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A common unique fixed point result in metric
spaces involving generalised altering distances

Binayak S. Choudhury∗

Abstract. In this paper we work out a unique common fixed point
result for two self-mappings defined on a complete metric space. These
mappings are assumed to satisfy a contractive inequality which involves
two generalised altering distances.
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1. Introduction

Fixed point theory in spaces has a vast literature. In particular, there has been a
number of works on fixed points involving Altering Distance Functions. These are
control functions which alter the distance between two points in a metric space.
Such functions were introduced by M. S. Khan et al. in [4] and used in the same
paper for defining and solving a new category of fixed points problems in metric
spaces.

Definition 1 [see [4]]. An altering distance function is a function ψ : [0,∞) →
[0,∞) which is

(i) monotone increasing and continuous and

(ii) ψ(t) = 0 if and only if t = 0.

Afterwards a number of works has appeared in which altering distances has
been used. In references [5], [6] and [7], for example, fixed points of single valued
mappings and in [1] fixed points of multi-mappings have been obtained by using
altering distance functions. Altering distances have been generalised to a two-
variable function and in [3] a generalisation to a three-variable function has been
introduced and applied for obtaining fixed point results in metric spaces.

In this paper we propose a generalisation of altering distances to a three-variable
function and with the help of such function we derive a unique common fixed point
result for two self-mappings in a complete metric space. We note that specific fixed
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point results follow by specific choices of the functional form of ψ. We propose the
following definition.

Definition 2. A function ψ : [0,∞)3 → [0,∞] is said to be a generalised altering
distance function if

(i) ψ(x, y, z) is continuous,

(ii) ψ is monotone increasing in all the three variables and

(iii) ψ(x, y, z) = 0 only if x = y = z = 0.

We define φ (x) = ψ(x, x, x) for x ∈ [0,∞). Clearly, φ(x) = 0 if and only if
x = 0. Examples of ψ are

ψ(a, b, c) = kmax{a, b, c}, for k > 0,
ψ(a, b, c) = ap + bq + cr, p, q, r ≥ 1,
ψ(a, b, c) = (a+ α bq)r + cs, where p, q, r, s ≥ 1 and α > 0

Other examples may also be constructed.

2. Fixed point theorem

Theorem 1. Let(X,d) be a complete metric space and S and T two self - mappings
such that the following inequality is satisfied:

φ1(d(Sx, T y) ≥ ψ1(d(x, y), d(x, Sx), d(y, T y)) − ψ2(d(x, y), d(x, Sx), d(y, T y)) (1)

where ψ1 and ψ2 are generalised altering distance functions and φ1(x) = ψ1(x, x, x).
Then S and T have a common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. For n = 0, 1, 2, . . .

x2n+1 = Sx2n

and
x2n+2 = Tx2n+1

let
an = d(xn, xn+1). (2)

Putting x = x2n and y = x2n+1 in (1), for all n = 0, 1, 2, . . . we get

φ1(d(Sx2n, Tx2n+1)) = φ1(d(x2n+1, x2n+2))
≤ ψ1(d(x2n, x2n+1), d(x2n, Sx2n), d(x2n+1, Tx2n+1))

−ψ2(d(x2n, x2n+1), d(x2n, Sx2n), d(x2n+1, Tx2n+1))
= ψ1(d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)

−ψ2(d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2))

or by(2), for all n = 0, 1, 2, . . .

φ1(a2n+1) ≤ ψ1(a2n, a2n, a2n+1) − ψ2(a2n, a2n, a2n+1). (3)
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If a2n+1 > a2n, then

φ1(a2n+1) < ψ1(a2n+1, a2n+1, a2n+1). = φ(a2n+1) (4)

This is due to the fact that ψ1 is monotone increasing in all variables and ψ2(a2n, a2n, a2n+1) 	=
0 whenever a2n+1 	= 0. Thus we arrive at a contradiction, so that

a2n+1 ≤ a2n, n = 0, 1, 2, . . . (5)

Putting x = x2n and y = x2n−1 in (1) we obtain

φ1(a2n) ≤ ψ1(a2n−1, a2n−1, a2n) − ψ2(a2n−1, a2n−1, a2n) (6)

By an identical argument we obtain

a2n+2 ≤ a2n+1, n = 0, 1, 2 . . . (7)

From (5) and (7), we obtain for all n = 0, 1, 2, . . .

an+1 ≤ an, n = 0, 1, 2 . . . (8)

Then from (3) and (6), for all n = 0, 1, 2, . . . we obtain

φ1(an+1) ≤ φ1(an) − φ2(an+1), where φ2(x) = ψ2(x, x, x)

or equivalently
φ2(an+1) ≤ φ1(an) − φ1(an+1).

Summing up in (8) we obtain

∞∑

n=0

φ2(an+1) ≤ φ1(a0) <∞

which implies
φ2(an) → 0 as n→ ∞. (9)

Again from (8) {an} is convergent and let an → a (say) as n → ∞. Since φ is
continuous, from (9) we obtain φ2(a) = 0 which implies that a = 0, that is

an = d(xn+1, xn) → 0 as n→ ∞. (10)

We next prove that {xn} is a Cauchy sequence. In view of (10) it is sufficient to
prove that {x2r}∞r=1 ⊂ {xn}is a Cauchy sequence. If {x2r}∞r=1 is not a Cauchy
sequence, then given ∈> 0 we can find monotone increasing sequences of natural
numbers {2m(k)} and {2n(k)} such that

n(k) > m(k), d(x2m(k), x2n(k)) >∈

and
d(x2m(k), x2n(k)−1) <∈ (11)
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Then by (11)

