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Summary 

 
In this study the correlation between lag factor G and Page´s mathematical model parameter n was developed. Using the 
newly developed correlation the presence of internal or external resistance to moisture transfer during thermal drying can be 
verified. As modeling tools Artificial neural networks (ANN) and Adaptive neuro-fuzzy inference system (ANFIS) were 
used. The best model for determination and modeling of drying curves was selected using coefficient of correlation, chi-
square, mean bias error, root mean square error and relative percentage error. Multilayer perceptron (MLP) ANN model with 
two hidden layers, nine neurons in each hidden layer, trained in 2500 epochs with hyperbolic activation function was found to 
be the most suitable for prediction of lag factor G values. The optimal model was used to develop new G-n correlation in 
polynomial form. When the drying behavior of particular material is described by Page´s model and the parameter n values 
are in the range 0.6<n<1.9 new correlation can be used to calculate the lag factor G. 
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Introduction 

 
When various types of materials and driers are taken 
into consideration, there is no simple and elegant way 
for description of the drying kinetics (Sander et al., 
2010). If one material is dried in different dryer types 
under equal conditions it produces different drying 
curves (Prlić Kardum et al., 2001) or if several 
materials are dried in one dryer type under equal 
conditions different drying curves will be produced, as 
well (Jurendić, 2010). Using the same mathematical 
model for description of drying curves in the first or 
second case mentioned above (one material-different 
dryer type; different materials-one dryer type) several 
values of mathematical model parameter can be 
obtained. The study of drying behavior of different 
materials has been of great interest for many 
researchers for a long time. Many mathematical 
models have been used to describe the drying 
processes, but thin layer drying models are the most 
common models used nowadays (Mohammadi et al., 
2008). Thin layer models are equations aimed to 
describe the drying phenomena in a combined way, 
despite of the controlling mechanism, and have been 
used to estimate drying times for several products and 
to access drying curves (Guiné et al., 2009). Several, 
more or less complicated, empirical mathematical 
models which can be used to describe drying kinetics 
are available in literature. Each of such models has one 
or more parameters that are represented as a function 
of drying conditions (Mohammadi et al., 2008). There 
are two models of a particular interest for this work, 

Henderson-Pabis and Page`s model. The aim of this 
study is to develop new lag factor G and Page´s model 
parameter n correlation G-n used in indication of the 
resistance (internal or external) to moisture transfer 
during drying. In order to estimate the best correlation 
between experimental data of lag factor G and 
parameter n Artificial neural network (ANN) and 
Adaptive Neuro-Fuzzy Inference System (ANFIS) 
were used as modeling tools. 
 
Theoretical background 

 
Henderson-Pabis model 

 
Henderson-Pabis model for describing of drying 
kinetics is defined as follows (Mrkić et al., 2007): 
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G is the lag factor, indicating the internal resistance in 
the wet solid to moisture transfer during drying (Dincer 
and Hussain, 2004). Lag factor G can be also defined as 
the indicator of magnitude of both internal and external 
resistance of an object to the heat or moisture transfer 
in course of drying time (Dincer and Dost, 1995; Mrkić 
et al., 2007). 
As shown by Dincer and Hussain (2004) using lag 
factor G the Biot number Bim can be calculated through 
Bim-G correlation. Bim-G correlation was successfully 
applied for microwave drying of lactose powder 
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(McMinn, 2004) and for tunnel drying of baby food 
(Jurendić and Tripalo, 2011). 
Biot number Bim is one of the most important 
dimensionless drying parameters, indicating whether 
internal or external resistance to mass transfer 
prevails (Mrkić et al., 2007). When the value for Bim 
number Bim≤0.1 negligible internal resistance to the 
mass diffusivity within the solid is present, when 
0.1<Bim<100 exists the finite internal and surface 
resistances and Bim≥100 negligible surface resistance 
at the solid object is present (Dincer and Dost, 1995). 
If lag factor G takes values between 1 and 2.2732 for 
infinite slab object, between 1 and 1.6021 for infinite 
cylindrical object and between 1 and 2 for spherical 
object, the Biot number has the value in the range 
0.1<Bim<100 (Dincer and Dost, 1996). When the lag 
factor G takes values higher than the above 
mentioned, it corresponds to Bim>100 (Dincer and 
Dost, 1996). It can be observed when the drying 
behavior of the dried material is described by 
Henderson-Pabis model the Biot number Bim can be 
easily calculated through Bim-G correlation presented 
by McMinn (2004). 
However, when other mathematical model describes 
drying kinetics and the drying behavior of dried 
material, the presence of internal or external 
resistance to moisture transfer cannot be verified. 
 
