A common unique fixed point result in metric spaces involving generalised altering distances

Binayak S. Choudhury*

Abstract

In this paper we work out a unique common fixed point result for two self-mappings defined on a complete metric space. These mappings are assumed to satisfy a contractive inequality which involves two generalised altering distances.

Key words: generalised altering distances, metric space, fixed point
AMS subject classifications: 54 H 25
Received December 18, 2003
Accepted May 17, 2004

1. Introduction

Fixed point theory in spaces has a vast literature. In particular, there has been a number of works on fixed points involving Altering Distance Functions. These are control functions which alter the distance between two points in a metric space. Such functions were introduced by M. S. Khan et al. in [4] and used in the same paper for defining and solving a new category of fixed points problems in metric spaces.

Definition 1 [see [4]]. An altering distance function is a function $\psi:[0, \infty) \rightarrow$ $[0, \infty)$ which is
(i) monotone increasing and continuous and
(ii) $\psi(t)=0$ if and only if $t=0$.

Afterwards a number of works has appeared in which altering distances has been used. In references [5], [6] and [7], for example, fixed points of single valued mappings and in [1] fixed points of multi-mappings have been obtained by using altering distance functions. Altering distances have been generalised to a twovariable function and in [3] a generalisation to a three-variable function has been introduced and applied for obtaining fixed point results in metric spaces.

In this paper we propose a generalisation of altering distances to a three-variable function and with the help of such function we derive a unique common fixed point result for two self-mappings in a complete metric space. We note that specific fixed

[^0]point results follow by specific choices of the functional form of ψ. We propose the following definition.

Definition 2. A function $\psi:[0, \infty)^{3} \rightarrow[0, \infty]$ is said to be a generalised altering distance function if
(i) $\psi(x, y, z)$ is continuous,
(ii) ψ is monotone increasing in all the three variables and
(iii) $\psi(x, y, z)=0$ only if $x=y=z=0$.

We define $\phi(x)=\psi(x, x, x)$ for $x \in[0, \infty)$. Clearly, $\phi(x)=0$ if and only if $x=0$. Examples of ψ are

$$
\begin{aligned}
& \psi(a, b, c)=k \max \{a, b, c\}, \text { for } k>0 \\
& \psi(a, b, c)=a^{p}+b^{q}+c^{r}, \quad p, q, r \geq 1 \\
& \psi(a, b, c)=\left(a+\alpha b^{q}\right)^{r}+c^{s}, \text { where } p, q, r, s \geq 1 \text { and } \alpha>0
\end{aligned}
$$

Other examples may also be constructed.

2. Fixed point theorem

Theorem 1. Let (X, d) be a complete metric space and S and T two self-mappings such that the following inequality is satisfied:

$$
\begin{equation*}
\phi_{1}\left(d(S x, T y) \geq \psi_{1}(d(x, y), d(x, S x), d(y, T y))-\psi_{2}(d(x, y), d(x, S x), d(y, T y))\right. \tag{1}
\end{equation*}
$$

where ψ_{1} and ψ_{2} are generalised altering distance functions and $\phi_{1}(x)=\psi_{1}(x, x, x)$. Then S and T have a common fixed point.

Proof. Let $x_{0} \in X$ be an arbitrary point. For $n=0,1,2, \ldots$

$$
x_{2 n+1}=S x_{2 n}
$$

and

$$
x_{2 n+2}=T x_{2 n+1}
$$

let

$$
\begin{equation*}
a_{n}=d\left(x_{n}, x_{n+1}\right) \tag{2}
\end{equation*}
$$

Putting $x=x_{2 n}$ and $y=x_{2 n+1}$ in (1), for all $n=0,1,2, \ldots$ we get

$$
\begin{aligned}
\phi_{1}\left(d\left(S x_{2 n}, T x_{2 n+1}\right)\right)= & \phi_{1}\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right) \\
\leq & \psi_{1}\left(d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, S x_{2 n}\right), d\left(x_{2 n+1}, T x_{2 n+1}\right)\right) \\
& -\psi_{2}\left(d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, S x_{2 n}\right), d\left(x_{2 n+1}, T x_{2 n+1}\right)\right) \\
= & \psi_{1}\left(d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n+2}\right)\right. \\
& -\psi_{2}\left(d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n+2}\right)\right)
\end{aligned}
$$

or by (2), for all $n=0,1,2, \ldots$

$$
\begin{equation*}
\phi_{1}\left(a_{2 n+1}\right) \leq \psi_{1}\left(a_{2 n}, a_{2 n}, a_{2 n+1}\right)-\psi_{2}\left(a_{2 n}, a_{2 n}, a_{2 n+1}\right) . \tag{3}
\end{equation*}
$$

