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Abstract. In this paper we argue on the use of the mean 
absolute deviation in 1D random walk as opposed to the 
commonly accepted standard deviation. It presents an in 
detail derivation of the closed-form formula for the 1D 
mean absolute distance, including the proof by induction. 
The limit for the infinite number of steps is included. 
Key words: random walk, Brownian movement, mean 
absolute deviation, mean (expected) value of the absolute 
deviation (distance). 
Sažetak. U ovom lanku razmatramo uporabu srednjeg 
apsolutnog odstupanja za 1D nasumi ni hod, nasuprot 
op e prihva enoj standardnoj devijaciji. lanak daje 
detaljni izvod eksplicitne formule za srednju apsolutnu 
udaljenost za 1D nasumi ni hod, uklju uju i dokaz 
indukcijom i limes u grani nom slu aju kada je broj 
koraka beskona an. 
Klju ne rije i: nasumi ni hod, Brownovo gibanje, srednje 
apsolutno odstupanje, srednja (o ekivana) vrijednost 
apsolutnog odstupanja (udaljenosti).

1. INTRODUCTION
In today’s science the notions of the mean square devia-
tion or variance, and the associated standard deviation
(SD) present the very foundation of the statistics used in 
all spheres of natural and technical sciences. Standard 
deviation is a widely accepted and almost unavoidable 
research tool of every experimental and theoretical scien-
tist. The formula for standard deviation is one of the first 
that students acquire in the statistical courses. 

In the well known problem of random walk, a common 
approach is to use the squares of the distances from the 
starting point and to calculate its mean value [1,2,3].This 
is equivalent to the concept of finding the variance of a 
certain probability distribution, and presents the classic 
result of the statistical physics.  

However, the fact often not revealed, or simply neg-
lected, is that the quadratic dispersion measures are not 
the only possible. The other, intuitively simpler and easier 
to understand, is mean absolute deviation (MAD). It is a 
simple average of the absolute deviations, or differences 
of the set elements from its mean value. Since it is so 
intuitive, the question arises why it is not used more of-
ten? And what would this measure give in the case of the 
random walk? 

During the last century several authors, mostly from the 
field of statistics, argued that for the dispersion measure 
and, then also for the equivalent problem of  random 

walk, the absolute values could be used as instead of the 
squared [4,5]. Speaking of the mean absolute deviation, 
the famous mathematician R.A. Fisher admits that “for 
some types of work it is more expeditious than the use of 
squares” [5]. However, it is surprising that for such a 
common statistical and physical topic, there is little or no 
feedback, and no comparative analysis of the two disper-
sion measures in textbooks and literature. 

The aim of our work is to contribute to the clarification 
of this important topic. We hope to synthesize the argu-
ments which will approve the use of quadratic measures 
from the deeper physical grounds. As a “first step” in the 
journey, in this paper we calculate the mean absolute 
distance of 1D random walk, and compare it to the classic 
results for variance , and standard deviation 

, after n  number of steps. 

2. RANDOM WALK 
In general, the random walk is a mathematical model that 
describes any motion consisting of a number of random 
steps. This model can be applied to numerous phenomena 
in economics (fluctuating stock price), game theory (fi-
nancial status of a gambler), or even biology (the search 
path of a foraging animal). The classical example of a 2-D 
random walk is the Brownian movement: the motion of a 
particle on a liquid surface, induced by collisions with the 
nearby molecules. After collisions, of which each has 
transferred to the particle a momentum of random direc-
tion, and, in the most general case, of random amount, the 
trajectory will be a collection of successive random 
steps. By placing the particle inside a medium, we get to 
the more general 3-D random walk.  

2.1 Basic definitions of 1D random walk 
In this paper we deal with the simplest case, the one di-
mensional (1D) random walk. An object, initially posi-
tioned at , starts to stroll along the x-axis with two 
possible movement choices at any given point: i) to step 
left or ii) to step right. We define the position  of the 
object in the n-th step. In the simplest case the steps are of 
equal length d , and the probabilities of stepping left or 
right qual.  are e

According to this, after the first step the object’s posi-
tion  i  s given by:

1st step to the left
1st step to the 

After the second step the position is: 
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1st step 
1st step left
1st step right
1st step right

Immediately we spot the dichotomy between the odd and 
even number of steps which will follow us throughout our 
calculations. In the same way we will analyze the distance 

 after arbitr mber n  of steps. A possible ran-
dom walk path is ated in 

ary nu
 illustr

The distance  from the starting point  in the  
n-th step is:  

Figure 1.

                          (1) 
Statistically, this distance corresponds to the deviation
from the mean value. So, the two terms are synonyms and 
we shall use both of them as appropriate.  

After defining the deviation or distance, we are ready to 
pose the central statistical questions for our system: what 
is the mean or expected value of the object’s position and 
what is the dispersion: given as standard deviation and the 
mean absolute deviation. 