Page’s model 

 
One of the most frequently used equations during the 
past few decades has been the Page´s mathematical 
model, because of its very good correlation with the 
drying experimental data (Sander et al., 2010). This 
model can be found as adequate in describing drying 
behavior of many materials. For instance, conductive, 
convective and irradiative drying of cereal based 
baby foods (Jurendić, 2010), convective drying of 
lemon grass (Ibrahim et al., 2009) and many other 
examples can be found in literature. 
Page`s model is given by the following relation 
(Sander et al., 2010): 
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where k and n are model parameters. 
 
Values of k and n vary for each material being 
considered (Yadollahinia et al., 2008). Parameter n is 
of particular interest for this work because it is used 
for development of a new correlation. In literature 
many examples where the parameter n was expressed 
as a function of drying conditions can be found. 

Artificial neural networks 

 
ANN is a powerful data modeling tool (Ochoa-Martinez 
and Ayala-Aponte, 2007). It does not require 
parameters of physical models, has an ability to learn 
from experimental data, and is capable to handle 
complex systems with nonlinearities and interactions 
between decision variables (Lertworasirikul, 2008). 
ANNs permit an adequate and precise prediction of the 
drying process in industrial application (Nazghelichi et 
al., 2011) and have been used in food drying 
applications by many researchers (Assidjo et al., 2008; 
Khoshal et al., 2010; Kingsly and Singh, 2007; Menlik 
et al., 2010; Movagharnejad and Nikzad, 2007; Omid et 
al., 2009; Raisul Islam et al., 2003; Topuz, 2010). 
 
Adaptive Neuro-Fuzzy Inference System 

 
ANFIS is heuristic model which has gained momentum 
for process modeling and can be used as a good tool to 
improve the efficiency of food process control 
(Lertworasirikul, 2008). In ANFIS are connected fuzzy 
inference systems (FIS) and ANN. FIS are based on the 
concept of fuzzy logic and fuzzy set theory 
(Lertworasirikul, 2008). Fuzzy inference is the process 
of formulating the mapping from a given input to an 
output using fuzzy logic, where the mapping then 
provides a basis from which decisions can be made 
(Ozcep et al., 2010). Fuzzy logic is a generalization of 
the binary logic where truth-values in the range (0; 1) 
are assigned to variables (Odejobi and Umoru, 2009). 
Neuro-fuzzy models are able to take advantage of the 
fuzzy inference mechanism capabilities in fuzzy logic 
and the learning ability of neural networks. The ANN 
technique is usually used as the learning algorithm for 
the defuzzification process in fuzzy logic based models 
(Odejobi and Umoru, 2009). Using a given data set, 
ANFIS constructs a FIS whose membership functions 
parameters are adjusted using back propagation or 
hybrid algorithm. This way fuzzy inference system 
learns from the modeling data. Detailed description of 
ANFIS was given by Lertworasirikul (2008). 
 
Materials and Methods 

 
Data collection 

 
To develop adequate mathematical model for new G-n 
correlation 189 experimental data from published 
literature sources (Table 1) were used. For calculations 
no selections according drying techniques, drying 
conditions or materials were made. To be suitable for 
the analysis in this work reported data should contain 
values for lag factor G and Page´s model parameter n 
obtained in the same drying process. It was observed 
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that the most parameters n values presented in the 
literature used in this work are in the range 0.6<n<1.9 

and only these values were taken into consideration for 
newly developed correlation. 

