
Optimization of Recipe Based Batch Control Systems Using Neural Networks

A. Šoštarec,a,* D. Gosak,c and N. Hlupiæb

aPliva Croatia Ltd., Prilaz baruna Filipoviæa 25, Zagreb
bUniversity of Zagreb, Faculty of Electrical Engineering and Computing,
Department of Applied Computing, Unska 3, Zagreb
cpresent address: Hospira Zagreb Ltd., Prilaz baruna Filipoviæa 27, Zagreb

In the modern pharmaceutical industry many flexible batch plants operate under an
integrated business and production system, using ISA S95 and ISA S88 standards for
models and terminology, and implementing flexible recipe-based production.

In the environment of constantly changing market conditions, adjustment to sur-
roundings is a business necessity. To support necessary production improvement, re-
gulatory authorities have introduced the risk based approach for the control of process
development, production based on the quality by design (QbD) principle, and process
analytical technology (PAT).

In this work, the method for practical implementation of an adaptable control rec-
ipe, that allows process improvement inside the previously established design space, is
proposed, based on the neural network process model.

Based on the neural network model, the three methods for recipe-controlled process
improvement and optimization were introduced – neural-based software sensor, generic
neural model control, and process optimization using iterative dynamic programming.

Suitability of the proposed method was tested in a mini reaction plant Chemreactor
Büchi, running the wastewater treatment batch, controlled by the production recipe based
on S88 standard.

Key words:
ISA S88, neural network model, recipe-controlled process, design space

Introduction

Recipe-based automated flexible
pharmaceutical plants

Modern pharmaceutical production is a branch
of industry faced with many different challenges. It
is characterized by the necessity to maintain high
productivity and flexibility, while at the same time
complying with strict regulations imposed by dif-
ferent government agencies (FDA, EMEA, etc.).
Therefore, to maintain their competitive edge, many
pharmaceutical companies (API, as well as final
forms producers) use various organizational and
process control software tools. Many of the avail-
able support and process control tools are based on
ISA S95 and S88 standards.1,2

Flexible pharmaceutical plants, organized in
accordance with integrated ISA S95 – S88 strategy,
have the general structure depicted in Fig. 1. While
the various S 95 levels are used for a structured ap-
proach to business planning and logistics, as well as
manufacturing operations and control (so-called
MES level – manufacturing execution system
level), the S88 standard is used on the lowest level

to actually control the production process within a
particular plant.

ISA S88.01 models and terminology (1995 and
2011) are created to fulfill the task of unifying termi-
nology and models, so that the experts from different
fields (automation, equipment and technology) can
easily cooperate. The standard, as a basis, defines the
recipe which uniquely specifies the ingredients and
steps necessary to produce a certain product. Apply-
ing S88 requires separation of physical equipment

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 175

Original scientific paper
Received: May 25, 2012

Accepted: August, 22, 2012

*Corresponding author: anita.sostarec@pliva.hr

F i g . 1 – ISA S95 and S88 integration through enterprise,
MES and control levels as defined in correspond-
ing standards

from production procedures. This is achieved by ap-
plying three models: the process model, physical
model and procedural control model. The models
and their mapping are depicted in Fig. 2. The pur-
pose of mapping is to tie the procedural control
model to the physical model, in order to provide pro-
cessing described in the process model.

Practical implementation of S88 models, after
performing of mapping on existing process equip-
ment, is usually done as depicted in Fig. 3.

Quality by design and PAT methodology

Application of the mentioned methods pro-
vides clear benefits, such as improved process
reproducibility, lower production costs and in-
creased plant flexibility for introduction of new
products. In spite of all this, until recently, process
optimization of a particular product was an expen-
sive and time-consuming task due to regulatory re-
quirements that effectively hinder process changes
necessary for improvement.

In order to encourage process improvement
and, at the same time, ensure high regulatory (GMP
– good manufacturing practice) levels in the flexi-
ble pharmaceutical production, the FDA has intro-
duced two initiatives – quality by design (QbD)3

and process analytical technology.4

The key concept in QbD is the design space –
the established range of process parameters inside
of which product quality does not diminish; there-
fore, movement within these boundaries for optimi-
zation purposes is a regulatory allowed change. As
can be seen from Fig. 4, the control space – the
working process space that spans around process
set points – can generally be moved within the de-

176 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

F i g . 2 – Mapping of models according to ISA S88.01 stan-
dard

F i g . 3 – Common way of practical realization of ISA S88 models on control equipment

sign space using some optimization technique (nu-
merical or experimental design method) in search
of the optimum point.

Another important, recently-introduced para-
digm is the process analytical technology (PAT) ini-
tiative. The essence of PAT initiative is to allow re-
placement of classical sampling by off-line analysis
with timely (on-line) process parameters measure-
ment, via analyzers as well as applying software
sensors when appropriate.

This paper proposes a method based on the
neural network model that extends the ISA S88
methodology-based control recipe mapped on a
particular physical equipment unit, in a way that al-
lows gradual movement of control space toward the
optimal point, as well as application of software
sensors.

Flexible batch plants as hybrid systems

As can be seen from available literature
(Sanchez et al.,5 Moor and Raisch,6 Potoènik et
al.7), flexible batch plants represent so-called hy-
brid systems. Hybrid systems are broad classes of
systems whose behavior is characterized by exhibit-
ing continuous and discrete process dynamics.
While there are many mathematically rigorous de-
scriptions of such systems (Goebel et al.,8 Lennart-
son et al.9), the state space approach of Barton,
Banga and Galan10 is here presented. According to
their definition, a general hybrid system can be de-
scribed by state space S S kk

nk
�

�1� where every
mode S k is characterized by:

– Set of variables � �� , , , ,() () () ()
x x y u

k k k k t

– Set of equations
f x x y u

() () () () ()(� , , , ,)k k k k k t � 0

– Set of transitions possibly containing transi-
tion conditions L x x y uj

k k k k k t
() () () () ()(� , , , ,) � 0 for-

med by logical propositions that trigger switching

when they become true, and transition functions
T x x y u x x y uj

k k k k k j j j j t
() () () () () () () () ()(� , , , , � , , , ,) � 0

associated with particular conditions

– Set of constraints that could be path con-
straints h x x y u

() () () () ()(� , , , ,)k k k k k t �0, and point con-

straints c x x y ur
k k k k k

rt
() () () () ()(� , , , ,)�0, r nr

k� �{ , , }()0
that must be satisfied only in certain moments.