Figure 1. One possible path in the 1D random walk. The 
horizontal coordinate n is the number of steps taken; the vertical 
coordinate x is the distance from the starting position

2.2 Mean and expected Value 
To make our discussion complete, we shall briefly address 
the simple facts on the object’s position mean or expected 
values. Regarding the difference between mean and ex-
pected, one must notice that in a strict, formal approach it 
is obviously important. The mean value is the result of the 
calculation over the empirically collected data,  

On the other hand, the expected value stands for the 
weighted average of all the possible values that a random 
variable can have, with each value being weighted by its 
assumed apriori probability [6]:  

Very often the subtle difference between the two notions 
and the corresponding values are ignored. In the strict 
sense, we will use the apriori probabilities of the binomial 
distribution, and thus derive the expected value. However, 
by taking the physical reality as a starting point, the no-

tion of apriori probabilities is just an idealization of what 
should be ultimately tested in an experiment. In other 
words, in the real world we always start from some rela-
tive frequencies and calculate the mean values, and the 
(apriori) probabilities can be interpreted as the relative 
frequencies of a certain outcome  with a large number 

 of trials. In this case the relative frequencies go into the 
probabilities, and th  va e into th ed value: e mean lu  e expect

            (4) 

So, from the physical standpoint, there is no essential 
difference between the mean and expected value. We shall 
mostly use the term mean to depict both notions, even 
when calculating it from the apriori probabilities from a 
probability distribution. Furthermore, we shall use the 
brackets to present the averaging operator, so that in 
further text the following simplification is assumed: 

Thus for the mean (expected) distance in the 1D random 
walk we write simply:

                   
Since t   
above m

he averaging operator is linear, it turns out that the
ean distance is zero:  

        
The result is “expected”, indeed. Since there is no pre-
ferred direction of random walk, the probabilities to go 
left or right are equal.  

In order to simplify the problem we shall consider the 
case in which the walk starts at point    and at each 
move takes a step   or . The simplification 
leads us to: 

),
                    (7) 

2.3 Variance and standard deviation 
We have just repeated the trivial result that the mean val-
ue of the linear deviation vanishes. The mean (expected) 
value of the deviation squared is generally nonzero, and 
presents the well known variance . It corresponds to 
the average st s  wdi ance quared , so that e have: 

In the second equation, a shorthanded of the summing 
notation is introduced that will be used in the rest of the 

t: th  summing will always go up to the index  .tex e
Now we are ready to find out the mean square distance 

 for the 1D random walk. We follow the elegant 
inductive derivation by Feynman [1].  The distance for the 
first step is , leading to the unique 
squared value  . With the equal probability of tak-
ing + o  di ea  e distr rection, the m n squar d ance is: 
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The net distance after  steps is , so that 
after the next,  n-th step, there are two possible, equally 
probable outcomes:  or 

. For ua  h f ng: their sq res we have t e ollowi

    (10) 

Since both directions are equally probable, the average 
value is obtained in the same as before, leading to the 
cancelation of the mid t ms and the average squared 
distance: 

er

                 (11) 
W h r d . Fro
fo

e ave al ea y shown that m there it 
llows that: 

,                         (12) 
which is the well known text-book result. 

Besides the mean squared deviation, we may be inter-
ested in the corresponding linear indicator, the standard 
deviation   or the ean nce value: root-m -square dista

.                  (13) 

The RMS value is of utmost importance in physics and 
technical sciences, having many interpretations in both, 
discrete and continuous domain. In our case of 1D random 
walk the standard deviation, or RMS value, of the dis-
tance is:  

                  (14) 

3. RANDOM WALK VIA BINOMIAL 
PROBABILITY DISTRIBUTION 

Here we shall expose a more general approach to the 
results (6) and (12) that will also serve us as a preparation 
for the calculation of the mean absolute distance in the 
next section.  

3.1 Random walk in Pascal’s triangle 
We introduce the Pascal’s triangle as an excellent way of 
visualizing the random walk (Figure 2). Here we can 
follow the development of the random walk as the number 
of steps rises. Each node in the triangle represents a poss-
ible ending point of the random walk path. At height 
(dept) , there are in total  nodes. Each node can be 
uniquely denoted as the ordered pair , with 

, and , starting from left to right. 
To each node its corresponding binomial coefficient 
is attributed. It shows the number of possible paths lead-
ing to that node, and is written in the Pascal’s triangle as 
usual. 

Figure 2 Random walk in the Pascal’s triangle. The bold line 
represents the first five steps of the path shown in Figure 1. The 
number of possible paths ending in a node is the same as the 
corresponding binomial coefficient.