 
Table 1. Material characteristics and drying conditions of selected literature sources 
 

Material Drying conditions Literature 

Name 
Aggregate 

State 
Dryer type 

Temperature 

(°C) 
Air velocity (m/s)   

Nigerian popcorn solid rotary dryer 50, 60, 70, 80 0.83, 1.397, 2.79 Ademiluyi et al., 2008 
Cocoa beans solid solar drying 29-30 0.76-1.21 Akmel et al., 2009 
Durian chips solid microwave vacuum - - Bai-Ngew et al., 2011 

Wastewater sludge semiliquid 
convective belt 

dryer 
120, 122, 140, 

147, 158 
1.58, 1.68, 1.73, 

1.79, 1.82 
Bennamoun et al., 2010 

Grapes solid 
hot air + 

microwave 
60 - Bingol et al., 2008 

Olive oil sludge semiliquid air dryer 20, 40, 80 1 Celma et al., 2007 
Carrots solid microwave vacuum - - Changrue and Orsat, 2009 

Rice solid convective 40 1.5 Cihan et al., 2007 
Grapes solid sun drying - - Doymaz, 2011 
Leek solid cabinet dryer 50 - Doymaz, 2008 

Canola solid 
betch fluidised 

dryer 
30-100 1 Gazor and Mohsenimanesh, 2010 

Pear solid solar drying - - Guiné et al., 2009 

Pears solid 
solar dryer, tunnel 

dryer 
41 1.1 Guiné, 2010 

Tomato solid solar dryer - - Gürlek et al., 2009 
Cocoa beans solid air oven + solar 60   Hii et al., 2008 
Cocoa beans solid oven drying 60, 70, 80 0.01 Hii et al., 2009 

Thai red curry paste microwave, hot air 60, 70, 80 9.02 Inchuen et al., 2008 
Lemon Grass solid convective 35, 45, 55 1 Ibrahim et al., 2009 
Baby foods 

(wheat, soya and 
corn) 

semiliquid 
tunnel dryer, 

infrared dryer, 
drum dryer 

60, 80, 100 
60, 80, 100 

- 

0.5, 1, 1,5 
Jurendić, 2010 

Sesame seeds solid 
natural and forced 

convective 
25-35 0-15 Khazaei and Daneshmandi, 2007 

Carrot pomace paste hot air 60, 65, 70, 75 0.7 Kumar et al., 2011 
Onion solid hot air 50, 60, 70 0.66 Lee and Kim, 2008 

Zizyphus jujuba 
Miller 

solid vacuum  50, 60, 70 - Lee and Zuo, 2011 

Pine forest 
residues 

solid hot air 
40, 50, 60, 70, 

80 
0.3 - 0.35 Phanphanich and Mani, 2009 

Drumstick leaves solid hot air 50, 60, 70, 80 0.5 Premi et al., 2010 
Pandanus 

amaryllifolius 
leaves 

solid 
heat pump dryer; 

hot air 
35, 45 - Rayaguru and Routray, 2010 

Pepper solid bed dryer 45, 55, 65 1 Reis et al., 2011 
Grape seeds solid convective 40, 50, 60 1.5 Roberts et al., 2008 

Hull-less seed 
pumpkin 

solid 
hot air and solar 

tunnel dryer 
40, 50, 60 0.8 Sacilik, 2007a  

Tomato solid air dryer 50, 60, 70 0.8 Sacilik, 2007b  
Grapes solid convective 50, 60, 70, 80 0.25, 0.5, 0.75, 1  Sawhney et al., 2009 
Banana solid fixed bed dryer 50, 60, 70 1.5 Sant'Ana Silva, 2009 

