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Molecular graphs able to model covalent multiple bonds are called plerographs. For such

graphs with single, double and triple edges, we define here the compact degree sequence (n1,

n2, n3, n4), where ni, i = 1, 2, 3, 4 denote the number of vertices of degree i. We have found the

necessary and sufficient conditions (n1, n2, n3, n4) for the existence of graph G such that G has

n1, n2, n3 and n4 vertices of degrees 1, 2, 3 and 4, and have formulated the findings into three

theorems.
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INTRODUCTION

Molecules are conveniently represented by two types of

molecular graphs:1–4 plerographs (in which each atom is

represented by a vertex) and kenographs (in which hy-

drogen atoms are suppressed). Here, we consider plero-

graphs which, apart from the original paper of Cayley,1

have been only recently reviewed in chemical literatu-

re.2–4 In plerographs according to Cayley and adopted

here, the number of bonds emanating from an atom

equals its valence. For most molecules, it is sufficient to

consider valencies of up to 4. In this paper, we pay atten-

tion to plerographs of such molecules, i.e., we treat the

connected graphs without loops having single, double,

and triple covalent bonds. By �1, �12, �13 and �123 we

denote the set of plerographs containing single bonds,

containing single and/or double bonds, containing single

and/or triple bonds and containing single and/or double

bonds and/or triple bonds, respectively.

The bonding topology of molecules can be charac-

terized in a variety of ways.5 One of them is offered by

degree sequences. The degree of vertex i of graph G, di =

di (G) equals the number of edges incident to i, and for

plerographs fully coincides with the valence of the i-th

atom of a molecule represented by G. Let �(G) denote

the number of vertices of G and e(G) stand for the num-

ber of bonds (taking into account their multiple charac-

ter) in G. The monotonic non-decreasing sequence of

vertex degrees is called a degree sequence, i.e., for graphs

treated here it is a sequence of length �(G) with entries

1, 2, 3 and 4. The degree sequence can be contracted

into a compact degree sequence, �(G) (compact valence



sequence) of the form � = �(G) = (n1, n2, n3, n4), where

nj, j = 1, 2, 3, 4 denotes how frequently the vertex degree

equal to j occurs in a degree sequence. Obviously, the com-

pact degree sequence represents a partition of vertices in

G in (here four) classes of vertices having the same degree.

To each graph G, we can ascribe a 4-tuple �(G), but

the opposite generally does not hold, e.g., no graph ex-

ists for a 4-tuple (3,0,0,0).

In the present paper, we address the following three

problems:

1) for a given 4-tuple (n1, n2, n3, n4) find the neces-

sary and sufficient conditions for the existence of

graph G � �12 such that �(G) = (n1, n2, n3, n4);

2) solve the same as above for G � �13;

3) solve the same for G � �123.

These problems are solved here and formulated in

three theorems.

Preliminary to further considerations, let denote by

e2(G), e3(G) and �(G) the number of double bonds, tri-

ple bonds and the maximal vertex degree of G, respec-

tively.

MAIN RESULTS

Bonds and edges are in one to one correspondence: if

there is just one edge e that connects vertices x and y,

then we say that e is a single edge, if there are two edges

e’ and e’’ that connect vertices x and y, then we say that

the pair e’ and e’’ is a double edge, and if there are three

edges e’, e’’ and e’’’ that connect vertices x and y, then

we say that a triplet e’, e’’ and e’’’ is a triple edge.

Let us give a few auxiliary results:

Lemma 1. – Let G � �12 such that �(G) = (n1, n2, n3, n4).

Then, e2(G) = (n3 + 2n4 – n1 + 2)/2.

Proof. The claim follows directly from this equation

(implied by hand-shaking Lemma):

4e2(G) + 2(n1 + n2 + n3 + n4 – 1 – e2(G)) =

n1 + 2n2 + 3n3 + 4n4. �

Note that number 4 stands, because each double

edge contributes 4 to the sum of vertex degrees (it con-

tributes 2 to the degree of its two adjacent vertices).

Lemma 2. – Let G � �12 such that �(G) = (n1, n2, n3, n4),

and let k � N0 (where N0 denotes the set of natural num-

ber together with 0) such that k � e2(G). Then, there is a

graph G’ � �12 such that �(G’) = (n1 + 2k, n2, n3, n4).

