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A common unique fixed point result in metric
spaces involving generalised altering distances

BINAYAK S. CHOUDHURY™

Abstract. In this paper we work out a unique common fized point
result for two self-mappings defined on a complete metric space. These
mappings are assumed to satisfy a contractive inequality which involves
two generalised altering distances.
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1. Introduction

Fixed point theory in spaces has a vast literature. In particular, there has been a
number of works on fixed points involving Altering Distance Functions. These are
control functions which alter the distance between two points in a metric space.
Such functions were introduced by M.S. Khan et al. in [4] and used in the same
paper for defining and solving a new category of fixed points problems in metric
spaces.

Definition 1 [see [4]]. An altering distance function is a function 1 : [0, 00) —
[0, 00) which is

(i) monotone increasing and continuous and

(i) ¥(t) = 0 if and only if t = 0.

Afterwards a number of works has appeared in which altering distances has
been used. In references [5], [6] and [7], for example, fixed points of single valued
mappings and in [1] fixed points of multi-mappings have been obtained by using
altering distance functions. Altering distances have been generalised to a two-
variable function and in [3] a generalisation to a three-variable function has been
introduced and applied for obtaining fixed point results in metric spaces.

In this paper we propose a generalisation of altering distances to a three-variable
function and with the help of such function we derive a unique common fixed point
result for two self-mappings in a complete metric space. We note that specific fixed
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point results follow by specific choices of the functional form of ). We propose the
following definition.

Definition 2. A function ¢ : [0,00)% — [0, oc] is said to be a generalised altering
distance function if

(i) Y(x,y, z) is continuous,
(i) 1 is monotone increasing in all the three variables and
(iii) Y(x,y,2) = O0only ifxr =y =2=0.

We define ¢ (z) = ¢(x,z,z) for € [0,00). Clearly, ¢(z) = 0 if and only if
x = 0. Examples of ¢ are

¥(a,b,¢) = kmax{a,b,c}, for k > 0,
Y(a,b,c) =a” +b9+c", pgr=>1,
Y(a,b,c) = (a+ adb?)" +¢*, where p,q,r,s >1and a >0

Other examples may also be constructed.

2. Fixed point theorem

Theorem 1. Let(X,d) be a complete metric space and S and T two self - mappings
such that the following inequality is satisfied:

o3} (d(SJ?, Ty) > ¢1 (d(x’ y)? d(Jﬁ, SJZ), d(y’ Ty)) - ¢2(d($, y)? d(Jﬁ, SJ?), d(y’ Ty)) (1)

where Y1 and o are generalised altering distance functions and ¢1(x) = 1 (x, x, ).
Then S and T have a common fixed point.
Proof. Let o € X be an arbitrary point. For n =0,1,2, ...

Tont1 = STop

and

Ton+2 = TTont1
let

ap = d(Tp, Tpy1)- (2)
Putting @ = x9, and y = za,4+1 in (1), for alln =0,1,2,... we get

G1(d(Sw2n, Trony1)) = G1(d(T2ns1, Tant2))
< Y1 (d(w2n, T2n41), d(T2n, ST2n), d(T2n41, TT2n41))
(

=

—a(d(z2n, Tony1), d(T2n, ST2n), d(T2n41, TT2n41))

1(d(z2n, Tant1), d(Ton, T2nt1), A(T2n+1, T2nt2)

Il
<

—a(d(w2n, T2n+1), d(T2n, Tant1), d(T2n41, T2nt2))
or by(2), for alln =0,1,2,...

$1(azns1) < V1(agn, aon, azni1) — Y2(a2n, azn, G2n41)- (3)
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If a2p41 > A2n, then

¢1(aznt1) < V1(a2ns1, G2n41, 02n41). = G(a2n41) (4)

This is due to the fact that v is monotone increasing in all variables and ¥s(agy,, a2n, Gont1) #
0 whenever ag, 11 # 0. Thus we arrive at a contradiction, so that

G2n+1 < ap, n=20,1,2,... (5)

Putting = x9, and y = z2,—1 in (1) we obtain
¢1(azn) < P1(azn—1,a2n-1,02n) — Y2(a2n—1,a2n-1, a20) (6)

By an identical argument we obtain

ont2 < agpy1, n=0,1,2... (7)

From (5) and (7), we obtain for alln =0,1,2,...
nt1 < an, mn=0,1,2... (8)

Then from (3) and (6), for all n =0,1,2,... we obtain
P1(ant1) < ¢1(an) — @2(an41), where ¢a(x) = Po(x, 2, 2)

or equivalently
P2(ant1) < p1(an) — d1(any1)-

Summing up in (8) we obtain

Z $2(an+1) < ¢1(ag) < oo
n=0

which implies
¢2(an) — 0 as n — oo. 9)

Again from (8) {a,} is convergent and let a,, — a (say) as n — oco. Since ¢ is
continuous, from (9) we obtain ¢2(a) = 0 which implies that a = 0, that is

ap = d(Tpy1,2,) — 0 asn — oc. (10)

We next prove that {z,} is a Cauchy sequence. In view of (10) it is sufficient to
prove that {z2,}52, C {z,}is a Cauchy sequence. If {z2,}2, is not a Cauchy
sequence, then given €> 0 we can find monotone increasing sequences of natural
numbers {2m(k)} and {2n(k)} such that

n(k) > m(k), d(Tom), Tank)) >€

and
d(x2m(k)7x2n(k)—l) <€ (11)
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Then by (11)

