Joško Dvornik^{*} Luko Milić^{**} Ante Munitić^{***}

ISSN 0469-6255 (181-188)

KOMPJUTORSKA SIMULACIJA I OPTIMIZACIJA BRODSKOG PLINSKOG TURBOGENERATORA

Computer simulation and optimization of marine gas turbogenerator

UDK 519.876.5:621.313 Review Pregledni članak

Sažetak

Simulacijsko modeliranje uz pomoć sustavne dinamike i intenzivnog korištenja suvremenih digitalnih računala, što podrazumijeva i masovnu primjenu danas vrlo jeftinih a istodobno vrlo moćnih osobnih računala (PC-a), jedan je od najprimjerenijih i najuspješnijih znanstvenih načina istraživanja dinamike ponašanja nelinearnih i vrlo složenih prirodnih, tehničkih i organizacijskih sustava. Metodologija sustavne dinamike (prof. dr. J Forrester-MIT), razmjerno novije znanstvene discipline, u dosadašnjoj edukativnoj i dizajnerskoj praksi pokazala se kao djelotvorno sredstvo za znanstveno istraživanje problematike upravljanja, ponašanja, osjetljivosti, fleksibilnosti i osjetljivosti dinamike ponašanja mnogobrojnih sustava i procesa. U razdoblju od 1991. do 2003., prilikom izrade diplomskih radova, a posebno realizacijom i objavljivanjem rezultata znanstvenih istraživačkih radova profesora Visoke pomorske škole i Pomorskog fakulteta Sveučilišta u Splitu, koristila se dinamička sustavna kompjutorska simulaciiska metodologija za modeliranje dinamike ponašanja većeg broja različitih nelinearnih pomorskih, brodarskih i brodskih elektroenergetskih, termodinamičkih, hidrauličnih, mehaničkih, pneumatskih i menadžerskih sustava i procesa. Svrha ovog rada jest pokazati uspješnost primjene sustavnodinamičkog simulacijskog modeliranja pri istraživanju dinamike ponašanja, jednog od složenijih pomorskih sustava i procesa, tj. "plinskoturbinskog agregata". Dvoosovinska plinska turbina kao i nekontaktni sinkroni generator bit će predstavljeni strukturnim i mentalno-verbalnim, matematičkokompjutorskim modelima, te će se simulirati rad složenog brodskog pogonskog kompleksa.

Ključne riječi: sustavna dinamika, modeliranje, sinkroni generator, dvoosovinska plinska turbina, kontinuirana i diskretna simulacija.

Summary

Simulation modelling, by means of System dynamics intensive use of modern digital computers, i.e. mass application of presently very cheap but very powerful PC's at the same time, is one of the most appropriate and succesful scientific research methods of the complex, non-linear, natural, technical and organizational systems. The methodology for system dynamics, i.e. relatively recent scientific branch, has shown its efficiency in practice as a very suitable means for scientific research which includes management problems, behaviour, sensibility flexibility and behaviour dynamics of many systems and proceses. System - dynamics computer simulation methodology, for dynamic modelling behaviour many different non-linear ship of electrical. thermodynamic, hydraulic, mechanic and pneumatic systems, was used by the students as studying materials for their graduation at Maritime faculty - Split in the period from 1991. to 2002. The aim of the paper is to demonstrate the efficiency of application of this method in investigation of behaviour dynamics which is one of complex marine systems and proceses, i.e. "gas -turbine generators". Twin shaft gas turbine and non-contact synchronous generator will be presented with mental verbal, structural, mathematical computers models and a complex marine propulsion will be simulated.

Key words: system dynamics, modelling, synchronous generator, twin-shaft gas turbine, continuous and discrete simulation.

1. Uvod

Introduction

Sustavnodinamičko modeliranje u biti je sustavni, tj. "holistički" pristup simulaciji dinamike ponašanja prirodnih, tehničkih i organizacijskih sustava. Sustavna dinamika raspolaže s kvalitativnim i kvantitativnim simulacijskim modeliranjem, te se suština optimizacije dinamičkih sustava i procesa temelji na tzv. «heurističkoj» proceduri, a to znači na metodi «ručne i

[.] Joško Dvornik, dipl. ing., znan. novak, Visoka pomorska škola Split, Zrinsko-frankopanska 38, 21000 Split

["]Prof. dr. sc. Luko Milić, red. prof., Sveučilište u Dubrovniku, Ćira Carića 4, 20000 Dubrovnik

^{***}Prof. dr. sc. Ante Muntić, red. prof.

iterativne» procedure, koja je uz pomoć brzog digitalnog automatizirana, te se naziva heuristička računala optimizacija (retray and error)! Ovaj simulacijski model je samo jedan od mnogobrojnih izrađenih i edukacijski praktično i teoretski korištenih simulacijskih modela za poučavanje i uvježbavanje mladih studenata-pomoraca, koji koristi tzv. «white-box» filozofiju istraživanja složenih sustava, za razliku od «black-box» pristupa! Svi simulacijski modeli, izrađeni u posljednjem desetljeću prošlog stoljeća na Pomorskom fakultetu u Splitu, sastavni su dijelovi «cjeline», tj. dugoročnog znanstvenog makroprojekta, pod nazivom INTELIGENTNA KOMPJUTORSKA SIMULACIJA MODELA POMORSKIH PROCESA.

