does

not investigate all subtrees of height within the main
tree of height ( , = 1, 2, …).

ii. Property (i) helps the termination of the algorithm, and
the formalization of the found subtrees and their mutual
transitions as a regular SFA.

iii. The investigated correlations within the words of
length can be as short as + 1 (the root morph child
subtrees are always investigated), and prolong down
to the length if all possible subtrees are investigated.

iv. The lack of thoroughness can be justified by the fact that
as we go down the traversal and the main trees, the
statistical significance and the probability accuracy
decreases as the counts in the tree nodes decrease.

FindAllMorphs

ASSERT

FindRootMorph

NULL

FindChildMorphs

do – while m_MrphPtrArray

CTypedPtrArray

while

iMI

FindChildMorphs

, the

to i

shows

Sec.

s

l

'
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i
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N

;
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D L

L

D L D D L

w

D L

D

δ
7

in �
–4

5.2
The analysis of the Find Morphs algorithm

FM.2

superficial

≤

D

The function

which can be

According

If there are remaining morphs enlisted
by the function , the algorithm continues
the search for their child morphs. Else it ends with the total of

morphs found

In a short
digression from the algorithmic topic, let's take a look at the
final result of the DSA program.

testing

This will result
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Listing 6 The Automata Tree Morphs class for the unique
subtrees (morphs) and the Stochastic Finite Automaton (SFA)

Listing 7 Finding all morphs in the parse tree

form a regular SFA. This is recorded by setting the
variable to .

To find the morphs and store all their relevant
data, we proceed according to the following sketch of the

( ):
Create a subtree of height , 1 , with

root in the main tree root node. By definition this is a unique
morph, so store it in the list at position = 0;

the -th morph
the

condition is – . reate a
temporary subtree from the root's left child node (if it exists),
and proclaim it to be a morph candidate. Compare the
candidate will all the morphs in the list. If it is unique, either
morphologically or only stochastically, the list and
store the morph's transition data in the list of the morph's
transitions (the list parallel to the morph list). If the morph
candidate is not unique, delete it. Repeat the same procedure
for the right child subtree (if it exists).At le –

The result of this step is that either 0, 1 or 2 morphs were
added to the list, together with their transition probabilities.

Increment the index + 1. Check if new
morphs were added to the list in FM.2: if <

go back to step FM.2, else finish the algorithm.
The step FM.1 is realized by the simple function

. The core of the algorithm in step FM.2 is
implemented by function . It is
straightforward but a bit lengthy, so it is left for the

the

For

c

vel <

m_bMrphTrnsClsd false

FindRootMorph

FindChildMorphs

5.1
Find Morphs algorithm

Find Morphs Algorithm

L L D

i
i

L l

l D L

L

i i
i

FM

FM.1

FM.2

FM.3

≤ ≤

≤

l D

number of list
elements

←

unique

inspect if its child subtrees of
height can be created the morph's root at level

add it to

at least
one candidate must exist, but it does not have to be unique.

(for
) If not, go to FM.3. If yes,
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Figure 7 The SFA model for the system "no consecutive zeros" obtained
by the DSA program. The outer dialog box shows that one model (a

object) was created, with = 2, = 0,001. The total of 3
morphs are found of which 2 are morphologically unique, within the
main tree of height = 5. In the inner box, the 3 found morphs are

listed. $ denotes morphologically unique morphs. Otherwise ID of the
earliest "twin" is written, together with the maximal probability

discrepancy between the morph and its twin. The IDs of the left and
right submorph and their conditional probabilities fully define

the SFA.

CATrMorphs L

D

δ

system's

To inspect the above , and
enable a thorough comparison of all the subtrees, full
traversal versions of the algorithm are designed
( algorithms). Their description and
analysis, including some epistemological implications that
can be deducted, will be presented elsewhere.

The time complexity analysis of the Find Morphs
algorithm is lengthy, so here we present only the results.