Perlette grapes solid 
circulated tray 

dryer 
60 - Thakur et al., 2010 

Cassava chips solid hot air 60 1.5 Tunde-Akintunde and Afon, 2010 
Red bell paper solid convective dryer 50, 60, 70, 80 2.5 Vega et al., 2007 

Gracilaria algae solid convective  
30, 40, 50, 60, 

70 
2 Vega-Galvez et al., 2007 

Aloe vera leaves solid hot air 70 2 Vega-Galvez, 2011 
Apple pomace semiliquid microwave - - Wange et al., 2007 
Sultana Grape solid cabinet dryer 37-53 4.7-9.3 Zomorodian and Dadashzadeh, 2009 

Cuminum 
cyminum 

solid cabinet solar dryer 10-23 1.15, 1.75, 2.05 Zomorodian and Moradi, 2010 
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Artificial neural networks 

 
ANNs were used as a modeling tool because of their 
feature to generate better predictions than the 
classical linear regression (Odejobi and Umoru, 
2009). For this purpose Statistica 7 software was 
applied. Beside many different ANN architectures 
(Odejobi and Umoru, 2009) in this paper Multilayer 
Perceptron (MLP) was used. The input layer has one 
node (parameter n) and the output layer has also one 
node (lag factor G). MLP with different number of 
hidden layers (1, 2 and 3) and neurons (3, 6, 9, 12 
and 15) in the hidden layers were tested. MLP model 
that consists of one input layer, one or more hidden 
layers and one output layer, is the most common 
flexible and general purpose kind of ANN (Rai et al., 
2005). Hyperbolic functions in hidden layers and 
linear regression output function as activation 
functions were used. In order to find the optimal 
ANN structure the experimental data are randomly 
divided into training, validation and test set. There is 
no single method that works best in order to 
determine the data number in each set (Çakmak and 
Yildiz, 2011). A general opinion is that the data 
number of training set is selected more than that of 
the other two sets so as to increase the learning 
capability of the network (Çakmak and Yildiz, 2011). 
In this work 94 data were used for training, 47 for 
validation and 47 for testing. Two-phase training 
procedure was applied for training of MLP. In the 
phase one back propagation algorithm and in the 
phase two Levenberg-Marquardt algorithm were 
applied. The learning rate for the phase one was 
equal to 0.1 and the momentum term to 0.3. For 
optimizing the network 500-2500 epochs were tested. 
The number of hidden layers and neurons in each 
layer was sought by trial and error methods, whereas 
evaluation criteria statistical parameters (see 
Statistical analysis) were used. Using this approach 
the optimal ANN structure was selected. 
As proposed by Ochoa-Martinez and Ayala-Aponte 
(2007), the training process should be repeated 
several times in order to get the best performance of 
the ANN, because there is a high degree of variability 
due to the fact that first estimates of weights and 
biases are always different. After the repeated 
training process the best ANN model was further 
tested using different combination of activation 
functions (Table 3) in hidden layer in order to find 
better correlation between experimental and predicted 
data. Other conditions as learning rate, momentum 
term, linear output layer function and training 
algorithm were the same as earlier. 
 

Adaptive Neuro-Fuzzy Inference Systems 

 
Using Fuzzy Logic Toolbox in MATLAB 7.0 the 
Sugeno type FIS was used to estimate new G-n 
correlation. Sugeno´s FIS uses the following rule 
(Lertworasirikul, 2008): 
 

IF parameter n is x 
THEN lag factor G is ax+b 

 
For the MLP model 189 data were divided into three 
sets: training, validating and testing. Input was Page´s 
model parameter n with the fuzzy set with triangular-
shaped built-in membership function. Output was lag 
factor G with output linear function. Input function 
was generated by a grid partition. As the FIS 
optimization method the hybrid algorithm was used. 
The number of membership functions was 2, 3 and 4. 
Learning was stopped when the error tolerance was 0. 
After the learning process the parameters of models 
were estimated. The best model was selected using 
statistical analysis. 
 