2. Sustavnodinamičko simulacijsko modeliranje dvoosovinske plinske turbine

Systemdynamic simulation modelling of twin-shaft gas turbine

Najčešća dinamička analiza plinske turbine temelji se na promatranju postrojenja kao akumulatora kinetičke energije, dok se dinamika toplinske energije može uvjetno zanemariti. Proces izgaranja goriva smatra se trenutačnim, stanje tlaka u turbini konstantnim, potrošnja zraka tretira se jednakom potrošnji plina, parametri atmosferskog zraka relativno su nepromijenjeni, a prijelaz topline idealiziran. Linearizirano ponašanje postrojenja vrijedi za slučaj kad potrošnja goriva ne ovisi o kutnoj brzini rotora turbokompresora.

Osnovne jednadžbe dvoosovinske plinske turbine Basic equations of twin-shaft gas turbine

Jednadžba (vratilo turbokompresora niskog tlaka - potrošača)

$$T_{a1}\phi_{\omega 1} + k_1\phi_{\omega 1} = \mu_G + k_{\omega 2}\phi_{\omega 2}$$
(1)

$$\frac{d\phi_{\omega_1}}{dt} = \frac{k_1}{T_{a1}} \left[\frac{\mu_G}{k_1} + \frac{k_{\omega_2} \phi_{\omega_2}}{k_1} - \frac{f(t)}{k_1} - \phi_{\omega_1} \right]$$
(2)

$$\frac{d\phi_{\omega_1}}{dt} = \frac{1}{T_{a1}} \left(\mu_G + k_{\omega_2} \phi_{\omega_2} - f(t) - k_1 \phi_{\omega_1} \right)$$
(3)

Mentalno-verbalni model Mental-verbal model

Ako raste relativna promjena potrošnje goriva μ_G i ako raste umnožak $k_{\omega 2}^*\phi_{\omega 2}$, raste i brzina promjene relativne kutne brzine pa slijedi pozitivan predznak uzročno-posljedične sveze UPV(+). Ako raste relativna promjena vanjskih mogućih djelovanja tereta kao i umnožak $k_1^*\phi_{\omega 1}$, pada brzina promjene relativne kutne brzine pa je UPV (-) negativna. Isto vrijedi ako raste T_{a1} , vrijeme zaleta

osovine pada brzina promjene relativne kutne brzine pa je UPV (-) negativna.

SI.1. Strukturni dijagram turbokompresora niskog tlaka

Fig.1. Structural diagram of low pressure turbo compressor

SI.2. Dijagram toka turbokompresora niskog tlaka Fig.2. Flow diagram of low pressure turbo compressor

U promatranom sustavu postoje krugovi povratnog djelovanja (KPD). KPD1(-):FIOM1=>(-)DFIOM1T=> (+)DF IOM1T=>(+) FIOM 1; koji ima samoregulirajuća dinamička obilježja (-), jer je zbroj negativnih predznaka neparan broj. Jednadžba (vratilo turbokompresora visokog tlaka)

$$T_{a2}\phi_{\omega 2} + k_2\phi_{\omega 2} = \mu_G + k_{\omega 1}\phi_{\omega 1}$$
(4)

$$\frac{d\phi_{\omega 2}}{dt} = \frac{k_2}{T_{a2}} \left[\frac{\mu_G}{k_2} + \frac{k_{\omega 1}\phi_{\omega 1}}{k_2} - \phi_{\omega 2} \right]$$
(5)

$$\frac{d\phi_{\omega 2}}{dt} = \frac{1}{T_{a2}} \left(\mu_{G} + k_{\omega 1} \phi_{\omega 1} - \phi_{\omega 2} \right)$$
(6)

Mentalno-verbalni model Mental-verbal model

Ako raste relativna promjena potrošnje goriva μ_G i ako raste umnožak $k_{\omega 1}^*\phi_{\omega 1}$, raste i brzina promjene relativne

kutne brzine pa slijedi pozitivan predznak uzročnoposljedične veze UPV(+). Ako raste T_{a1} , vrijeme zaleta osovine, kao i relativna promjena kutne brzine, pada brzina promjene relativne kutne brzine, pa je UPV (-) negativna.

SI.3. Strukturni dijagram turbokompresora visokog tlaka Fig.3. Structural diagram of high pressure turbo compressor

SI.4. Dijagram toka turbokompresora visokog tlaka Fig.4. Flow diagram of high pressure turbo compressor

U promatranom sustavu postoje krugovi povratnog djelovanja (KPD).