Based on hybrid system methodology, Lennart-
son et al.9 propose the two approaches to practical
realization of the hybrid process control. The first
approach is to replace hybrid plant model with fully
discrete model. This task is performed by partition-
ing the continuous state space into regions, and then
creating the supervisor for apparent discrete pro-
cess. The main advantage of this approach is easy
implementation, while the main disadvantage is
possible poor approximation of continuous process
parts. The second approach is the direct synthesis of
hybrid supervisor controller. The main advantage of
this approach is the better control that can be
achieved, but at the expense of applying much more
complex model.

Another method for realization of hybrid pro-
cess control is proposed by Sanchez et al.5 Their
method is applicable to hybrid systems with pre-
dominant discrete parts. The basis of this method is
the division of an overall plant model into the pro-
cess model and discrete event controller model. The
process model is further divided into equipment
models and interface models. Each equipment
model describes the hybrid dynamic of one process
unit. The second part of the process model links the
unit operation model with the discrete event con-
troller models. It is also made of two separate mod-
els: device drivers and state observers. Their role is
to connect equipment with the discrete controller
and to model discrete events instruments. Supervis-
ing the discrete event controller includes an inter-
face for connection with lower levels, and actual
implemented control system. Controller is designed
to be in compliance with the ISA S88 standard, and
therefore consists of phases, operations, and unit
procedures.

Recently, Fabre et al.11 used PrODHyS hybrid
simulation environment coupled with scheduling
module ProSched in order to model batch processes
(ISA S88 compliant), and optimize interaction be-
tween scheduling and simulation models. Recipes
are modeled with extended resource task networks,
while scheduling is performed by mixed integer lin-
ear programming.

Process modeling using neural networks

Developing the physical, thermodynami-
cally-based mathematical model of a complex pro-

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 177

F i g . 4 – Positioning of parameter space according to qual-
ity by design initiative

cess is a difficult and time-consuming activity. In
case of the flexible batch plant that produces
many different products, delays between switching
products must be minimized for economic reasons,
while at the same time optimization is needed.
Therefore, faster ways of developing process mod-
els are desired. If only experimental data are avail-
able, using the neural network model is a practical
option.

Chemical engineering unit operation processes,
such as reaction, distillation, crystallization etc. can
be generally described with a nonlinear dynamical
relation that relates state coordinates x with process
inputs u and outputs y (eqs. 1 and 2)

d

d

x
f x u

t
� (,) (1)

y h x u� (,) (2)

Static input – output relation (eq. 2) can be di-
rectly approximated by neural network if data for
learning are available. In the literature,12 the neural
network which is most often used, is a multilayer
feedforward perceptron because of its universal
learning capability. Multilayer feedforward percep-
tron neural network is depicted in Fig. 5, and eqs.
3–5 provide its mathematical representation.

x f netp p p� () (3)

net x w wp p p p p� �	 	 	
 1 1 0 1 (4)

f net
e

p p net p
() �

�
	

1

1
(5)

Learning the net means adjusting the weight
coefficients in a way that approximation error (eqs.
6 and 7) is minimized.

E y O et ri ri
i

I

i
i

I

� 	 �
� �

1

2

1

2
2

0

2

0

() (6)

E ET t
r

R

�
�

1

(7)

Minimization of the weight coefficients must
be done by some minimization method. The most
basic is the method of steepest descent (eq. 8)

w i w i
E

wpp pp
T

pp
	 	

	

� � 	1 1 1
1

1() () �
�

�
(8)

Many more sophisticated methods can be ap-
plied; deterministic like Levenberg Marquard or
conjugate gradient (Masters13) as well as stochastic,
for example genetic algorithm. The necessary par-
tial derivatives of errors with regard to weight coef-
ficients can be calculated analytically by using,
so-called backpropagation algorithm. eqs. 9–12

�

�

�

�

�

�

E

w
e

x

net

net

w
t

ij
i

i

i

i

ij

�	
()

()
(9)

�

�

�

�

�

�

�

�

�

�

E

w

net

w

x

net
e

x

net

nett

jk

j

kj

j

j
i

i

i

i�	
()

() ()

()

x ji

I

�

0

(10)

�

�

()net

x
w

p

p
pp

	
	�

1
1 (11)

�

�

x

w
x

p

pp
p

	
	�

1
1 (12)

Many modifications of the presented basic al-
gorithm are developed in order to improve conver-
gence and speed up the computation. While training
the net, one must bear in mind that if the network is
chosen to have more neurons that are actually nec-
essary to learn a particular relation, it can often
overfit the data. The easiest method to prevent this
from happening is to divide the entire data set into a
training set and a verification set. During the net
learning minimization results of training set are
checked against the validation set and minimization
routine is stopped at the optimal point.

Regarding the learning of the dynamical rela-
tion (eq. 1) two main approaches are developed.
The first one is the so-called tapped delay line
method (Hrycej,14 Paengjuntuek et al.15). The prin-
ciple of this method is to use a static network, but
with additional inputs of past values for network in-
puts as well as outputs (eq. 13)

x f x x u ut t t d t t d� 	 	� � �1
NN (, , , , ,) (13)

178 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

F i g . 5 – Schematic representation of multilayer feedforward
network

In eq. 13 d is the measurement index, a number
which determines how many past network inputs
and outputs must be used in order to approxi-
mate eq. 1 with sufficient accuracy. The clear
advantage of this method is the ability to apply
the static network, but quality of approximation is
strongly dependent on the time step and choice of d
value.

Another general way for achieving the dy-
namic process learning by neural network is to use
recurrent networks. The recurrent networks may be
internally or externally recurrent. Internally recur-
rent nets are nets whose neurons are fully con-
nected with each other, as well as with themselves.
Activation functions of these kinds of neurons are
differential equations (eq. 14)

 p

p

p p p

x

t
x f net

d

d
�	 � () (14)

To train this kind of network, two principal
groups of methods can be applied (De Jesus and
Hagan16). The first group is called Backpropagation
Trough Time (BPTT) and its main principle is de-
veloped by Werbos17 who introduced the idea to
discretize eq. 14 around current point ti, using a
method for calculation of finite differences. After
adjusting backpropagation equations to reflect the
new expression for neuronal activation function,
calculation is performed backwards in time for
a number of past inputs appearing in discretized
eq. 14. The second group of methods is called
Real Time Recurrent Learning (RTRL) originally
proposed by Williams and Zipser.18 The main
characteristic of this method is learning in real
time, i.e. while network is running by integration
of neuron activation function (eq. 14). The net-
work weights are updated after every integration
step.