Statistical analysis 

 
The goodness of fit between experimental and 
predicted data was determined by various statistical 
parameters such as coefficient of correlation R, 
reduced chi-square χ2, mean bias error MBE, root 
square error RMSE and the relative percentage error 
PE. For quality fit R value should be higher and χ2, 
MBE, RMSE and PE values should be lower (Roberts 
et al. 2008; Sacilik 2007). Statistical parameters were 
calculated as follows (Ibrahim et al., 2009; Roberts et 
al., 2008): 
 
Chi-square χ2: 
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Relative percentage error PE: 
 

∑
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Gexp value is lag factor G taken from experimental 
literature data and Gpred is the lag factor G calculated 
through ANN or ANFIS model. To indicate good fit the 
relative percentage error should be lower than 10 % 
(Roberts et al., 2008). 
 
Results and Discussion 
 
Using experimental drying data where for 
mathematical modeling drying kinetics of the same 
drying process both Page´s and Henderson-Pabis 
model were applied and the parameter n and lag 
factor G were calculated, very similar behavior of 
both parameters n and G follow can be observed. It 
can be seen, when the value of n is n<1 then the 
value of G is G<1, and when the value of n is n>1, 
the value of G is G>1. 
Among all 189 experimental data only some data (4.7 %) 
do not follow above described rule. These exceptions 
are observed when the material was dried on the 
temperatures 65 °C or lower. It might be due to the 

fact that at higher drying temperatures drying curves 
become steeper (Lee and Kim, 2008) and at lower 
drying temperatures smoother. Because of different 
mathematical models (Eq. 1 and 2) and different 
position of parameters G and n in models the 
difference in their values can be observed. At lower 
drying temperatures (smooth drying curve) the 
differences between G and n values are more 
expressed and they have resulted in their higher 
discrepancy. 
Among all experimental data used in this work in 129 
data the lag factor G takes value G>1, indicating 
finite internal and surface resistances (Dincer and 
Dost, 1996). In other 60 data G value were G<1, 
implying a negligible internal resistance to moisture 
transfer within a material. Generally, it can be 
observed that the values of G>1 in literature data 
used in this work dominate. 
Fig. 1 shows plot of experimental data used in this 
work and confirms the above mentioned behavior of 
lag factor G and parameter n. Non-linear relations 
between lag factor G and parameter n can be 
observed. 
In order to find the optimal MLP structure different 
combination of hidden layers (1, 2 and 3), neurons (3, 
6, 9, 12 and 15) and epochs (500, 1000, 1500, 2000 
and 2500) were tested. 

 

 
 

Fig. 1. Correlation between experimental lag factor G and parameter n 
 
 
Fig. 2-4 show the behavior of coefficient correlation 
R values when MLP was trained with different 
hidden layers, epochs and number of neurons. The 
irregular dependency between R values and chosen 
hidden layers, epochs and number of neurons can be 

explained by using of the ANN as a soft modeling 
tool. Increasing number of neurons and epochs within 
the same hidden layer did not lead to higher R values. 
Higher R values were observed by increasing of 
hidden layer number. Using only one hidden layer the 
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R values were R=0.73, wherever by using two or 
three hidden layers the obtained maximum R values 
were R>0.76. The results have shown that using only 
one hidden layer in MLP structure without testing 
two or more hidden layers can be inadequate to 
obtain a good model. 
Among all 75 tested combinations the highest R 
value (R>0.79) was obtained by MLP structure with 

2 hidden layers and 9 neurons in each layer when 
trained in 2500 epochs. For the given neural network 
the calculated statistical parameters had the following 
values: χ2

=0.00733, MBE=0.0073, RMSE=0.08543 

and PE=5.16 %. Obtained PE value for this neural 
network structure is lower than 10 % what indicates a 
good fit (Roberts et al., 2008). 