We can immediately note that for odd  the middle nodes 
are missing, which is the consequence of the fact that the 
walk can end in the zero distance point only after an even 
number steps. 
For example, if the number of steps is , there are  in 
all 16 possible paths, of which  ends at ,  paths 
end at  , and  at zero point . The exactly 
symmetrical situation is for the positive distances. The 
corresponding binomial coefficients   have values 

 for the negative distances , the 
value  for the zero distance   and values 

 for the positive distances .
The probability that a random path ends in a node can 

be described as a node probability. To get it for the node 
at the height  we must divide the corresponding binomial 
coefficient  with the total number of paths for that 
height: .

In our example of  steps, the central node corres-
ponding to  has the index   , and the proba-
bility that the rand  w lk e s  om a  ends her  i :

E.g. after   steps, th probability that the walk ends 
at , as sho n i u  to: 

e
w n Fig re 2, equals

Both of the binomial coefficient values in the numerator 
could be read directly from the above Pascal’s triangle, 
and the total number of paths in the denominator can be 
found as the sum of the binomial coefficient in each trian-
gle row. 

3.2 Binomial probability distribution 
A careful reader could have noticed that in the previous 
deliberation we have introduced the binomial probability 
distribution. In short, having a binary set of (elementary) 
events , with probabilities 

, the probability for  k-occur-
rences of the event  (and  occurrences of the 
event ) after  repetitions of the experiment is:  
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(15) 

In the first approximation we have assumed that the prob-
abilities to go either left or right are equal, resulting in  

 . Now the binomial distribution simplifies 
to: 

In our case the event  ( )  corresponds to stepping to 
the left (right) and changing the distance  for the amount 

  ( ). 

3.3 The mean (expected) values 
To relate the distance  from the origin to the number  of 
random steps and the index k of the ending node, we write 
it as: 

We may say that to each node  we attribute the 
corresponding distance from the origin. From the discus-
sion in 3.1 n clud   it ca  be easily con ed that:

The extreme d ces aistan re: 

and al
) 

l the possible distances can be outlined as: 
=                                                                       (20

From (18, 20) it is obvious that for an odd 
 cannot be zero for any value of ,

ich explicitly proves our earlier observation. wh
Having derived the probability and distance of the node 

 in equations (16) and (18), we are ready to write the 
expressions for the calculation of the main statistical indi-
cators of the random walk. In general, for any value 

 being a function of the node parameters  and 
, we calculate its mean (expected) value (see the discus-

sion in 2.2) according to (3) as: 

By substituting for  the values of ,
,  obtained from (18), we can summarize:

1. The mean   distance (MD) 

2. The mea  d sn absolute i tance (MAD) 

3. The mean square distance (MSD) 

The evaluation of the first and the third expression is 
straightforward, and will be given here for the sake of 
completeness. The second expression, presenting the 
central topic of the paper, is left for the next section.  

In eva eluating th  (22.1) we obtain: 

The first sum is a well known series amounting to , and 
the second can be obtained after a bit more elaborate cal-
culation   (e.g. confer  [7]). Now we 
conclude: 

      (22.1’) 
which explicitly confirms the result in (7). 

Similarly, the expression (22.3) can be rewritten as: 

Here we use the results of the previous two series, togeth-
er with  [7], wherefrom we 
get: 

   

                                                           (22.3’)
This directly proves the previous inductive derivation 
resulting in (12). 

4. THE MEAN ABSOLUTE DISTANCE IN 
1D RANDOM WALK 

After having outlined the standard statistical parameters, 
in this section we come to the central topic of the paper –- 
the derivation of the mean absolute distance (MAD), or 
the mean absolute deviation of 1D random walk. Follow-
ing the discussion in the previous section and the expres-
sion (21), the MAD value is: 

and is already formalized in the expression (22.2).  
Before the evaluation, let’s get a better insight in mean 

absolute distance by finding its values for the first few 
numbers of steps. Wit n    and we are 
still at the starting poin

h no steps take
t:

After  step, the position is either  or  
 :

 . 

The mean value after  steps has three possible posi-
tions: 2, 0, 2. Moreover, there are two ways leading to 
the position , via  or  in the previous step. 
Thus we have: 
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All the probability values can be directly followed in the 
Pascal’s triangle in 2. The calculation of the mean values 
of the absolute distances for the first 5 steps is summa-
rized in the following e n  for the first 12 steps xpressio , and
Table 1.

 , 
 , 

Table 1. The mean absolute distance for 12 steps. For
every even step the mean absolute distance (MAD) is the same 
as for the previous even number of steps (if existing), which is 
designated as  “– In the two rightmost columns the in-
creas  of the MAD from the p

 || –" .
 values e revious step is shown. 