Proof. Select arbitrary k double edges. Graph G’ is ob-

tained by replacing each of them by a single edge and

adding to each of its endvertices one neighbor of degree

1. �

Lemma 3. – Let G � �12 be a graph that contains at least

one single edge such that �(G) = (n1, n2, n3, n4). Then,

there exists a graph G’ � �12 that contains at least one

single edge such that �(G’) = (n1, n2 + 1, n3, n4).

Proof. Graph G’ is obtained from graph G by replacing

arbitrary edge with an item depicted below:

�

This implies:

Lemma 4. – Let G � �12 be a graph that contains at least

one single edge such that �(G) = (n1, n2, n3, n4) and let k

� N. Then, there is a graph G’ � �12 that contains at least

one single edge such that �(G’) = (n1, n2 + k, n3, n4).

Let us prove:

Lemma 5. – Let G � �12 be a graph that contains at least

one single edge such that �(G) = (n1, n2, n3, n4). Then,

there is a graph G’ � �12 that contains at least one single

edge such that �(G’) = (n1, n2, n3 + 2, n4).

Proof. Graph G’ is obtained from graph G by replacing a

single edge with an item shown below:

�

From this Lemma, it easily follows that:

Lemma 6. – Let G � �12 be a graph that contains at least

one single edge such that �(G) = (n1, n2, n3, n4) and let k

� N. Then there is a graph G’ � �12 that contains at least

one single edge such that �(G’) = (n1, n2, n3 + 2k, n4).

Now, we prove:

Lemma 7. – Let G � �12 be a graph that contains at least

one double edge such that �(G) = (n1, n2, n3, n4). Then,

there is a graph G’ � �12 that contains at least one dou-

ble edge such that �(G’) = (n1, n2, n3, n4 + 1).

Proof. Graph G’ is obtained from graph G by replacing a

double edge with an item given below:

�

It follows that:

Lemma 8. – Let G � �12 be a graph that contains at least

one double edge such that �(G) = (n1, n2, n3, n4) and let
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Figure 1. Item that replaces an edge of G.

Figure 2. Item that replaces an edge of G.

Figure 3. Item that replaces a double edge of G.



k � N. Then, there is a graph G’ � �12 that contains at least

one double edge such that �(G’) = (n1, n2, n3, n4 + k).

Now, we can prove our first theorem:

Theorem 9. – Let n1, n2, n3, n4 � N0. Then, there is a

graph G � �12 such that �(G) = (n1, n2, n3, n4) if and

only if n2 = n3 = n4 = 0 and n1 = 2; or the following holds:

1) n1 = n3 (mod 2)

2) n1 � n3 + 2n4 + 2

3) if n3 = 0, then n1 + 2n2 � 4

4) if n3 � 1, then n1 + n2 � 2

5) n1 = n3 = 0 � n2 = 2.

Proof. First, let us prove necessity. If n2 = n3 = n4 = 0

and n1 = 2, the claim is trivial, so suppose that 1) – 5)

hold. Let us distinguish six cases:

CASE 1: n3 = 0, n1 = 0.

Note that then n2 = 2. The claim follows from graph

P2’:

and Lemma 8.

CASE 2: n3 = 0, n1 = 2.

Note that n2 � 1. If n4 = 0, the claim is proved by

considering graph H5:

and Lemma 4. If n4 � 1, the claim follows looking at

graph H6:

and Lemmas 4 and 8.

CASE 3: n3 = 0, n1 � 4.

Note that n4 � 1. If n4 = 1, then n1 = 4. From graph

H7:

and Lemma 4, the claim follows. Suppose that n4 � 2.

From graph H8:

and Lemmas 4 and 8, it follows that there is a graph G’

such that �(G’) = (4, n2, n3, n4). Note that 4 � n1 � n3 +

2n4 + 2 and n1 is an even number. Also, note that e2(G’) =

(n3 + 2n4 – 2) / 2 and that (n1 – 4) / 2 � (n3 + 2n4 – 2) / 2.

Therefore, from Lemma 2 it follows that there is a graph

G such that �(G) = (4 + 2 (n1 – 4) / 2, n2, n3, n4) =

(n1, n2, n3, n4).

CASE 4: n3 � 1, n1 = 1.

Note that n2 � 1 and that n3 is odd. From graph H9:

and Lemmas 4, 6 and 8, the claim follows.