€ < d(Tam k), Tank)) < d(Zam(k)> Tan(k)—1) + d(Zan(k)—15 Tan(k))
< € +d(Tonk)—15 Ton(k))

Making k — oo in the above inequality by virtue of (10) we obtain

klggo (L2 (k) Tan(k)) =€ (12)
Forallk=1,2,...
(T2 (k) +15 Tam(k)) < A(Zon(k)+15 Tan(k)) T A Ton(k) Tam(k))- (13)
Also for all k=1,2,...
(T2 (k) > Tam (k) < ATan (k) Tan(k)+1) + AZon(k)+15 T2m(k))- (14)

Making & — oo in (13) and (14) respectively, by using f (10) and (12) we have
khlglo d(Z2p(k)+15 Tam(k)) <€

and
€< lim d(zan(k)+1, Tam (k)

that is

lim d(zon(k)+1, T2m(k)) =€ - (15)

k—o0

Forall k=1,2,...

(Tan(k)s Tam(k)) T A Tam(k)s T2m(k)s T2m(k)—1)

(Tan(k)s Tam(k)—1) T AT2m(k)y—1, T2m(k))-

d(Z2n(k)> T2m(k)—1)

<d
d(Z2n (k) Tamk)) < d

Making k — oo in the above two inequalities and using (10) and (12) we obtain
Jim d(Zon(k)s T2m(k)—1) =€ - (16)
Putting © = 9y,(x) and y = Tay,k)—1 in (1), for all k = 1,2,... we obtain

A1A(Ton(k)+1> T2m(k))
< 1 (d(Z2n (k) Zam(k)—1)> AZan(k)s Tank)+1)> AT2m k) -1, T2m(k)))
— V2 (d(Ton(k)s Tam(k)—1)s AT2n (k) Tan(k)+1)s AT2m (k) =15 Tam(k)))

Making k£ — oo in the above inequality and taking into account the continuity of
11 and 19, by virtue of (10), (15) and (16) we have

$1(€) < P1(€,0,0) —12(€,0,0) < ¢1(€)

This is due to the fact that 11 is monotone increasing in its variables and by property
of 19 that ¥(z,y,2z) =0 if and only if z =y =2 = 0.
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The above inequality gives a contradiction so that €= 0. This establishes the
fact {z2,}52,is a Cauchy sequence and hence in view of (10) {z,} is also a Cauchy
sequence and hence convergent in (X,d).

Let

Tp — Z asn — 0. (17)

Putting © = x9, and y = z in (1), for all n =1,2,... we obtain

d1(d(z2n11,T2)) < Y1(d(zan, 2), d(Z2n, Tont1), d(2,Tz))
_’(/}2 (d(‘ran Z)v d(x2n7 x2n+1), d(Z7 TZ))

Making n — oo in the above inequality, by using (10) and (17) and continuity of
11 and 1y we obtain

$1(d(2,T2)) < 11(0,0,d(z,Tz)) —12(0,0,d(z,Tz)).

If d(2,Tz) # 0, then using the property that 11 and 19 are monotone increasing
and Yo (x,y,z) = 0 if and only if x = y = z = 0, we obtain

$1(d(z,Tz)) < ¢1(d(z,Tz))
which is a contradiction. Hence, we obtain
d(z,Tz)=0, orz=Txz. (18)
In an exactly similar way we prove
z =98z (19)

Equations (18) and (19) show that z is a common fixed point of S and T O
Let z; and z2 be two common fixed points of S and T and z; # 2. Then
d(z1,22) # 0. From (1) we obtain

¢1 (d(zl, 22)) S ¢1 (d(zl, ZQ), O, 0) - wz(d(zl, ZQ), O, 0) < ¢1 (d(zl, ZQ))

This is again due to the fact that i1 is monotonic increasing in all its variables and
Y(x,y,z) < 01if at least one of z,y, z is non-zero.

The above inequality is a contradiction which shows that z; = z5. This estab-
lishes the uniqueness property of the fixed point.

A number of fixed point results may be obtained by assuming different forms for
the functions ¥, and 5. In particular, fixed point results under various contrac-
tive conditions are obtainable from the above theorems. Contractive mappings are
important in fixed point theory. A comprehensive survey of various types of con-
tractive mappings and related fixed point theorems may be obtained in [8]. Here,
for example, we derive the following corollary of our theorem.

Corollary 1. Let S, T : X — Xwhere (X,d) is a complete metric space
satisfying

[d(Sz, Ty]* < kald(x,y)]* + ko[d(z, Tx)]* + ksld(y, Ty)]* (20)
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where 0 < k1 +ka+ ks <1 and s > 0. Then S and T have a common fixed point.

Proof. We make particular choices of 91 and 15 as the follows:

¢1 (a, b, C) = k:las + k’Qbs + /{3385
o (a, b, C) = (1 — k)[klas + kob® + kgcs]

with k = k1 + k2 + k3. Then (20) is implied by (1). The corollary then follows by
an applying of Theorem 1. O

Va.

Other fixed point results may also be obtained under specific choices of 11 and

As a final remark we observe that there is no continuity assumption on the

functions S and T.
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