 
 

 
 

Fig. 2. Variation of correlation coefficients R versus epochs after MLP training  
in one hidden layer with different neuron numbers 

 
 

 
 

Fig. 3. Variation of correlation coefficients R versus epochs after MLP training  
in two hidden layers with different neuron numbers 
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Fig. 4. Variation of correlation coefficients R versus epochs after MLP training  
in three hidden layers with different neuron numbers 

 
 

The training process was repeated 10 times and the 
results are presented in Table 2. It can be seen that 
the best performance was achieved in the first 
training and further repeating did not improve the 
performance of ANN. 
Using the optimal ANN model the performance 
analysis for different types of activation functions 
(Table 3) in hidden layers 1 and 2 was evaluated. 

Table 4 shows statistical analysis of all combinations 
of chosen hidden layer activation functions. All 
tested combinations did not improve the performance 
of developed ANN. Good results were obtained using 
the combination of logistic and hyperbolic activation 
functions but the best performance was obtained by 
using hyperbolic function in both hidden layers. 
 

 
 
Table 2. Statistics parameters obtained by repeated ANN training process 
 

Number of 

Repeating 
R χ

2
 MBE RMSE PE 

1 0.79171 0.00733 0.0073 0.08543 5.16383 

2 0.75238 0.01863 0.01854 0.13615 10.04587 
3 0.75324 0.01019 0.01014 0.10068 8.37901 
4 0.75963 0.01385 0.01378 0.11737 9.65142 
5 0.76149 0.01732 0.01723 0.13128 11.26829 
6 0.74513 0.02248 0.02237 0.14955 10.2392 
7 0.76115 0.0141 0.01403 0.11843 9.48905 
8 0.75777 0.01949 0.0194 0.13927 10.31133 
9 0.75977 0.01598 0.0159 0.12609 9.78778 

10 0.75751 0.01849 0.0184 0.13564 9.0319 

 
 
Table 3. Activation functions 
 

Name Function Definition Range 

A Logistic 1/(1-ex) (0,1) 

B Hyperbolic (ex-e-x)/(ex+e-x) (-1,1) 

C Unit sum x/∑ixi (0,1) 

D Sin Sin (x) [0,1] 
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Table 4. Statistical parameters of the selected neural network structure using different combinations of transfer functions 
 

Hidden 

layer 1 

Hidden 

layer 2 
R χ

2
 MBE RMSE PE 

A A 0.75443 0.01866 0.01856 0.13624 10.63626 
B B 0.79171 0.00733 0.0073 0.08543 5.16383 

C C 0.22768 0.01987 0.01977 0.14061 8.97784 
D D 0.41473 0.05745 0.05716 0.23907 13.82188 

A B 0.68607 0.02183 0.02172 0.14738 11.84951 
A C 0.72949 0.01511 0.01503 0.12261 10.21516 

A D 0.13837 0.0281 0.02795 0.16719 11.13324 
B A 0.75808 0.00833 0.00828 0.09101 5.31057 
B C 0.71522 0.00969 0.00964 0.09819 5.98457 

B D 0.07677 0.0252 0.02507 0.15834 11.27678 
C A 0.04996 0.02075 0.02064 0.14368 9.26195 
C B 0.32193 0.01794 0.01784 0.13358 8.37662 
C D 0.04996 0.01945 0.01935 0.13911 8.39942 
D A 0.74217 0.0092 0.00915 0.09568 5.75402 
D B 0.74493 0.00883 0.00878 0.09372 5.70106 

D C 0.66862 0.01208 0.01202 0.10965 7.0864 

 
 
The results from the learning process of the ANFIS 
model were shown in Table 5. The correlation 
coefficients R have the same values despite of 
various number of membership functions. The second 

ANFIS model with 3 membership function was 
chosen to be the best because of the lowest PE 
(PE=8.68 %). 
 