CASE 5: n3 � 1, n1 � 2, n1 and n3 are even.

From graph H10:

and Lemmas 4, 6 and 8, it follows that there is a graph

G’ such that �(G’) = (2, n2, n3, n4). Note that 2 � n1 � n3 +

2n4 + 2 and n1 is an even number. Also, note that e2(G’) =

(n3 + 2n4 – 2) / 2 and that (n1 – 2) / 2 � (n3 + 2n4) / 2.

Wherefrom, by Lemma 2, it follows that there is a graph

G such that �(G) = (2 + 2 (n1 – 2) / 2, n2, n3, n4) =

(n1, n2, n3, n4).

CASE 6: n3 � 1, n1 � 2, n1 and n3 are odd.

Suppose that n4 = 0. From graph H11:

and Lemmas 4 and 6, it follows that there is graph G’

such that �(G’) = (3, n2, n3, n4). Graph G such that �(G) =
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Figure 4. Graph P2’.

Figure 5. Graph H5.

Figure 6. Graph H6.

Figure 7. Graph H7.

Figure 8. Graph H8.

Figure 9. Graph H9.

Figure 10. Graph H10.

Figure 11. Graph H11.



(n1, n2, n3, n4) can be constructed analogously to the

above. Now, suppose that n4 � 1. Graph H12:

and Lemmas 4, 6 and 8 imply that there is graph G’ such

that �(G’) = (3, n2, n3, n4). Graph G such that �(G) =

(n1, n2, n3, n4) can be constructed analogously as before.

All the cases are now exhausted and necessity is

proved. Now, let us prove sufficiency. If G is a path of

length 1, the claim is trivial, so suppose that G is not a

path of length 1. From the Handshaking Lemma (the

number of vertices with an odd degree is even) follows

that n1 = n3 (mod 2). From the fact that every molecular

graph is connected, it follows that e(G) � n(G) – 1, which

is equivalent to

n1 + 2n2 + 3n3 + 4n4 � 2 (n1 + n2 + n3 + n4 – 1);

n1 � n3 + 2n4 + 2.

Suppose that n3 = 0. We have:

n1 + 2n2 + 4n4 = 2(n1 + n2 + n4 – 1 – e2(G)) + 4e2(G).

Note that e2(G) � n2 + n4 – 1, hence

n1 + 2n2 + 4n4 �

�	n1 + n2 + n4 – 1 – (n2 + n4 – 1)) + 4(n2 + n4 – 1).

From here, 3) easily follows.

Now, suppose that n3 � 1. Let G0 be a graph obtain-

ed by replacing all double edges by a single edge. Note

that there are at most n1 + n2 vertices of degree 1 in G0.

Since G0 is a tree, it follows that it has at least two leav-

es, i.e., that n1 + n2 � 2.

It remains to prove that n1 = n3 = 0 � n2 = 2. From

n1 + 2n2 � 4, it directly follows that n2 � 2, so we need to

prove that n2 � 2.

Suppose the contrary. Let G’ � �12 be a graph with

the smallest number of vertices in �12 without any verti-

ces of degrees 1 and 3 and with at least three vertices of

degree 2. Distinguish three cases:

CASE 1: There is a vertex of degree 2 with a single

neighbor (connected by a double edge) of degree 2. Sin-

ce G’ is connected, this is graph P2’ (given in Figure 4),

but this graph has only two vertices of degree 2, which

is a contradiction.

CASE 2: There is a vertex of degree 2 with a single

neighbor (connected by a double edge) of degree 4.

Let G’’ be a graph obtained by deletion of this ver-

tex of degree 2 and its incident edges. Note that G’’ has

no vertices of degrees 1 and 3; it has the same number of

vertices of degree 2 as G; and it has a smaller number of

vertices, which is a contradiction.

CASE 3: Each vertex of degree two has two neighbors.

Note that in this case e2(G) � n4 – 1. We have:

2n2 + 4n4 = 2(n2 + n4 – 1 – e2(G’)) + 4e2(G’)

2n2 + 4n4 � 2(n2 + n4 – 1 – (n4 – 1)) + 4(n4 – 1)

0 � – 4,

which is a contradiction.