-
FM

Thorough Find Morphs

influence of the shortcomings

With the tasks of the FM.2 step that only check the
existence and prepare the morph candidates (accomplished
within the function), we shall associate
time constant . Here the subtree comparison is not
included. In each step maximally 2 morph candidates can be
found. On their creation, time is spent per candidate node
to gather the subtree statistics. Both candidates are compared
to all the previously found morphs. If they are recognized as
unique, they are added to the morph list. Accounting for the
worst cases of both the FCM and the CT algorithms, the time
complexity for the full parse tree with ≈ 2 nodes is:

FindChildMorphs

t

t
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NdTS

Nds
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t

LDT
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δ

δ

The assumption here is This worst case
happens if the probability differences greater than are
found between otherwise morphologically equal (full)
subtrees. Obviously, this can be caused by too low , as
shown in the last column of Tab. 4 for logistic map. The time
complexity is severely exponential in the model parameters,
but less than quadratic in the number of the tree nodes. If we
assume that the average number of the subtree comparisons
occurred, and further, that on average only one new morph
candidate is found, the complexity gradually decreases. The
typical cases are summarized in Tab. 3. The best cases are for
periodical systems (case 1), and when the root morph
candidates are equal to the root morph (case 2). Depending
on the tree structure, other low-order time complexities can
occur. In case 3 the subtrees are discriminated by comparing
their statistics in time independent of their structure. The
cost is time needed for gathering the node statistics.
However, it is spent only once on the creation of the subtree.

2 >> 1.

As for the space complexity, FM algorithm uses the tree
nodes from the main tree. Thus it operates mainly within the
space of complexity as determined in (13). The little
constant extra space for the morph candidate's subtree data

D–1

T

T
CTS

TS

.

Table 3 The range of the time complexities for
the Find Morphs (FM) algorithm, from the best to worst case

T D LFM ( , )

can be neglected. The total of morphs and their
transitions are stored in the lists of size with

The number is mostly governed by the
character of the system, and only indirectly by If
we introduce the space constant as the total space needed
to store the morph's pointers and transition data of one
morph, for the space cost we can write:SFM,cost

,

2

N

N N

N

D L
s

Mr

Mr Mr

Mr

Mr

s

s s

s

O( )

and .

�
D L– +1 – 1.. . . .

).(),( MrsMrsMrFM,cost NONsLDS �� (16)

Unless the number of found morphs explode , the algorithm
mostly uses the storage of the tree feed algorithm.

If the tree feed is insufficient, the number of morphs
can explode because of the insignificant statistics. In this case
we must either release or enlarge the tree feed, or lessen the
correlation length (if allowed).

(the right columns)

s

The execution times behave as expected from the
previous deliberation. If the number of words fed into the tree
is abundant with respect to the selected (confer 4.1), the
number of morphs found will reflect the structure of the
source.

In Tab. 4 we have summarized the results of the FM
algorithm for three different feeds of the parse tree. For the
logistic map, the lowest feed with 10 words is insufficient for
the morphs with = 10 even with the loose = 0,01. The
morphological differences appear on the levels 10 because
some nodes are not formed yet the algorithm inevitably
finds that all possible subtrees are morphologically unique
morphs. By lowering to 9 we diminish the depth of our
search and the length of correlation, to find only 1 morph. For
the system "no consecutive zeros" th is
sufficient to produce a regular SFA for = 10, = 0,01, but
with nonminimal number of . For the higher accuracy
of = 0,001, from the possible 375 subtrees even 276 are
morphologically unique, contributing to the total of 287
morphs (76,5 %).

With the feed of 10 words, we can establish some of our
results on the "medium" accuracy level (the left columns)

for both systems we get an explosion of the morphs
for the higher accuracy . For the logistic
map, the maximal number of morphologically different mor-
phs (2047) indicates that the subtrees on the er levels are
not yet full. The explosion in the number of subtrees checked
and the morphs found resulted also in the blast of the
execution times. For the first system the number of subtrees
recorded and checked rose from 3 to the maximal 2047, and
the execution time rose by factor of almost 10 ( 13 times
more). This should resemble the jump from the cases 1 and 2
to the case 3 in Tab. 3.