The internally recurrent neural network learn-
ing process suffers from a problem called vanishing
gradient (Haykin12). This problem makes learning
of the behavior that depends on the data belonging
to a distant past, with respect to the current time,
very difficult due to the local nature of both learn-
ing methods. Therefore, another kind of recurrent
network, namely externally recurrent neural net-
works, are introduced. The simplest form of exter-
nally recurrent neural network is introduced by
Nerrand et al.19 (eq. 15) and called the canonic
form of recurrent network.

x x f x i u i() () [(), ()]i i NN� � �1 (15)

While the network given by eq. 15 is taught by
the standard algorithm, and thus does not suffer
from the vanishing gradient problem, the practical
performance of the net can be less than satisfactory

due to the fact that applied simple discretization
may not be sufficient in the case of approximation
of highly nonlinear systems, especially if they be-
long to the class of “stiff” dynamical systems. For
this reason, Gosak and Vampola20 used continuous
canonic form (eq. 16).

d

d

x
f x u

t
NN� (,) (16)

In order to perform the task of learning the re-
current network described by eq. 16, derivatives of
measured state vector data must be calculated at
each point, and the quality of approximation
heavily depends on the chosen numerical method.
Additionally, resulting continuous differential equa-
tion model must be solved by integration. Despite
all this, the resulting network may be the network
of choice because of its ability to cope with difficult
nonlinear system, by enabling any method of inte-
gration – multistep, semi implicit or implicit to be
applied.

Methodology

Outline of neural network-based extension
to recipe-based control

A recipe-based flexible plant is normally de-
signed to produce many different products with
only two common characteristics – allowable
ranges of process parameters (temperature, pressure
etc.) and equipment construction materials. Usual
design procedure includes several steps, such as de-
fining the process units equipment modules, defin-
ing the basic control modules, and set of equipment
phases designed to perform predefined module tran-
sitions. Whenever a new product is introduced to
the production plant, only product-specific control
recipe needs to be developed.

While this design procedure allows quick prod-
uct switching and high batch reproducibility, the
fact that the resulting control system is not in any
way built in for any particular product introduces
potential drawbacks. The main drawbacks are the
following: lack of specific sensors needed for
on-line measurement (e.g., concentration, density,
conductivity), control loops may suffer from strong
interactions, and particular operations may operate
far from optimum points.

It is well known that all the mentioned draw-
backs could be eliminated by the use of an appro-
priate process model for the model based optimiza-
tion and process control improvement. A suitable
form of a flexible batch plant model is a hybrid
model generally described in the text above, i.e. a
model that takes into account the fact that the un-

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 179

derlying dynamical process consists of mixed dis-
crete and continuous parts. The main problem,
when formal models such as neural networks are
used, that depends solely on experimental data is
how to perform the successful training. Particularly,
it would be very difficult for neural model to learn
the exact switching times of a hybrid system pro-
cess. Therefore, the control recipe should be con-
structed in a way that a resulting process learning
by neural network can be accomplished. One way
to do this is to ensure that the batch system behaves
as a hybrid automaton. The concept of hybrid au-
tomata was introduced by Alur21 and are defined as
the particular form of hybrid systems modeled as a
set of continuous dynamic nodes that become active
in a predefined order based on some set of discrete
events.

In order to unambiguously define the struc-
ture of a hybrid automaton model that corres-
ponds to a particular process, it is appropriate to
impose some additional constraints on the control
recipe.

The first constraint is that the equipment phase
behaves in a way that it performs some transition
on the equipment module. This transition can gen-
erally be described in the form of piecewise linear
function for a set point of variables controlled in
particular phases (eqs. 17–19)

l t tk� 	 (17)

� k
k
sp

k
sp

k k

y y

t t
�

	

	
�

�

1

1

(18)

y t
y l k K t t

t t
sp k

sp
k

Phase

Phase()
, , ,

�
� � � �

� �

� 1 max

K
sp

maxy tOperation
max

�
�
�

(19)

By applying eqs. 17–19, any transition
function with arbitrary precision can be defined,
although fixed set points or ramps are mostly
used, for example temperature ramp on temperature
control module or pressure ramp on pressure
control module. After the final value of set point
value has been achieved (e.g., final temperature
or pressure), the phase remains in this state (with
final set point value) until the new operation
starts.

The second constraint is that recipe operation
represents the set of phases that all start at the same
time and operation ends when the last phase in the
operation completes its transition, thus ensuring
proper ending of continuous nodes. Fig. 6 shows
this graphically, with dashed part of a polyline rep-
resenting a set point of a finished phase waiting for
the end of operation.

While these additional constraints make devel-
opment of the hybrid automaton model easier, they
do not impose significant limits on recipe capability
because, if necessary, any operation can be split
into several shorter ones, thereby avoiding creation
of time lags.

Having in mind all the operations in a recipe –
actually interesting for modeling are only those spe-
cific to a particular process (reaction, distillation,
crystallization), while others are common to all
products (inertization, sterilization, cleaning, fill-
ing, emptying). Fig. 7 shows an example schematic
of a control recipe in usual SFC (sequential func-
tion chart) representation, and corresponding hybrid
automaton model in a state diagram form (dashed
boxes represent common operations not necessary
for the model).

After training the neural network for every
continuous mode, the network can be used as a
software sensor to enhance process control perfor-
mance, as well as for process optimization. Since
the introduction of neural models should be op-
tional, and should only support the existing basic
control instead of replacement it, the most suitable
way to extend a control system with a neural net-
work is to form a neural process abstraction layer as
depicted in Fig. 8.

Detailed structure of a network layer is given
in Fig. 9. As can be seen from the figure, the net-
work switches on when modeled operation starts
using the appropriate parameter set, and it switches
off after the operation with modeled continuous
mode finishes. Depending on the task required for
the operation neural model, software sensing, con-
troller improvement or optimization of set point
curve defined by eq. 19 is performed.