We have exhausted all cases and our theorem is

proved. �

Let us prove some more auxiliary results:

Lemma 10. – Let G � �13 be a graph with at least

one single edge such that �(G) = (n1, n2, n3, n4). Then

there is a graph G’ � �13 with at least one single edge

such that �(G’) = (n1, n2, n3, n4 + 2).

Proof. Graph G’ is obtained from graph G by replac-

ing a single edge with an item depicted below:

�

Lemma 11. – Let G � �13 be a graph such that �(G) =

(n1, n2, n3, n4) and let n1 � 1. Then, there is a graph G’ �

�13 such that �(G’) = (n1 – 1, n2, n3 + 1, n4 + 1).

Proof. Graph G’ is obtained from graph G by replacing a

leaf and its incident edge:

by:

�

These Lemmas imply:

Lemma 12. – Let G � �1 be a graph such that �(G) =

(n1, n2, n3, n4), and let x � n1, and y � N0. Then there is a
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Figure 12. Graph H12.

Figure 13. Item that replaces an edge of G.

Figure 14. Leaf and incident edge.

Figure 15. Item that replaces a leaf and incident edge.



graph G’ � �13 such that �(G’) = (n1 – x, n2, n3 + x, n4 +

x + 2y).

In the paper,6 the following Lemma is proved:

Lemma 13. – Let n1, n2, n3, n4 � N0. Then, there is a

graph G � �1 such that �(G) = (n1, n2, n3, n4) if and only

if n1 = n3 + 2n4 + 2.

From the last two Lemmas, it follows that:

Lemma 14. – Let n1, n2, n3, n4 � N0. If there are numbers

x, y � N0 such that x + 2y � n4, x � n3 and x + y = (n3 +

2n4 – n1 + 2) / 4. Then, there is a graph G’ � �13 such

that �(G) = (n1, n2, n3, n4).

Proof. Just note that the last relation is equivalent to

n1 + x = (n3 – x) + 2(n4 – x – 2 y) + 2.

�

Now, we can prove our second theorem:

Theorem 15. – Let n1, n2, n3, n4 � N0. Then, there is a

graph G’ � �13 such that �(G) = (n1, n2, n3, n4) if and only

if n1 = n2 = n4 = 0 and n3 = 2, or the following holds:

1) n3 + 2n4 + 2 – n1 = 0 (mod 4)

2) 0 � (n3 + 2n4 + 2 – n1) / 4 � min 
	n3 + n4) / 2, n4�.

Proof. First, let us prove necessity. If n1 = n2 = n4 = 0

and n3 = 2, the claim is trivial, hence suppose that rela-

tions 1) and 2) hold. Note that q = (n3 + 2n4 + 2 – n1) / 4

� N0. We have:

max 
2q – n4, 0� � min 
n3, n4, q�.

Therefore, there exists a natural number x such that

max 
2q – n4, 0� � x � min 
n3, n4, q��

Note that y = q – x � N0 and that

x + 2y � n4; x � n3; x + y = (n3 + 2n4 + 2 – n1) / 4,

hence, by the last Lemma, the graph with the required

properties exists.

Now, let us prove sufficiency. If �(G) = (0, 0, 2, 0)

the claim is trivial, so suppose that �(G) 
 (0, 0, 2, 0).

Note that

n1 + 2n2 + 3n3 + 4n4 =

2(n1 + n2 + n3 + n4 – 1 – e3(G)) + 6e3(G);

or equivalently that e3(G) = q. Since e3(G) � N0, it fol-

lows that 1) holds and that q � 0. Note that each triple

edge is incident to at least one of the vertices of degree 4

and that each vertex of degree 4 is incident to at most

one triple edge; hence indeed q � n4. Let G’ be a graph

obtained from graph G by deleting all its single edges

and vertices of degrees 1 and 2 and replacing all triple

edges by a single edge. Note that �(G) � 1. We have

q = e3(G) = e(G’) � (�(G’) � n(G’)) / 2 = (n3 + n4) / 2.

This proves our claim. �

Denote by �’12 the set of graphs in �12 that have at

least one single edge. We need more arbitrary results:

Lemma 16. – Let n1, n2, n3, n4 � N0. Then, there is a

graph G � �’12 such that �(G) = (n1, n2, n3, n4) if and

only if n2 = n3 = n4 = 0 and n1 = 2; or the following holds:

1) n1 � n3 (mod 2)

2) n1 � n3 + 2n4 + 2

3) if n3 = 0, then n1 + 2n2 � 4

4) if n3 � 1, then n1 + n2 � 2

5) n1 + n3 > 1.