Even bigger growth factor of execution times can be
spotted in the last two columns for the logistic map – 7,3×10 .
Since in that case all the subtrees are full and have

δ

δ

δ

δ

δ
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the same morphology ( ), all the subtrees' nodes are
compared. Every encountered subtree is enlisted, thus
enlarging the number of the subtree comparisons for 2 with
every added morph. This corresponds to the worst case in
Tab. 3. To back up these conjectures with more quantitative
arguments, we would need to have better insight in the time
constants, especially those connected with the dynamical
memory managing of the operating system (confer
comments under Tab. 2).

A programming endeavour that implements an
innovating scientific application requires the use of suitable
data structures and algorithms, many of which have to be
tailor-made. In our implementation of the -machines
theory by the DSA program this is shown to the full. An -
machine model of a dynamical system is expressed directly
by the interrelationship of the data structures excerpted
from the input data. After simulating a dynamical system
and providing a time series that is being fed into an -parse
tree, morphologically and stochastically unique -subtrees
are found.

. The realization of this in-
terdisciplinary modelling scheme gave rise to development
of several original programming concepts and solutions. A
few of the included algorithms can be considered as rather
fundamental and generally applicable.

The used data structures and the accompanying
algorithms are presented and analysed for their time and
space complexities. Besides the calculated time depen-
dencies, time measurements for the crucial modelling steps
were given. This was used to illustrate the influence of the
size of our circular buffer on the performance of the batch
iterations. Also, we have explained the properties of the
time-critical Tree Feed algorithm. It is linear with respect to
the number of words fed into the tree, but becomes
exponential in the tree height because of the statistical
demands of our modelling scheme. The time measurements
back up our predictions accurately for the algorithms that

N

�
�

�
�

Mr ,mds = 1

6
Conclusion

They are recognized as system states of the
stochastic finite automaton model

use nondynamic memory (the system iteration and binary
measurements), and approximately for those with data

in dynamically allocated memory (the Tree Feed and
other algorithms operating on the tree structures).

Among more complex algorithms we have presented an
original nonrecursive version of the Compare Trees
algorithm. It compares two binary (sub)trees hav
identical morphological structure, and if so, it determines
the greatest conditional probability difference between the
corresponding nodes. The algorithm is thorough, in the
sense that for the two morphologically trees, it will
traverse through all the nodes using the nonrecursive
preorder tree traversal algorithm [11].

Our modelling scheme culminates in the Find Morphs
algorithm. Its crucial function is ,
which uses the above Compare Trees algorithm to compare
a morph candidate subtree to all the previously found
unique subtrees or morphs, and to enlist it to the morph list if
it is unique itself. The function is called from within the

function, which is characterized by a
superficial algorithm that will stop if no new morphs were
added to the list. The derived time complexity order of
magnitude for this algorithm ranges from the constant, to
linear, and finally to exponential dependence in the tree
height. It is found to be generally consistent with the
measured execution times.

In this comprehensive exposure of the subject we have
tried to give the complete picture. This forced us to have left
out several interesting details and a few special subjects for
separate elaborations. From those, the comparison of the
recursive versus nonrecursive traversals is given in [11]. In
the similar manner the implemented nonrecursive version
of the Compare Trees algorithm should be compared to its
recursive version. Another interesting topic is the
presentation and analysis of the Thorough Find Morphs
algorithm announced in5.2.