180 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

F i g . 6 – Set point transitions for particular phases in oper-
ations. Shaded area shows regions in which phase 1 waits for
operation completion by holding the last active set point
(dashed line).

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 181

F i g . 7 – Representation of recipe operations and equivalent modes of hybrid automation (with MODE 2 chosen not to be modeled)

F i g . 8 – Modification of recipe control system by insertation of neural layer

The development of neural network
process model

The neural network needs to model processes
on all continuous modes that correspond to opera-
tions whose behavior is characteristic for a particu-
lar production process. Continuous modes can be
generally modeled with equations describing state
variable dynamic (eq. 16), output variables relation
(eq. 20), and an equation defining controller actions
(eq. 21) of involved equipment module basic con-
trol.

y h x u� NN (,) (20)

u r x y� (,) (21)

Neural networks are needed to approximate
eqs. 16 and 20. Both relations are generally nonlin-
ear, and eq. 16 represents the system of differential
equations. In order to train the networks, three
questions need to be answered: what will be the
network topology, how will training data sets be
collected, and which training method will be used.

In this paper, for mapping the static relations,
the multilayer feedforward neural network (Fig. 5)
is chosen. Dynamic process data was mapped by
continuous externally-recurrent modification of the
multilayered feedforward network.

The next issue is gathering and preparation of a
training data set. Since in this particular problem
the design space represents the allowable span of
process variables, there are two options for data
collection – the first is moving the control space in-
side the design space by changing set points of de-
sired process outputs, and the second way is to ex-
tend the control space to the entire design space. In
the second case, process inputs may be varied with-
out controller feedback in order to cover the entire
design space. Running several trial batches experi-
mentally (without the need to produce a product

within the specification) may significantly speed up
the data collection process. Of course, data for state
variables that are not directly measurable must be
collected off-line by taking and analyzing samples
during batch runs.

After data collection is performed, the static
output relation (eq. 20) can be learned by the neural
network. Unfortunately, state space dynamic rela-
tions (eq. 16) cannot be learned directly from the
collected data, so some form of data preparation
must be done. In physics, a well-known method
called vector field reconstruction22 is used for pa-
rameter estimation in ill-defined systems. The main
principle of the method is to sample data as a time
series and then use a numerical method to approxi-
mate time derivatives for particular trajectories. The
same can be done with collected state space vari-
ables data. For this purpose, a smoothing cubic
spline polynomial23 is used (eq. 22) that interpolates
the cubic polynomial between each pair of experi-
mental points with additional smoothing criteria
given by eq. 23.

S t a t t b t t c t t di i i i i i i i() () () ()� 	 � 	 � 	 �3 2

i n� �1, ,
(22)

SSQ p W y S t p
S

t
ti i i

i

� 	 � 	
�

�
��

�

�
��
 �[()] ()2

2

2

2

1
d

d
d (23)

After analytical derivation of the cubic polyno-
mials, derivatives on the left-hand side of eq. 16 are
obtained for every training point, so static neural
network (eqs. 3 – 5) can be used.

The third important decision is the choice of
a training method. As already mentioned, the
multilayer perceptron network is trained by the use
of analytical determination of error gradients –
backpropagation algorithm along with parameter to
find a numerical method such as the steepest de-
scent, conjugate gradient or Levenberg-Marquard
methods. Due to the fact that classical backpropaga-
tion algorithm is slowly convergent, in this paper,
modification of the basic algorithm, the so-called
OWO-HWO method by Manry et al.,24 was ap-
plied. This modification allows much faster conver-
gence, but the network must have additional con-
straints because liner output neurons must be used
while the net may have only one hidden layer of
neurons.

After the networks have been trained, i.e. their
optimal coefficients have been determined, soft sen-
sor for immeasurable coordinates of state vector is
obtained for every particular mode (operation) by
integrating the dynamical system (eqs. 16 and 20).
In practice, mismatch problems may arise due to
the mismatch between the actual process and the

182 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

F i g . 9 – Detailed internal view of neural layer construc-
tion

network model and/or existence of measurement
noise. Therefore, state observer25 could be used (eq.
24)

d

d

�
(� ,) [(� ,)]

x
f x u K y h x u

t
� � 	 (24)

The matrix K represents observer gain. Usually
in the case of model mismatch only, the gain is cal-
culated using the extended Luenberger observer al-
gorithm, whereas if process noise is also present,
the extended Kalman estimator method for gain cal-
culation is used. In both cases, model gradients
need to be calculated and this could be accom-
plished analytically using a backpropagation algo-
rithm, so this is an additional indication in favor of
using a multilayer feedforward network.

Generic neural model control

During the flexible plant design phase, the ba-
sic control for particular equipment modules is usu-
ally defined as classical PID control, either in a sin-
gle loop or in cascade. The main problem that could
occur in process implementation is control perfor-
mance deterioration, caused by strong loop interac-
tion (e.g. dosing and temperature). This effect can
be minimized by using a neural network model as a
generic process model and implementing generic
neural model control (GNMC). In the literature, the
same method has already been applied by Abonyi
et al.,26 and Gosak and Vampola.20 The method uses
a neural model as the particular model in Lee and
Sullivan,27 the well-known generic model control
method. The basis of the method is the idea that the
output set point dynamic can be maintained at a de-
sired level as shown by expression 25.

d

d
d

y
K y y K y y

t
t

SP
SP SP

t�
�
�

�
�
� � 	 � 	�1 2

0

() () (25)

By the transformation shown in eq. 26, the out-
put can be related to model the following equation

d

d

d

d

d

d

y h x u h

x

x h

x
x u

t t t
f� � �

(,)
(,)

�

�

�

�
(26)

Finally, the model is introduced in the control-
ler expression as shown in eq. 27

�

�

h x u
f x u

(,)
(,)

t
�

� 	 � 	�K y y K y y1 2
0

() ()SP SP
t

td
(27)