If $a_{2 n+1}>a_{2 n}$, then

$$
\begin{equation*}
\phi_{1}\left(a_{2 n+1}\right)<\psi_{1}\left(a_{2 n+1}, a_{2 n+1}, a_{2 n+1}\right) .=\phi\left(a_{2 n+1}\right) \tag{4}
\end{equation*}
$$

This is due to the fact that ψ_{1} is monotone increasing in all variables and $\psi_{2}\left(a_{2 n}, a_{2 n}, a_{2 n+1}\right) \neq$ 0 whenever $a_{2 n+1} \neq 0$. Thus we arrive at a contradiction, so that

$$
\begin{equation*}
a_{2 n+1} \leq a_{2 n}, \quad n=0,1,2, \ldots \tag{5}
\end{equation*}
$$

Putting $x=x_{2 n}$ and $y=x_{2 n-1}$ in (1) we obtain

$$
\begin{equation*}
\phi_{1}\left(a_{2 n}\right) \leq \psi_{1}\left(a_{2 n-1}, a_{2 n-1}, a_{2 n}\right)-\psi_{2}\left(a_{2 n-1}, a_{2 n-1}, a_{2 n}\right) \tag{6}
\end{equation*}
$$

By an identical argument we obtain

$$
\begin{equation*}
a_{2 n+2} \leq a_{2 n+1}, \quad n=0,1,2 \ldots \tag{7}
\end{equation*}
$$

From (5) and (7), we obtain for all $n=0,1,2, \ldots$

$$
\begin{equation*}
a_{n+1} \leq a_{n}, \quad n=0,1,2 \ldots \tag{8}
\end{equation*}
$$

Then from (3) and (6), for all $n=0,1,2, \ldots$ we obtain

$$
\phi_{1}\left(a_{n+1}\right) \leq \phi_{1}\left(a_{n}\right)-\phi_{2}\left(a_{n+1}\right), \quad \text { where } \phi_{2}(x)=\psi_{2}(x, x, x)
$$

or equivalently

$$
\phi_{2}\left(a_{n+1}\right) \leq \phi_{1}\left(a_{n}\right)-\phi_{1}\left(a_{n+1}\right) .
$$

Summing up in (8) we obtain

$$
\sum_{n=0}^{\infty} \phi_{2}\left(a_{n+1}\right) \leq \phi_{1}\left(a_{0}\right)<\infty
$$

which implies

$$
\begin{equation*}
\phi_{2}\left(a_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty . \tag{9}
\end{equation*}
$$

Again from (8) $\left\{a_{n}\right\}$ is convergent and let $a_{n} \rightarrow a$ (say) as $n \rightarrow \infty$. Since ϕ is continuous, from (9) we obtain $\phi_{2}(a)=0$ which implies that $a=0$, that is

$$
\begin{equation*}
a_{n}=d\left(x_{n+1}, x_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{10}
\end{equation*}
$$

We next prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. In view of (10) it is sufficient to prove that $\left\{x_{2 r}\right\}_{r=1}^{\infty} \subset\left\{x_{n}\right\}$ is a Cauchy sequence. If $\left\{x_{2 r}\right\}_{r=1}^{\infty}$ is not a Cauchy sequence, then given $\in>0$ we can find monotone increasing sequences of natural numbers $\{2 m(k)\}$ and $\{2 n(k)\}$ such that

$$
n(k)>m(k), d\left(x_{2 m(k)}, x_{2 n(k)}\right)>\in
$$

and

$$
\begin{equation*}
d\left(x_{2 m(k)}, x_{2 n(k)-1}\right)<\epsilon \tag{11}
\end{equation*}
$$

Then by (11)

$$
\begin{aligned}
\in & <d\left(x_{2 m(k)}, x_{2 n(k)}\right) \leq d\left(x_{2 m(k)}, x_{2 n(k)-1}\right)+d\left(x_{2 n(k)-1}, x_{2 n(k)}\right) \\
& <\in+d\left(x_{2 n(k)-1}, x_{2 n(k)}\right)
\end{aligned}
$$

Making $k \rightarrow \infty$ in the above inequality by virtue of (10) we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right)=\epsilon \tag{12}
\end{equation*}
$$