 
 
Table 5. Statistical parameters from the learning process of ANFIS model 
 

ANFIS R χ
2
 MBE RMSE PE 

2-1 0.63574 0.02787 0.02773 0.16653 15.5787 
2-2 0.63574 0.03613 0.03595 0.18959 13.6854 

3-1 0.63574 0.03134 0.03119 0.17659 17.20536 
3-2 0.63574 0.01586 0.01578 0.1256 8.67729 

3-3 0.63574 0.04153 0.04132 0.20328 14.64598 
4-1 0.63574 0.03277 0.03261 0.18057 17.84915 
4-2 0.63574 0.01669 0.01661 0.12888 9.23388 
4-3 0.63574 0.02036 0.02025 0.14232 10.21801 
4-4 0.63574 0.04376 0.04354 0.20867 15.01043 

 
 
The predicted values derived from ANFIS model 
were compared with the selected ANN model, and 
the comparison indicates that the ANN performed 
much better than the ANFIS. The ANN selected 
model was the best model for the prediction of lag 
factor G in this work. 
Using predicted lag factor G values obtained by ANN 
model further analysis was conducted. Nonlinear 
regression analysis (NLR) in Microsoft Office Excel 

2007 software was used to develop new correlation 
between experimental and predicted lag factor G. 
Different mathematical functions (linear, exponential, 
polynomial, power and logarithmic) were tested. The 

best results (R>0.83, χ
2
=0.00726, MBE=0.00722, 

RMSE=0.08497 and PE=5.11 %) were obtained 
using power model in the following form: 
 

9387.00009.1 predGG =   (7) 

 
Fig. 6 shows correlation between predicted lag factor 
G and experimental parameter n values. The adequate 
model was sought using NLR. The best prediction of 
G values in dependence on n values to experimental 
data was observed by polynomial model (R>0.89) in 
the following form: 

 

         5405.6084.26464.33793.188494.3 234
−+−+−= nnnnG         (8) 
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To verify the developed correlation 10 randomly 
chosen literature data (Lahsasni et al., 2004; 
Martinazzo et al., 2007; Premi et al., 2010; Saeed, 
2010; Sharma et al., 2005), where the lag factor G and 
parameter n values were present, were tested. New G-

n correlation was used for calculating the lag factor G. 
The statistical analysis (R>0.83, χ

2
=0.00097, 

MBE=0.00088, RMSE=0.0296 and PE=2.62 %) 
shows a very good approximation of experimental lag 
factor G using new G-n correlation. PE value is much 
lower than 10 % indicating a very good fit. 
The developed G-n correlation between lag factor G 
and parameter n can be used to calculate the lag 

factor G and to determine whether G value is higher 
or lower than 1, when the drying behavior of dried 
material is described by Page´s model. As shown by 
McMinn (2004) and Dincer and Dost (1995) knowing 
the value of lag factor G is very important because of 
indicating whether internal or external resistance to 
moisture transfer during drying dominates. The 
estimated G values can be used to calculate Biot 
number Bim and moisture transfer parameters through 
Bim-G correlation (McMinn, 2004). 
This way the importance of Page´s mathematical 
model and included parameter n was further 
enhanced. 

 
 

 
 

Fig. 5. Correlation between experimental and predicted lag factor G values obtained by ANN model 
 
 

 
 

Fig. 6. Correlation between predicted lag factor G obtained by ANN model and parameter n 
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Conclusions 
 
Artificial neural networks have shown very good 
applicability as a modeling tool in order to obtain 
new correlation G-n between lag factor G and Page´s 
model parameter n. Compared to ANFIS model, 
ANN model performed better to experimental data. 
Developed polynomial correlation G-n between lag 
factor G and parameter n can be applied in order to 
calculate the lag factor G using parameter n and to 
indicate whether internal or external resistance to 
moisture transfer within the dried material dominates. 
The applicability of Page´s model for indicating of 
moisture transfer resistance during drying was 
confirmed. 
 
Nomenclature 

X(t) – moisture content (kg water/kg dry basis) 
X0 – initial moisture content (kg water/kg dry basis) 
Xe – equilibrium moisture content (kg water/kg dry 
        basis) 
G – lag factor 
k, n – model parameters 
Bim – Biot number 
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