To apply generic model control, eq. 27 should
be solved by control input vector u. Depending on
model complexity, this can be done analytically or

numerically. In the case of a neural network model,
the first multiplicand expression on the left-hand
side of eq. 27 can be calculated analytically by
backpropagation algorithm, and then the resulting
equation must be solved numerically. However,
there is a special case of GNMC when state vari-
ables are directly controlled, either if they are mea-
surable or calculated by software sensor. In this
case, eq. 28 is used instead of eq. 25:

d

d
d

x
K x x K x x

t
t

SP
SP SP

t�
�
�

�
�
� � 	 � 	�1 2

0

() () (28)

Then, eq. 27 equivalent expression is given by
eq. 29

f x u K x x K x x(,) () ()� 	 � 	�1 2
0

SP SP
t

td (29)

If eq. 28 is the equation of the controller, then
in the case of a neural model, instead of the numeri-
cal solution of eq. 28, the partial inversion of the
neural network can be done by generating a set of
data using eq. 16 and then using this data set for
training the network (eq. 30) by exchanging places
of vectors u and dx/dt (assuming they have the
same dimension).

u f x
x

�
�
�
�

�
�
�NNinv

t
,
d

d
(30)

The generic neural model control technique
has, in the context of used neural network abstrac-
tion layer, a distinct advantage that in eqs. 27 and
29 neural model plays the part of PI controller bias
term, therefore no change in equipment modules
basic control is necessary; neural model process
control enhancement can be switched on and off
without changes to the initially designed equipment
module or recipe.

Process optimization

The third possibility to enhance the initial rec-
ipe with neural model is to use it as a basis for addi-
tional optimization. The process inputs that are not
engaged in the feedback loop can be used to opti-
mize process performance if a suitable optimization
criterion can be set. According to the optimal con-
trol theory, a process can be optimized by minimiz-
ing a suitable criterion (eq. 31), taking the process
model into account, as well as the control input
boundaries.

J t t t
t

t j

[()] [()] (,)x x x u0 0

0

� ��� � d

� �i i iu� �
(31)

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 183

In literature, there are many methods for solv-
ing the optimal control problem, but in this work,
the iterative dynamic programming method by
Luus28,29 is chosen, because it uses preset bound-
aries in the search for a solution, and from the com-
putational point of view, it only requires integration
of a process model. These characteristics make this
method suitable for the present purpose.

The basis of the iterative dynamic program-
ming (IDP) method is to search for P piecewise
constant or linear control policy over P time stages
of equal time length L. The performance index is
thus approximated by eq. 32;

J t P t t t tj K
t

t

K

P

K

K

[(),] [()] [(), ()]x x x u0 1
1 1

� � 	
� 	

�
� � d (32)

The algorithm works as follows (Bojkov and
Loos):

1. Divide the total time interval into P stages of
length L.

2. Choose the number of x grid points N and
the number of M allowable values for each control
variable.

3. Choose the initial size of a search region ri

for each control variable.

4. Integrate the process model from t0 to tf with
N evenly distributed control values in the allowable
region, thus generating N values of x in each stage.

5. Starting with stage P, for each x grid point
integrate the model from tf – L to tf with each al-
lowable control value. For each grid point choose
control that minimizes the value of J.

6. Move to stage P-1 and repeat the integration
from this segment to final time choosing (from step
5) control that gives the nearest x value.

7. Repeat step 6 for all stages.

8. Reduce the size of the search region by �
(eq. 33)

r r
() ()j j� �1 � (33)

9. Increment iteration index j by 1 and go to
step 4. Stop the procedure when there is no im-
provement in minimization of J.

As previously mentioned, the method allows
easy checking of search boundaries ensuring that
constraints given by design space are satisfied.
Also, it uses neural model only for integration (and
not for calculation of higher order derivatives and
other transformations), which enables the neural
network to be used only for the purpose it was
trained for. All this increases modeling accuracy.

Experimental

Automated mini plant Chemreactor Büchi

The experimental study was performed in an
automated reaction and distillation mini plant
Chemreactor C60 produced by Büchi Glass Uster.
The control system used for actual method imple-
mentation was Siemens PCS7. System PCS7 con-
sists of one AS station (Simatic S7 400 processor)
and one OS station, based on Pentium PC computer
running MS Windows OS.

Basic control layer was built using Siemens
CFC tool. Adjacent phase logic level is pro-
grammed using PCS7 specific SCL language. User
interface and trend visualization were developed on
Siemens WinCC SCADA system. Recipes were im-
plemented30 using Batch Flexible tool which oper-
ates as an add-on to WinCC software. Fig. 10
shows the schematic description of the process unit.

During software design the following equip-
ment modules were implemented:

– Heating/cooling module

– Mixing module

– Pressure module

– Distillation module

– pH module

– Dosing module.

For each module a set of equipment phases
were created. As an example, Fig. 11 shows phases
of Heating/cooling module and the parameters that
need to be set for one phase of the module.

By using the method of recipe creation as de-
scribed in Methodology, new recipes can be created
efficiently in a very short time by defining opera-
tions, choosing phases for parallel execution in
them, and parameterization of phases using SFC ed-
itor of Batch Flexible software.

Wastewater treatment by distillation
and oxidation

As an example of a batch process that can be
constructed using the described equipment,
wastewater treatment is performed. This process
consists of several operations, i.e., charging of
wastewater, purging the equipment with nitrogen,
removal of solvent by batch distillation, adjustment
of pH value, addition of hydrogen peroxide for de-
toxification, degradation of the peroxide surplus
amount and cooling down the reaction mixture. Fig.
12 shows and example of a complete batch run per-
formed in the test plant with marked operation
switches. The purpose of this run was validation of
recipe without the use of neural optimization.

184 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

Testing the process improvement achieved
by neural network

While completion of all phases in the recipe is
necessary for successful wastewater treatment batch
run, improvements can be expected in only two of
them – removal of solvent and detoxification by hy-
drogen peroxide. Other operations are not specific
to this process, and are normally optimized during
plant startup period.

Normally, the developed method should use
data gathered from either on-line or off-line mea-
surement obtained during the batch run. In order to
do better testing of the developed neural modeling
and optimization method for those two operations
or modes of hybrid automation, thermodynami-
cally-based mathematical models were developed
using process and literature data, and performing
the reaction kinetic determination experiments in
the laboratory. Data from the simulation using de-
veloped models were then used for training net-
works.