Proof. Let us prove necessity. If 1) – 5) holds, there is a

graph G � �12 such that �(G) = (n1, n2, n3, n4) that has at

least one vertex of an odd degree. Then there is a single

edge incident to this vertex; hence G � �’12.

Now, let us prove sufficiency. From Theorem 9, it

follows that 1) – 4) hold and that either 5) holds or n1 =

n3 = 0 and n2 = 2. Suppose to the contrary that 5) does

not hold. Then there is a graph G � �’12 such that �(G) =

(0, 2, 0, n4). We have

0 + 2 � 2 + 3 � 0 + 4n4 =

2(0 + 2 + 0 + n4 – 1 – e2(G)) + 4e2(G).

Note that e2(G) � v(G) – 1 – 1 � n4, hence

4 + 4n4 � 2 + 2n4.

This is a contradiction. �

Lemma 17. – Let n1, n2, n3, n4 � N0. There is a graph G �

�123 such that �(G) = (n1, n2, n3, n4) if and only if one of

the following holds:

1) n1 = n2 = n4 = 0 and n3 = 2

2) n1 = n3 = 0 and n2 = 2

3) there are x, y � N0 such that x + 2y � n4, x � n3

and a graph G’ � �’12 such that �(G’) = (n1 + x, n2, n3 –

x, n4 – x – 2y).

Proof. First, let us prove necessity. If 1) or 2) hold, the

claim is trivial. So suppose that 3) holds. Let G’’� �123

be a graph obtained from graph G’ by replacing one of

its single edges by:

Note that �(G’’) = (n1 + x, n2, n3 – x, n4 – x). Choose

arbitrary x leaves in G’’. Let G be a graph obtained by
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Figure 16. Item that replaces an edge of G’.



replacing each of these vertices (with its incident edge)

by an item:

Graph G has the required properties.

Now let us prove sufficiency. Let G � �123 be a

graph such that �(G) = (n1, n2, n3, n4). If (n1 = n2 = n4 =

0 and n3 = 2) or (n1 = n3 = 0 and n2 = 2), the claim is

trivial, so suppose that this is not the case.

Let us prove that G has at least one single edge.

Note that each triple edge is incident to at least one ver-

tex of degree four. Hence, there is a single edge or G �

�12. Therefore, there is a single edge or there are no ver-

tices of an odd degree in G, but then n1 = n3 = 0 and

(from Theorem 9) n2 = 2 and we have assumed that this

is not the case. Therefore, indeed G has a single edge.

Denote by X the set of all pairs of vertices of de-

grees 3 and 4 connected by a triple edge and by Y the set

of pairs of vertices of degree 4 connected by a triple

edge. Also, denote cardinalities of sets X and Y by x =

card X and y = card Y. Let G’ be a graph obtained by re-

placing each pair of vertices in X (together with their ad-

jacent edges) by a single edge and by replacing each pair

of vertices in Y (together with their adjacent edges) by a

single leaf, as shown on the drawing below:

Note that G’ � �’12 and that �(G’) = (n1 + x, n2, n3 –

x, n4 – x – 2y). �

It can be easily proved that:

Lemma 18. – Let n1, n2, n3, n4 � N0. There are x, y � N0

such that x + 2y � n4, x � n3 and that n2 = n3 – x = n4 –

x – 2y = 0 and n1 = 2 if and only if

n1 = 2, n2 = 0, n4 � n3 and n4 � n3 (mod 2).

Let us prove:

Lemma 19. – Let n1, n2, n3, n4 � N0. There are x, y � N0

such that x + 2y � n4, x � n3 and that:

1) n1 + x � n3 – x (mod 2)

2) n1 + x � (n3 – x) + 2(n4 – x – 2y) + 2

3) if n3 – x = 0, then (n1 + x) + 2n2 � 4

4) if n3 – x � 1, then (n1 + x) + n2 � 2

5) (n1 + x) + (n3 – x) > 1

if and only if

I) n1 � n3 (mod 2)

II) n1 � n3 + 2n4 + 2

III) if n3 = 0, then n1 + 2n2 � 4

IV) if n3 � 1, then n1 + n2 � max 
2 – n4, 3 – n3, 2 –

(n3 + 2n4 + 2 – n1) / 4�

V) n1 + n3 > 1.