For all $k=1,2, \ldots$

$$
\begin{equation*}
d\left(x_{2 n(k)+1}, x_{2 m(k)}\right) \leq d\left(x_{2 n(k)+1}, x_{2 n(k)}\right)+d\left(x_{2 n(k)}, x_{2 m(k)}\right) . \tag{13}
\end{equation*}
$$

Also for all $k=1,2, \ldots$

$$
\begin{equation*}
d\left(x_{2 n(k)}, x_{2 m(k)}\right) \leq d\left(x_{2 n(k)}, x_{2 n(k)+1}\right)+d\left(x_{2 n(k)+1}, x_{2 m(k)}\right) . \tag{14}
\end{equation*}
$$

Making $k \rightarrow \infty$ in (13) and (14) respectively, by using f (10) and (12) we have

$$
\lim _{k \rightarrow \infty} d\left(x_{2 n(k)+1}, x_{2 m(k)}\right) \leq \epsilon
$$

and

$$
\in \leq \lim _{k \rightarrow \infty} d\left(x_{2 n(k)+1}, x_{2 m(k)}\right)
$$

that is

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 n(k)+1}, x_{2 m(k)}\right)=\in \tag{15}
\end{equation*}
$$

For all $k=1,2, \ldots$

$$
\begin{aligned}
d\left(x_{2 n(k)}, x_{2 m(k)-1}\right) & \leq d\left(x_{2 n(k)}, x_{2 m(k)}\right)+d\left(x_{2 m(k)}, x_{2 m(k)}, x_{2 m(k)-1}\right) \\
d\left(x_{2 n(k)}, x_{2 m(k)}\right) & \leq d\left(x_{2 n(k)}, x_{2 m(k)-1}\right)+d\left(x_{2 m(k)-1}, x_{2 m(k)}\right) .
\end{aligned}
$$

Making $k \rightarrow \infty$ in the above two inequalities and using (10) and (12) we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 n(k)}, x_{2 m(k)-1}\right)=\epsilon . \tag{16}
\end{equation*}
$$

Putting $x=x_{2 n(k)}$ and $y=x_{2 m(k)-1}$ in (1), for all $k=1,2, \ldots$ we obtain

$$
\begin{aligned}
& \phi_{1} d\left(x_{2 n(k)+1}, x_{2 m(k)}\right) \\
& \leq \psi_{1}\left(d\left(x_{2 n(k)}, x_{2 m(k)-1}\right), d\left(x_{2 n(k)}, x_{2 n(k)+1}\right), d\left(x_{2 m(k)-1}, x_{2 m(k)}\right)\right) \\
& -\psi_{2}\left(d\left(x_{2 n(k)}, x_{2 m(k)-1}\right), d\left(x_{2 n(k)}, x_{2 n(k)+1}\right), d\left(x_{2 m(k)-1}, x_{2 m(k)}\right)\right)
\end{aligned}
$$

Making $k \rightarrow \infty$ in the above inequality and taking into account the continuity of ψ_{1} and ψ_{2}, by virtue of (10), (15) and (16) we have

$$
\phi_{1}(\in) \leq \psi_{1}(\in, 0,0)-\psi_{2}(\in, 0,0)<\phi_{1}(\in)
$$

This is due to the fact that ψ_{1} is monotone increasing in its variables and by property of ψ_{2} that $\psi(x, y, z)=0$ if and only if $x=y=z=0$.

The above inequality gives a contradiction so that $\epsilon=0$. This establishes the fact $\left\{x_{2 n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence and hence in view of (10) $\left\{x_{n}\right\}$ is also a Cauchy sequence and hence convergent in (X,d).

Let

$$
\begin{equation*}
x_{n} \rightarrow z \quad \text { as } n \rightarrow \infty \tag{17}
\end{equation*}
$$

Putting $x=x_{2 n}$ and $y=z$ in (1), for all $n=1,2, \ldots$ we obtain

$$
\begin{aligned}
\phi_{1}\left(d\left(x_{2 n+1}, T z\right)\right) \leq & \psi_{1}\left(d\left(x_{2 n}, z\right), d\left(x_{2 n}, x_{2 n+1}\right), d(z, T z)\right) \\
& -\psi_{2}\left(d\left(x_{2 n}, z\right), d\left(x_{2 n}, x_{2 n+1}\right), d(z, T z)\right) .
\end{aligned}
$$