The solvent removal phase is actually batch
distillation of methanol – water mixture intended
for the removal of methanol from the wastewater. If
the principle of theoretical equilibrium stage is

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 185

F i g . 1 0 – Schematic representation of Chemreactor Buchi Uster with defined process modules

F i g . 1 1 – Phases of Heating/cooling module implemented
on Chemreactor unit and parameters of reactor
temperature phase

F i g . 1 2 – Wastewater treatment process data log pre-
sentation for typical batch with labeled opera-
tions

used, the resulting model is given by eqs. 34–37,
while vapor liquid equilibrium is given by eq. 38
with the assumption of near constant relative
volatilities.

d

d

H

t
D tB �	 () (34)

d

d

X
X Y X X

B

B
N B B Nt H

V D� 	 � 	
1

[() ()] (35)

d

d

X
X X

n

n
n nt H

V� 	 �	

1
1[()

� 	 � 		 	D Vn n n n() ()]X X Y Y1 1

(36)

d

d

X
Y X

D

D
Dt H

V� 	
1

1[()] (37)

Y
X

X
i

i i

j j
j

n�

� 	
�

	

�

�1 1
1

1

()

i n� � 	1 1, , (38)

The corresponding neural model is given by
eqs. 39 – 41

d

d

X

t
f X X H DB NN

B D B� (, , ,) (39)

d

d

X

t
f X X H DD NN

B D B� (, , ,) (40)

d

d

H

t
D tB �	 () (41)

Model training has been done using a data set
obtained by several simulated runs on different con-
stant values of distillate flow. The data collected for
top and bottom composition was then interpolated
by cubic spline and derivatives were calculated for
all points generated by spline interpolation. Fig. 13

shows interpolated data, derivation data, and corre-
sponding network approximation for one batch run.

In order to cover the complete process range of
interest, sets of batch runs are performed, and train-
ing and validation sets are formed. Because data
gathered in this way belongs to different time se-
ries, poor fit or overfit inside particular runs can be
prevented by adjusting the number of spline inter-
polated points. This process can be easily con-
trolled graphically by plotting data against time. A
greater problem is ensuring the quality of network
interpolation of runs that belong to the time series
of data not used in training. This was done by form-
ing the validation sets from batch runs not included
in the training sets (i.e. obtained from batches with
distillate flows not used for training). As long as the
results were unsatisfactory, the training set was in-
creased by performing new batch runs by simula-
tion using the physical model. Figs. 14 and 15 show
the final results of training. Fig. 14 shows network
training results on the training set, and Fig. 15 on
the validation set.

The developed neural model is used to perform
the task of optimizing the distillate concentration dur-
ing the batch run. If methanol concentration in the
distillate is constant and sufficiently high, the regener-

186 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

F i g . 1 3 – Learning of spline approximated derivative of
top and bottom methanol concentration during
distillation operation

F i g . 1 4 – Neural network approximation of distillation
training set

F i g . 1 5 – Neural network approximation of distillation
validation set

ated solvent can be used directly in the production.
For this purpose, the optimizing criteria is given by
eq. 42, i.e. the optimal process is carried out if, during
the run, the concentration of methanol as a product is
kept constant, and in the end the desired quantity of
methanol-free wastewater remains in the reactor.

J H t H X t X tf f f i i

t f

1
2 2

0

� 	 � 	�[()] [()]* * d (42)

Optimization was performed using the neural
model with ten distillate flow segments. Fig. 16
shows the calculated optimal distillate flow that
keeps methanol concentration at 99.5 % and 95.0 %
respectively during the batch distillation operation.

Generic neural model control was tested on ox-
idation operation. Considering the fact that hydro-
gen peroxide oxidizes a large number of unknown
components present in the wastewater, the formal
kinetic relation based on peroxide concentration
only is developed (eq. 43)

r k CA A
aT b� � � (43)

Based on the kinetic model, the material and
energy balance of the process is given by eqs. 44 – 46:

d

d

d

d

C

t V
F C V k C C

V

t
A

r
in A

in
r A

aT b
A

r� 	 � � 	
�
 !

"
#$

�1 () (44)

d

d

T

t V C
F C T T

r pA
in in pA in ref�

� �
	 �

1

%
%[()

� � � � 	 � � 	 	k V C H U A T T
T

V

V

tr A j
r& ()]

d

d

(45)

d

d

T

t
F

m
T T

U A

C m
T T

j

cm
cm

cm
cm j

pcm cm
j� 	 �

�
	

%
() () (46)

The neural network equivalents for the model
described by eqs. 44 – 46 is given by eqs. 47 – 49

d

d

C

t
f F C T VA NN

in A r� (, , ,) (47)

d

d

T

t
f F C T T VNN

in A j r� (, , , ,) (48)

d

d

T

t
f T T T

j NN
j cm� (, ,) (49)

Networks 47 – 49 were trained in open loop
process setup using data generated by process model
(eqs. 44 – 46) by alternating sinusoidal control func-
tions and random step functions (with inlet peroxide
flow and thermostat temperature as inputs) in order
to capture complete possible dynamic ranges of vari-
ables. The concentration network was the most diffi-
cult to train (eq. 47) due to instant changes in con-
centration in the reactor directly following input
flow change. As for distillation, the total data set was
divided into training and validation sets. Fig. 17
shows the results of concentration network simu-
lation compared with complete training set, while
Fig. 18 shows the same for the validation set.

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 187

F i g . 1 7 – Concentration network approximations in com-
parison with training set

F i g . 1 8 – Concentration network approximation in com-
parison with validation set

F i g . 1 6 – Optimal distillate flow calculated with IDP
method with goal of keeping the top concentration of methanol
in distillate at two fixed values (XD = 99.5 and 99.0)

After the training, the network models are used
for generic neural model control testing. For this
purpose, networks 47 and 49 were partially inverted
as in eq. 29 in order to obtain explicit relations for
control inputs Fin and Tcm. The comparison between
classical PI cascade control of temperature and re-
sulting GNMC control calculated by simulation is
shown in Fig. 19.

Discussion

Besides the method here proposed, the task of
optimization and batch process improvement can be
achieved by direct recipe manipulation with the
purpose of optimization (Verwater-Lukszo, Šel et
al.).31,32 Verwater-Lukszo proposed a method for di-
rect recipe optimization called FRIS (Flexible rec-
ipe improvement system) based on recipe adapta-
tion. This adaptation is practically accomplished by
the development and application of recipe adapta-
tion set. The recipe adaptation set is prepared by
utilizing combination of design of experiments,
modeling and experimental optimization.