0 0                –- 
1 1 1
2 – || – 0
3 3/2 1/2

4 – || – 0
5 15/8 = 1.875 3/8

6 – || – 0
 7 35/16  2.188 5/16

 8 –  –|| 0
 9 315/128  2.461 35/128

10 – || – 0
11 693/256  2.707 63/256

12 – || – 0

From (25) and Table 1 we can see that only the odd steps 
contribute to the increase of the mean absolute distance, 
while the next even step leaves it at the same value. By 
inspecting the differences between the MAD values of the 
successive odd steps (see the third n in  colum
can be induce :

Table 1), it 
d  

In the derivation al’s rule  of this expression the Pasc

should be used. The formal proof of this is out of the 
scope of this paper and will be presented elsewhere. 

The equation (24) leads us to th wing recursive 
formula: 

e follo

                                                                                (25) 
Nevertheless, in order to find a c d-form formula, we 
should calcu  2 ), rewritten: 

lose
late the sum ( 2.2 which can be 

             (26)

Since the absolute value function is involved, we must 
track two possible cases: 

The total number of summation terms depends on the 
parity of   . If the number of steps n is even, there will be 
an odd number of nodes and accordingly an odd number 
of terms, like, for example, when   : 

.
If the number of steps is odd, there will be an even num-
ber of summ ration te ms, like for   : 

.
As we have mentioned before, only the odd steps contri-
bute to the increase of the mean absolute value, so that we 
shall continue by considering their case. Now the sum can 
be separated into two groups, the positive and the nega-
tive, whi  implifies the latich s  calcu on: 

          
                   

The first two terms cancel because of the symmetry of the 
binomial coefficients triangle:  in the Pascal’s 

.

Therefore we have: 
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.         (28) 

For e txample, for   s eps this formula gives: 

Figure 3. Symetrical subtriangle within the Pascal’s trian-
gle. When the binomial coefficients are multiplied with

  a subtriangle appears within the main Pascal’s trian-
gle, with coefficients that are symme ical to its central   column 
in bold. 

tr

When the binomial coefficients are multiplied with ,
an interesting thing happens: inside the Pascal’s triangle, 
another, smaller triangle appears, which is symmetrical 
with respect to the  1st column to the right from the main 
triangle central column (the double border in the Figure 
3). That’s why all the terms cancel each
those inside it.  

 other, except 

The first right column is ass
whi  to he

ociated with 
ch leads us  t  following closed-form expressions: 

                   

We shall prove the first formula for the odd number of 
steps by mathematical induction. 

4.1 Proof by Induction 

Let’s start from l wing statemen the fo lo t for   is odd 

(30) 

Basis:

(31) 

Assumption: 

(32) 

Inductive step:   . 
If assumptio d  must be n hol s, then it shown that: 

(33) 

From th ,  is: e recursive formula (25)  it

(34) 

Now, accord ngi  to the assumption in (32): 

It can be easily shown that: 

A very similar calculation can be done for the even 
number of steps. 

4.2 Mean absolute value for a great number 
of steps 

According to the Stirling’s formula: 

if n is replaced with  it

                     (40) 

is

                  (41) 

as well as 

                 (42) 
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If we div dide (40) by (41) an  (42): 

              (43) 

Since , we can conclude that: 

                   (46) 

This leads to the ratio between the mean absolute devia-
tion and the st ard deviati  thand on, in e limiting case:  

)

This ratio is the same as between MAD and SD of the 
Gaussian distribution. The reciprocal value is 

.

5. CONCLUSION 
We have started our deliberation with a simple question 
why the intuitively simple notion of the mean absolute 
value is not used in statistical and physical analysis, and 
have exemplified this with the problem of 1D random 
walk. While the calculation of the mean squared values is 
straightforward, the one for mean absolute values encoun-
ters many complications and difficulties. As first, there is 
the disparity between the expressions for the odd and even 
numbers, that vanishes only in the limiting case of 

. The lengthy derivation and the complicated formula 
speak for themselves. The character of the binomial prob-
ability distribution remains in the final formula through 

the binomial coefficients. In a way, through the use of 
mean absolute values, we cannot get rid of the details of 
the process, which is in contrast the mean squared values. 
It is easy to conclude that the concepts that are easy to 
grasp, like the mean absolute deviation, may lead to the 
calculations and the results that are far from being neither 
easy to use nor elegant.  

On the other hand, the difficulties involved in the deri-
vations of the mean absolute values should not prevent us 
from using this “intuitive” notion. We have certainly 
shown that for 1D random walk one would think twice 
before building further on this approach. The elegance 
and simplicity of the final physical results and interpreta-
tions in broader context proved to be far more reaching in 
the history of science, than just the simple initial concepts, 
no matter how intuitive they may be.  

Nevertheless, we believe that beyond the mere elegance 
and practicality, there are further, deeper, reasons for the 
use of the squared values and their averages. We find 
them throughout the physics, and also embedded into 
statistics. The usage of SD and RMS may have some 
physical background, besides their practical convenience 
and this ought to be explored. We hope to elaborate more 
on this subject in our future work. 
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