∈ < d(x2m(k), x2n(k)) ≤ d(x2m(k), x2n(k)−1) + d(x2n(k)−1, x2n(k))
< ∈ +d(x2n(k)−1, x2n(k))

Making k → ∞ in the above inequality by virtue of (10) we obtain

lim
k→∞

d(x2m(k), x2n(k)) =∈ (12)

For all k = 1, 2, . . .

d(x2n(k)+1, x2m(k)) ≤ d(x2n(k)+1, x2n(k)) + d(x2n(k), x2m(k)). (13)

Also for all k = 1, 2, . . .

d(x2n(k), x2m(k)) ≤ d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k)). (14)

Making k → ∞ in (13) and (14) respectively, by using f (10) and (12) we have

lim
k→∞

d(x2n(k)+1, x2m(k)) ≤∈

and
∈≤ lim

k→∞
d(x2n(k)+1, x2m(k))

that is
lim

k→∞
d(x2n(k)+1, x2m(k)) =∈ . (15)

For all k = 1, 2, . . .

d(x2n(k), x2m(k)−1) ≤ d(x2n(k), x2m(k)) + d(x2m(k), x2m(k), x2m(k)−1)
d(x2n(k), x2m(k)) ≤ d(x2n(k), x2m(k)−1) + d(x2m(k)−1, x2m(k)).

Making k → ∞ in the above two inequalities and using (10) and (12) we obtain

lim
k→∞

d(x2n(k), x2m(k)−1) =∈ . (16)

Putting x = x2n(k) and y = x2m(k)−1 in (1), for all k = 1, 2, . . . we obtain

φ1d(x2n(k)+1, x2m(k))
≤ ψ1(d(x2n(k), x2m(k)−1), d(x2n(k), x2n(k)+1), d(x2m(k)−1, x2m(k)))

−ψ2(d(x2n(k), x2m(k)−1), d(x2n(k), x2n(k)+1), d(x2m(k)−1, x2m(k)))

Making k → ∞ in the above inequality and taking into account the continuity of
ψ1 and ψ2, by virtue of (10), (15) and (16) we have

φ1(∈) ≤ ψ1(∈, 0, 0)− ψ2(∈, 0, 0) < φ1(∈)

This is due to the fact that ψ1 is monotone increasing in its variables and by property
of ψ2 that ψ(x, y, z) = 0 if and only if x = y = z = 0.
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The above inequality gives a contradiction so that ∈= 0. This establishes the
fact {x2n}∞n=1is a Cauchy sequence and hence in view of (10) {xn} is also a Cauchy
sequence and hence convergent in (X,d).

Let
xn → z as n→ ∞. (17)

Putting x = x2n and y = z in (1), for all n = 1, 2, . . . we obtain

φ1(d(x2n+1, T z)) ≤ ψ1(d(x2n, z), d(x2n, x2n+1), d(z, T z))
−ψ2(d(x2n, z), d(x2n, x2n+1), d(z, T z)).

Making n → ∞ in the above inequality, by using (10) and (17) and continuity of
ψ1 and ψ2 we obtain

φ1(d(z, T z)) ≤ ψ1(0, 0, d(z, T z))− ψ2(0, 0, d(z, T z)).

If d(z, T z) 	= 0, then using the property that ψ1 and ψ2 are monotone increasing
and ψ2(x, y, z) = 0 if and only if x = y = z = 0, we obtain

φ1(d(z, T z)) < φ1(d(z, T z))

which is a contradiction. Hence, we obtain

d(z, T z) = 0, or z = Tz. (18)

In an exactly similar way we prove

z = Sz. (19)

Equations (18) and (19) show that z is a common fixed point of S and T . ✷

Let z1 and z2 be two common fixed points of S and T and z1 	= z2. Then
d(z1, z2) 	= 0. From (1) we obtain

φ1(d(z1, z2)) ≤ ψ1(d(z1, z2), 0, 0)− ψ2(d(z1, z2), 0, 0) < φ1(d(z1, z2)).

This is again due to the fact that ψ1 is monotonic increasing in all its variables and
ψ(x, y, z) ≤ 0 if at least one of x, y, z is non-zero.

The above inequality is a contradiction which shows that z1 = z2. This estab-
lishes the uniqueness property of the fixed point.

A number of fixed point results may be obtained by assuming different forms for
the functions ψ1 and ψ2. In particular, fixed point results under various contrac-
tive conditions are obtainable from the above theorems. Contractive mappings are
important in fixed point theory. A comprehensive survey of various types of con-
tractive mappings and related fixed point theorems may be obtained in [8]. Here,
for example, we derive the following corollary of our theorem.

Corollary 1. Let S, T : X → Xwhere (X, d) is a complete metric space
satisfying

[d(Sx, T y]s ≤ k1[d(x, y)]s + k2[d(x, Tx)]s + k3[d(y, T y)]s (20)



110 B. S.Choudhury

where 0 < k1 + k2 + k3 < 1 and s > 0. Then S and T have a common fixed point.
Proof. We make particular choices of ψ1 and ψ2 as the follows:

ψ1(a, b, c) = k1a
s + k2b

s + k3c
s

ψ2(a, b, c) = (1− k)[k1a
s + k2b

s + k3c
s]

with k = k1 + k2 + k3. Then (20) is implied by (1). The corollary then follows by
an applying of Theorem 1. ✷

Other fixed point results may also be obtained under specific choices of ψ1 and
ψ2. As a final remark we observe that there is no continuity assumption on the
functions S and T .
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