The main practical difference between recipe
modification and the method introducing neural
process abstraction layer here proposed is that the
latter is tailored specifically to be in accordance
with the quality by design approach. Since QbD ap-
proach allows free changes in the process as long as
they do not move the process state space outside the
boundaries of design space, no change in batch doc-
umentation is necessary from run to run. The neural
network model works on process control inputs
(manipulated variables) only, which means that
batch data log is sufficient to document the differ-
ences between batch runs.

The necessary requirement for application of
the proposed method is to build the recipe in the
way described in this work. While this modification

does not affect recipe flexibility, a problem may
arise when attempting to apply this method to some
batch plant with a different method of recipe build-
ing (ISA S88.01 allows and expects high flexibility
in recipe formulation). The proposed method can
still be applied, but change in recipe formulation
may change the way the hybrid process model is
built, so instead of hybrid automata, some other hy-
brid system model may be more appropriate. Con-
sequently, changes in neural model structure and
training may be necessary.

Training of neural network and its usage are
the most important issues in application of the pro-
posed method. Most of the difficulties arise from
the necessity to approximate dynamical nonlinear
model with neural network. In literature, there are
many different methods developed involving recur-
rent (and for this reason either discrete or continu-
ously dynamical) networks training. Unfortunately,
most dynamical networks suffer from one or both
common problems – complex and hardly conver-
gent methods for training, as well as so-called “van-
ishing gradient problem” (gradually forgetting of
older data dynamics behavior while learning from
the more recent data set). For this reason, continu-
ous state space representation of the neural network
is used. Use of the spline smoothing and derivation
of resulting polynomials enables overcoming the
typical abovementioned problems during learning.
One problem should nevertheless be taken into ac-
count – the problem of network regularization. It is
well known that the main problem in using any
multivariable nonparametric regression is the prob-
lem of data overfitting. Overfitting usually occurs
when an applied network is able to learn more com-
plex information than actually needed for a given
data set (too many neurons or too many hidden lay-
ers in the network). When approximation of the
multivariable function is performed, it is very diffi-
cult to predict possible overfitting. The simplest
way to deal with this problem is to divide the train-
ing set into learning and verification sets. If verifi-
cation fails, it is possible to resort to premature
stopping of numerical minimization (learning algo-
rithm) or repeating the learning with a less complex
neural network. Things are somewhat different in
the case of trajectory learning. The task of the neu-
ral network in this case is to approximate the trajec-
tories presented as the training set, as well as to in-
terpolate correctly between the trajectories, i.e. ap-
proximate correctly dynamical behavior of the sys-
tem. Learning the trajectories in the training set
may be accomplished by increasing the number
of learning points after smoothing spline interpola-
tion has been performed. Approximation quality
(smoothness of trajectories) can be easily tested by
plotting. On the other hand, interpolating between

188 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

F i g . 1 9 – Comparison of reactor temperature control dur-
ing oxidation reaction with classical PID control
and using generic neural model control

trajectories is much more difficult to achieve. In
this work, it was attained by dividing the smoothed
trajectory data into two sets. One set was used for
learning and the other for verification. If verifica-
tion had failed, the network would be retrained with
combined sets and another verification set would be
produced from plant data. This procedure was re-
peated until verification passed. While this method
is operational, its drawback is that sufficiently large
data sets must be available. In the case of insufficient
data, the alternative would be the application of the
leave-one-out method as described by Specht33–35

(treating trajectory as data point in static function
approximation), but so far there is not enough expe-
rience to predict applicability of this method.

While in this work only neural models are
used, due to the desire to achieve maximum possi-
ble generality, it is always advantageous to incorpo-
rate additional existing process knowledge into a
developed model. If the use of a full thermodynam-
ically-based model is impractical, there are two
main approaches for incorporation of knowledge
not accessible by the neural model alone.

The first method involves development of hy-
brid models which include some parts of the physi-
cal model. For example, Hosen et al.36 used hybrid
neural model to control polystyrene batch polymer-
ization reaction where the first principle kinetic
model was used as a part of the overall neural model.

The second method involves the combining of
AI methods in order to incorporate different kinds
of process knowledge offered by different algo-
rithms. Especially interesting is the combination of
neural and fuzzy systems due to favorable incorpo-
ration of symbolic knowledge into numeric neural
model. Examples of such neuro-fuzzy systems are
given by Causa et al.37 and Simon and Hunger-
buhler.38

In practical implementation of a developed
method it is also important to address the problem
of software realization of neural network applied. It
is obvious that software modules for data gathering
and network training should be preferably placed
on SCADA system or some separate computer on
industrial LAN network. On the other hand, the net-
work execution modules along with weight sets
need to be in PLC or DCU system, because they
have the logical role of a layer between IO modules
and basic control of equipment modules. In the case
of the PCS7 system, they can be implemented with
the same tool used for basic control programming –
continuous function chart (CFC) tool. If PLC does
not have sufficient processing power or a lower
programming language is used for software devel-
opment, a possible solution is to use a separate pro-
cessor for network execution.

Conclusion

The presented method of installing the neural
network layer between the process and basic con-
trol level in a recipe-controlled batch plant, is
shown to have potential in dealing with the task of
constant gradual improvement by movement of
control space (parameter operating range space) in-
side the design space.

In future work, attention should be paid to fur-
ther development of methods of hybrid neural mod-
eling that would allow implementation of neural
process layer to a broader class of recipe structures.
In addition, dynamic neural network training meth-
ods with reduced data set should also be a topic of
interest.