Proof: First, let us prove sufficiency. Relations 1) and 5)

are equivalent to I) and V). Relation 2) is equivalent to

n1 + 4x + 2y � n3 + 2n4 + 2, which implies II). Distin-

guish two cases:

CASE 1: n3 = 0.

Relation IV) is trivial. Note that x = 0, hence III)

holds.

CASE 2: n3 � 1.

Relation III) is trivial. It remains to prove IV). Sup-

pose that relation 1) – 5) hold for x = n3. Note that in this

case these relations also hold for x = n3 – 1. Suppose that

relation 1) – 5) hold for y� N0. Note that in this case

they also hold for y = 0. Therefore, we may assume that

x � n3 – 1 and y = 0. Relations 2) and 4) can be rewritten

as

x � (n3 + 2n4 + 2 – n1) / 4

x � 2 – n1 – n2

Combining this with x � 0; x � n3 – 1 and x � n4, we get

2 – n1 – n2 � (n3 + 2n4 + 2 – n1) / 4

2 – n1 – n2 � n3 – 1

2 – n1 – n2 � n4.

From these relations, IV) easily follows.

Now, let us prove necessity. Relations 1) and 5) are

equivalent to I) and V). Distinguish two cases:

CASE 1: n3 = 0.

It is sufficient to take x = y = 0.

CASE 2: n3 � 1.

Note that

max 
0, 2 – n1 – n2� �

min 
(n3 + 2n4 + 2 – n1) / 4, n3 – 1, n4�.

Hence, there is an integer x such that

max
0, 2 – n1 – n2� �

x � min
(n3 + 2n4 + 2 – n1) / 4, n3 – 1, n4�.

Taking y = 0 and this x, the claim follows. �

From the last four Lemmas, our third theorem fol-

lows directly:

Theorem 20. – Let n1, n2, n3, n4 � N0. There is a graph G

� �123 if and only if one of the following holds:
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Figure 17. Item that replaces a vertex (with its incident edge) of
G’’.

Figure 18. Replacement of graph items.



1) n1 = n2 = n4 = 0 and n3 = 2

2) n1 = n3 = 0 and n2 = 2

3) n1 = 2, n2 = 0, n4 � n3 and n4 � n3 (mod 2)

4) The following five relations hold:

4.1) n1 � n3 (mod 2)

4.2) n1 � n3 + 2n4 + 2

4.3) if n3 = 0, then n1 + 2n2 � 4

4.4) if n3 � 1, then n1 + n2 � max 
2 – n4, 3 – n3, 2 –

(n3 + 2n4 + 2 – n1) / 4�

4.5) n1 + n3 > 1.

CONCLUSIONS

Degree sequences are contracted here to 4-tuples

(n1, n2, n3, n4) where ni, i = 1, 2, 3, 4 stands for the num-

ber of vertices of degree i. In defining 4-tuples, we allow

that vertices could be connected by single, double and

triple edges. In such a way, in contrast to most of the

mathematical chemistry literature, we are able to model

multiple covalent bonds of most molecules of chemical

interest. We determine here the necessary and sufficient

conditions of 4-tuples (n1, n2, n3, n4) for the existence of

a graph G such that G has n1, n2, n3 and n4 vertices of

degrees 1, 2, 3 and 4. Some results for graphs having

only single edges have been already discussed in litera-

ture, but here we have proved three theorems that cover

graphs with single and/or double edges, with single and/or

triple edges, and with single and/or double and/or triple

edges, respectively. This results further the results given

in Kier et al.8 and Skvortsova et al.9

As degree sequences (or equivalently 4-tuples) have

already served to define a number of topological indices7

able to correlate molecular properties,10 the results achiev-

ed here could be of interest when one is interested to

take into account multiple covalent bonds in molecules.
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SA@ETAK

Kompaktni slijedovi valencija za molekule s jednostrukim, dvostrukim i trostrukim vezama

Damir Vuki~evi} i Ante Graovac

Molekularni grafovi zvani plerografovi mogu modelirati višestruke veze u molekulama. U ovom radu su

definirani kompaktni slijedovi valencija plerografova. Dokazana su tri teorema koji daju nu`ne i dovoljne uv-

jete da bi zadani slijed opisivao neki plerograf.
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