Making $n \rightarrow \infty$ in the above inequality, by using (10) and (17) and continuity of ψ_{1} and ψ_{2} we obtain

$$
\phi_{1}(d(z, T z)) \leq \psi_{1}(0,0, d(z, T z))-\psi_{2}(0,0, d(z, T z))
$$

If $d(z, T z) \neq 0$, then using the property that ψ_{1} and ψ_{2} are monotone increasing and $\psi_{2}(x, y, z)=0$ if and only if $x=y=z=0$, we obtain

$$
\phi_{1}(d(z, T z))<\phi_{1}(d(z, T z))
$$

which is a contradiction. Hence, we obtain

$$
\begin{equation*}
d(z, T z)=0, \quad \text { or } z=T z \tag{18}
\end{equation*}
$$

In an exactly similar way we prove

$$
\begin{equation*}
z=S z \tag{19}
\end{equation*}
$$

Equations (18) and (19) show that z is a common fixed point of S and T.
Let z_{1} and z_{2} be two common fixed points of S and T and $z_{1} \neq z_{2}$. Then $d\left(z_{1}, z_{2}\right) \neq 0$. From (1) we obtain

$$
\phi_{1}\left(d\left(z_{1}, z_{2}\right)\right) \leq \psi_{1}\left(d\left(z_{1}, z_{2}\right), 0,0\right)-\psi_{2}\left(d\left(z_{1}, z_{2}\right), 0,0\right)<\phi_{1}\left(d\left(z_{1}, z_{2}\right)\right)
$$

This is again due to the fact that ψ_{1} is monotonic increasing in all its variables and $\psi(x, y, z) \leq 0$ if at least one of x, y, z is non-zero.

The above inequality is a contradiction which shows that $z_{1}=z_{2}$. This establishes the uniqueness property of the fixed point.

A number of fixed point results may be obtained by assuming different forms for the functions ψ_{1} and ψ_{2}. In particular, fixed point results under various contractive conditions are obtainable from the above theorems. Contractive mappings are important in fixed point theory. A comprehensive survey of various types of contractive mappings and related fixed point theorems may be obtained in [8]. Here, for example, we derive the following corollary of our theorem.

Corollary 1. Let $S, T: X \rightarrow X$ where (X, d) is a complete metric space satisfying

$$
\begin{equation*}
\left[d(S x, T y]^{s} \leq k_{1}[d(x, y)]^{s}+k_{2}[d(x, T x)]^{s}+k_{3}[d(y, T y)]^{s}\right. \tag{20}
\end{equation*}
$$

where $0<k_{1}+k_{2}+k_{3}<1$ and $s>0$. Then S and T have a common fixed point.
Proof. We make particular choices of ψ_{1} and ψ_{2} as the follows:

$$
\begin{aligned}
& \psi_{1}(a, b, c)=k_{1} a^{s}+k_{2} b^{s}+k_{3} c^{s} \\
& \psi_{2}(a, b, c)=(1-k)\left[k_{1} a^{s}+k_{2} b^{s}+k_{3} c^{s}\right]
\end{aligned}
$$

with $k=k_{1}+k_{2}+k_{3}$. Then (20) is implied by (1). The corollary then follows by an applying of Theorem 1 .

Other fixed point results may also be obtained under specific choices of ψ_{1} and ψ_{2}. As a final remark we observe that there is no continuity assumption on the functions S and T.

References

[1] B.S. Choudhury, A. Upadhyay, Bulletin of Pure and Applied Science 19 $\mathbf{E}(2000), 529-533$.
[2] B.S. Choudhury, P. N. Dutta, A unified fixed point result in metric spaces involving a two variable functuion, Filomat 14(2000), 43-48.
[3] B.S. Choudhury, P. N. Dutta, A unified approach to fixed points of selfmappings in metric spaces, preprint.
[4] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorem by altering distances between the points, Bull.Austral. Math.Soc. 30(1984), 1-9.
[5] K. P. R. Sastry, G. V. R. Babu, Fixed point theorems in metric spaces by altering distances, Bull.Calcutta Math.Soc. 90(1998), 175-182.
[6] K. P. R. Sastry, G. V. R. Babu, Fixed point theorems in metric spaces by altering distances between the points, Indian J.pure Appl.Math. 30(1999), 641 - 647.
[7] K. P. R. Sastry, S. V. R. Naidu, G. V. R. Babu, G. A. Naidu, Generalization of common fixed point theorems for weakly commuting maps by altering distance,Tmkang J.Math. 31(2000), 243-250.
[8] M. R. Taskovic, Some new principles in fixed point theory, Math. Joponica 35(1990), 645-666.

[^0]: *Department of Mathematics, Bengal Engineering and Science University, P.O. - B. Garden, Shibpur, 711103 Howrah, West Bengal, India, e-mail: binayak12@yahoo.co.in