L i s t o f s y m b o l s

H 	 liquid holdup, mol
D 	 distillate flow, mol s–1

X 	 molar fraction in liquid phase
Y 	 molar fraction in vapor phase
V 	 vapor flow, mol s–1

t 	 time, s
� 	 relative volatility
CA 	 molar concentration, mol L–1

F 	 flow, L h–1

Vr 	 reactor volume, L
T 	 temperature, K (oC)
% 	 density, kg m–3

&H 	 reaction enthalpy, J mol–1

A 	 area, m2

U 	 heat transfer coefficient, W m–2 K–1

Cp 	 heat capacity, J mol–1

m 	 mass, kg

I n d i c e s

B 	 bottom
D 	 distillate
n 	 theoretical stage number
f 	 final
r 	 reactor
j 	 jacket
in 	 inlet
cm 	 cooling medium
NN 	 neural network

L i t e r a t u r e

1. ANSI/ISA-95.00.01–2000, Enterprise-Control System In-
tegration, Part 1: Models and Terminology.

2. ANSI/ISA S88.01–1995(2011), Batch Control Part 1:
Models and Terminology.

A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012) 189

3. Lepore, J., Spavins, J., Journal of Pharmaceutical Innova-
tion,. 3 (2008) 79.

4. Davies, B., Ellis, S., Pharmaceutical Technology Europe,
17 (2005) 17, 22.

5. Sanchez, A., Para, L., Baird, R., Macchietto, S., ISA
Transactions 42 (2003) 401.

6. Moor, T., Raisch, J., Supervisory Control of Hybrid Sys-
tems In: Behavioural Framework. Systems and Control
Letters, Elsevier, New York, 1999, 157–166.

7. Potoènik, B., Bemporad, A., Torrisi, F., Mušiè, G., Zu-
panèiè, B., Control Engineering Practice 12 (2004) 1127.

8. Goebel, R., Sanfelice, R., Teel, A., Hybrid Dynamical Sys-
tems, Princeton University Press New Yersey, 2012.

9. Lennartson, B., Tittus, M., Egardt., B., Pettersson, S.,
IEEE Control Systems 16 (1996) 45.

10. Barton, P., Banga, J., Galan, S., Computers and Chemical
Engineering 24 (2000) 2171.

11. Fabre, F., Hetreux, G., Le Lann, J., Zarate, P., Computers
and Chemical Engineering 35 (2011) 2098.

12. Haykin, S., Neural networks and learning machine,
Prentice Hall, New York, 2009.

13. Masters, T., Advanced algorithms for neural networks,
John Wiley, New York, 1995.

14. Hrycej, T., Neurocontrol, John Wiley, New York, 1997.
15. Paengjuntuek, W., Thanasinthana, L., Arpornwichanop,

A., Neural Neurocomputing 83 (2012) 158.
16. De Jesus, O., Hagan, M., IEEE Transaction on Neural

Network 18 (2007) 15.
17. Werbos, P., Proceedings of IEEE 78 (1990) 1550.
18. Williams, R., Zipser, D., Neural Computation 1 (1989) 270.
19. Nerrand, O., Roussel-Ragot, P., Urbani, D., Personnaz, L.,

Dreyfus, G., IEEE Trans. on Neural Networks 5 (1994)
178.

20. Gosak, D., Vampola, M., Generic Neural Model Control of
Batch Distillation Process In: Advances in Process Control
6 , Love, J. (Ed.). Rugby: ICHEME UK, 2001. 137 – 144.

21. Alur, R., Henzinger, T. A., Lafferriere, G., Pappas, G., Pro-
ceedings of the IEEE 88 (2000) 971.

22. Le Sceller, L., Letellier, C., Gouestbed, G., Physics Letters
A 211 (1996) 211.

23. De Boor, C., Practical guide to splines, Springer, New
York, 2001.

24. Chen, H. H., Manry, M. T., Chandrasekaran, H., Neuro-
computing 25 (1–3) (1999) 55.

25. Grewal, M., Andrews, A., Kalman filtering theory and
practice using MATLAB, John Wiley and Sons, New
York, 2001.

26. Abonyi, J., Madar, J., Szeifert, F., Combining first princi-
ples models and neural networks for generic model control
In: Soft Computing in Industrial Applications – Recent
Advances, Roy, R., Koppen, M., Ovaska, S., Furuhashi, T.,
Homann, F. (Eds.), Springer Engineering Series, 2001,
111–122.

27. Lee, P., Sullivan, G., Computers and Chemical Engineer-
ing 12 (6) (1988) 573.

28. Bojkov, B., Luus, R., Industrial & Engineering Chemistry
Research 31 (1992) 1308.

29. Schroder, A., Mendes, M., Computers and Chemical Engi-
neering Supplement (1999) S491.

30. Vampola, M., Gosak, D., Šoštarec, A, Pavlièiæ, D., Vraneš,
N., Hraniloviæ, M., Development of the Batch Reaction
Control System Using the ISA S88 Batch Control Stan-
dard, In: Computers in Technical Systems and Intelligent
Systems, Budin, L. (Ed.). Rijeka MIPRO, 2002.

31. Verwater-Lukszo, Z., Computers in Industry 36 (1998) 279.
32. Šel, D., Hvala, N., Strmènik, S., Milaniè, S., Šuk-Lubej, B.,

Control Engineering Practice 7 (1999) 1191.
33. Larsen, J., Svarer, C., Nonboe Andersen, L., Hansen, L. K.,

Adaptive Regularization in Neural Network Modeling In:
Orr, G. B., Müller, K. (Eds.) Neural Networks: Tricks of
the Trade, Lecture Notes in Computer Science 1524, Ger-
many: Springer-Verlag, 1998, 113–132.

34. Specht, D., IEEE Transactions on Neural 2 (6) (1991).
35. Boser, B., Guyon, I., Vapnik, V., A training algorithm for

optimal margin classifiers In: 5th Annual Workshop on
Computational Learning Theory, Pittsburgh, ACM, 1992,
144–152.

36. Hosen, M., Husain, M., Mjalli, F., Control Engineering
Practice 19 (2011) 454.

37. Causa, J., Karer, G., Nunez, A., Saez, D., Škrjanc, I., Zu-
panèiè, B., Computers and Chemical Engineering 12
(2008) 3254.

38. Simon, L., Hungerbuhler, K., Chemical Engineering Jour-
nal 157 (2010) 568.

190 A. ŠOŠTAREC et al., Optimization of Recipe Based Batch Control Systems …, Chem. Biochem. Eng. Q. 26 (3) 175–190 (2012)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Za tisak'] [Based on 'Za tisak'] [Based on 'Za tisak'] [Based on 'Za tisak'] [Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Euroscale Uncoated v2)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 14.173230
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [1417.323 907.087]
>> setpagedevice