We hope that this presentation of our work provided
valuable information to the readers from both the physical-
model ing and the computer science provenance.
Additionally, if some of the presented data structures and
algorithms find a more general use, the primary goal of this
paper would be even surpassed.

stored

first for ing

equal
ir ,

l

FindChildMorphs

FindAllMorphs
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Table 4 Results of the Find Morphs (FM) algorithm for the two
exemplary dynamical systems. The tree of height = 20 s fed with

words, to obtain morphs of height and -accuracy. The maximal
number of subtrees (equal to the number of nodes in the traversal

tree) is 2047 for the first system and 375 for the second.
: = number of subtrees recorded and checked, = num.

of morphologically different morphs, = = total num. of
( ), /s = execution time in

seconds. Regular SFAs are marked with the check sign.

D N

L
N

Legend N N

N N

N N N N T

wa w

St,max

St,rc Mr ,md

Mr ,tot Mr

Mr ,md Mr ,tot St,rc St,max FM

δ

s

s s

s smorphs, � ��
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Logist. Map � � �

L = 9 10 10 10 10 10

δ = 0,01 0,01 0,001 0,0001 0,0001 0,00001

NSt,rc = 3 2047 3 2047 3 2047

NMr ,mds = 1 2047 1 2047 1 1

NMr ,tots = 1 2047 1 2047 1 2047

TFM/s 0,0010 0,1780 0,0022 18,58 0,0023 1826,8

No cons. 0s � � �

L = 10 10 10 10 10 10

δ = 0,01 0,001 0,005 0,001 0,0001 0,00001

NSt,rc = 8 288 6 257 6 288

NMr ,mds = 2 276 2 5 2 276

NMr ,tots = 4 287 3 255 3 287

TFM/s 0,0014 0,0180 0,0009 2,111 0,0009 2,724
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double dx;
// Seed is initialized by InitIteration func.
//
if(*(p - 1) >= cd05)
{

dx = double(rand())/dNorm; // 2 parenth.
if(dx < cd05) *(p++) = dx;
}
// 2nd parenthesis in the regular expression:
while(p < p1 - 1)
{
if(dx >= cd05 )  // The prev. rand. num. (1)

*(p++) = dx; // stay unused, use it here.
else // Gener. 1, if not done before, or:
*(p++) = cd05 + double(rand())/d2Norm;

dx = double(rand())/dNorm;
if(dx < cd05) *(p++) = dx; // – generate 10.

}
// The case when 1 symbol was generated:
if(p < p1) *p++ = cd05 + double(rand())/d2Norm;
ASSERT(p == p1);
CDynSys1D::BatchIteration(uStrl);

}

Checking the previous point:

hasChldrnType CATrMorphs::FindChildMorphs
(const float fDelta, const int iMI)

{
CSubABinTree* pSubTr;
UINT uNMrphs = mrphTrnsPtrArr.GetSize();
float fFlg; // Local flag variable.
float fMinDiff;  // Minimal delta-difference.
int iMinDiff;   // Index of the morph for

// which fMinDiff is found.
CString sMaxDiffNd;
hasChldrnType chldType, newMorphs;
CBinTreeNode* pMRtNdNw;  // A node pointer.
CTrMorphsTrans* pTrnNw; // A mrph. trans. ptr.
const CBinTreeNode* pMRtNdMI =

mrphPtrArr[iMI]->GetpRoot();
// Pointer to the morph's transition:
CTrMorphsTrans* pTrnMI = mrphTrnsPtrArr[iMI];
newMorphs = none; // Initialization.
// If there are no children, by def. of the
// CABinTree this is the tree leaf level:
chldType = pTrvrsTree->HasChildren(pMRtNdMI);
if (chldType == none)
{
m_bMrphTrnsClsd = false;
switch(pMRtNdMI->HasChildren())
{
case leftOnly: pTrnMI->m_iLSubMrph = -2;

break;
case rightOnly: pTrnMI->m_iRSubMrph = -2;

break;
case both: pTrnMI->m_iLSubMrph = -2;

pTrnMI->m_iRSubMrph = -2;
break;

}
}
else
{
if( (chldType == leftOnly) ||

(chldType == both) )  // Check the left
{ // child subtree.

fFlg = fMinDiff = 2.f;
iMinDiff = -1;
sMaxDiffNd = "";
pMRtNdNw = pMRtNdMI->GetpLChild();
pSubTr = NewSubTrMrphCand(pMRtNdNw);
// Compare the subtree to all the morphs
// in the array:
UINT uI = 0; // uI index is needed below.

for( ; (fFlg > fDelta) && (uI < uNMrphs);

uI++)
{

nd
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A single batch iteration (either the first one or some later),
which includes the binary measurement. This function illustrates the
execution time measurement by help of the class object. The
local variables storing the measured times and the numbers of iterations
done are updated by function.

Iteration of the rule-defined system “no consecutive zeros”
with randomly generated numbers. For the consistency reasons the random
numbers are normalized to the interval [0, 1) (statements for and

).

Listing A1.

Listing A2.

CHRTimer

UpdateFeedTmAndNStrFed1

dNorm

d2Norm

BatchIteration(UINT uStrl)

Regular expression: (0 + e)(1 + 10)*

UINT CDynSys1D::DoABatchIterInclBI
(CBinInstrument* pBI, bool bFrmLastPnt,
UINT uStrl)

{
UINT uNItr;
CHRTimer hrTimer; //
double dtsDur; // Temporary time duration.
if( m_uNBtItrDone == 0 || !bFrmLastPnt )
{
hrTimer.StartTimer();
uNItr = FirstBatchIteration();
dtsDur = hrTimer.StopTimer();

}
else
{
hrTimer.StartTimer();
PrepBatchIterRepeat(uStrl);
uNItr = BatchIteration(uStrl);
dtsDur = hrTimer.StopTimer();

}
UpdateFeedTmAndNStrFed1(dtsDur, uNItr,

m_dPtItrTm1, m_uNPtItrtdTm1,
m_dPtItrTm2, m_uNPtItrtdTm2);

if(m_bInclBinInstr)
pBI->BinMeasurments(this); //Bin. measurement.

return uNItr;
}

void CDS1DRR_NoConsec0s::

{
//
_ASSERT( uStrl >= 1);
if(uStrl == 1) uStrl++;
const double cd05 = 0.5;
const double cd20 = 2.0;
double* p = Getpdx() + uStrl - 1;
double* p1 = Getpdx()+ GetuNArrPts();
double dNorm = RAND_MAX + cdSmall1;
double d2Norm = 2.0 * RAND_MAX + cdSmall1;
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fFlg = pSubTr->CompareTo(mrphPtrArr[uI],

sMaxDiffNd);
if(fFlg < fMinDiff)
{
fMinDiff = fFlg; iMinDiff = uI;

}
}
if(fFlg <= fDelta) // Subtree delta-equal
{ // to (uI – 1)-th morph.
if(pTrnMI->m_iLSubMrph == -1)
{
pTrnMI->m_iLSubMrph = uI - 1;
pTrnMI->m_fLSubProb =

pSubTr->SubTreeProblty();
}

delete pSubTr; // Delete after new!

m_bMrphTrnsClsd = true; // The child
// subtree is a previously found morph.
// The morph transitions are closed.

}
else // The subtree is a new morph!
{
pTrnMI->m_iLSubMrph =

mrphPtrArr.Add(pSubTr);
pTrnMI->m_fLSubProb =

pSubTr->SubTreeProblty();
pTrnNw = new CTrMorphsTrans

(pSubTr->GetsRoot(), fMinDiff);
pTrnNw->m_iPrntMrph = iMI;
pTrnNw->m_iMinDiff = iMinDiff;
pTrnNw->m_sMaxDiffNd = sMaxDiffNd;
mrphTrnsPtrArr.Add(pTrnNw);
newMorphs = leftOnly;

}
}

if( (chldType == rightOnly) ||
(chldType == both) )  // Check the right

{ // child subtree.
// The code for the right child subtree –
// - analogous to the code for the left
// subtree:

... ... ...
}

} // (else)

return newMorphs;
}
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