KPD1(-):FIOM2=>(-)DFIOM2T=>(+)DFIOM2T=>(+)FIOM2; koji ima samoregulirajuća dinamička obilježja (-), jer je zbroj negativnih predznaka neparan broj,

pri čemu je:

vrijeme zaleta 1.i 2. vratila:

$$T_{a1} = \frac{I_{1}\omega_{1n}}{\left(\frac{\partial M_{T1}}{\partial G_{T}}\right)_{0}G_{Tn}}; \quad T_{a2} = \frac{I_{2}\omega_{2n}}{\left(\frac{\partial M_{T2}}{\partial G_{T}}\right)_{0}G_{Tn}}$$
(7)

koeficijent samoregulacije 1. vratila:

$$\mathbf{k}_{1} = \frac{\left[\left(\frac{\partial \mathbf{M}_{\mathrm{K1}}}{\partial \omega_{1}}\right)_{0} - \left(\frac{\partial \mathbf{M}_{\mathrm{T1}}}{\partial \omega_{1}}\right)_{0}\right] \omega_{\mathrm{1n}}}{\left(\frac{\partial \mathbf{M}_{\mathrm{T1}}}{\partial \mathbf{G}_{\mathrm{T}}}\right)_{0} \mathbf{G}_{\mathrm{Tn}}}$$
(8)

koeficijent samoregulacije 2. vratila:

$$\mathbf{k}_{2} = \frac{\left[\left(\frac{\partial \mathbf{M}_{K2}}{\partial \omega_{2}} \right)_{0} - \left(\frac{\partial \mathbf{M}_{T2}}{\partial \omega_{2}} \right)_{0} \right] \omega_{2n}}{\left(\frac{\partial \mathbf{M}_{T2}}{\partial \mathbf{G}_{T}} \right)_{0} \mathbf{G}_{Tn}}$$
(9)

koeficijent pojačanja kutne brzine ω₂ po kutnoj brzini ω₁:

$$\mathbf{k}_{\omega 1} = \frac{\left[\left(\frac{\partial \mathbf{M}_{T2}}{\partial \omega_{1}} \right)_{0} - \left(\frac{\partial \mathbf{M}_{K2}}{\partial \omega_{1}} \right)_{0} \right] \omega_{1n}}{\left(\frac{\partial \mathbf{M}_{T2}}{\mathbf{G}_{T}} \right)_{0} \mathbf{G}_{Tn}}$$
(10)

koeficijent pojačanja kutne brzine ω_1 po kutnoj brzini ω_2 :

$$\mathbf{k}_{\omega 2} = \frac{\left[\left(\frac{\partial \mathbf{M}_{T1}}{\partial \omega_{2}}\right)_{0} - \left(\frac{\partial \mathbf{M}_{K1}}{\partial \omega_{2}}\right)_{0}\right] \omega_{2n}}{\left(\frac{\partial \mathbf{M}_{T1}}{\mathbf{G}_{T}}\right)_{0} \mathbf{G}_{Tn}}$$
(11)

relativna promjena vanjskih mogućih djelovanja tereta:

$$f(t) = \frac{\Delta M_{G}[f(t)]}{\left(\frac{\partial M_{TI}}{\partial G_{T}}\right)_{0} G_{Tn}}$$
(12)

relativna promjena kutne brzine ω_1 i ω_2 :

$$\phi_{\omega 1} = \frac{\Delta \omega_1}{\omega_{1n}}; \qquad \phi_{\omega 2} = \frac{\Delta \omega_2}{\omega_{2n}}$$
(13)

relativna promjena potrošnje goriva:

$$\mu_{\rm G} = \frac{\Delta G_{\rm T}}{G_{\rm Tn}} \tag{14}$$

gdje je:

 ω_1 - kutna brzina prvog vratila (s⁻¹),

 ω_2 - kutna brzina drugog vratila (s⁻¹),

 $\Delta_{\omega^{1}}$ - apsolutna promjena kutne brzine prvog vratila (s⁻¹),

 $\Delta_{\omega^2}\text{-}$ apsolutna promjena kutne brzine drugog vratila (s^-1),

 ω_{kn} - nominalna kutna brzina prvog vratila (s⁻¹),

 ω_{2n} - nominalna kutna brzina drugog vratila (s⁻¹),

 $\Delta G_{\text{T}}\text{-}$ apsolutna promjena potrošnje goriva

G_{Tn}- nominalna potrošnja goriva

I₁- moment inercije rotirajućih masa prvog vratila
 I₂- moment inercije rotirajućih masa drugog vratila

 $\begin{array}{ll} M_{\text{K1}}\text{-} \text{ moment niskotlačnog kompresora (Nm)} \\ M_{\text{K2}}\text{-} \text{ moment visokotlačnog kompresora (Nm)} \\ M_{\text{T1}}\text{-} \text{ moment niskotlačne turbine (Nm)} \\ M_{\text{T2}}\text{-} \text{ moment visokotlačne turbine (Nm)} \end{array}$

3. Sustavnodinamičko simulacijsko modeliranje brodskog sinkronog generatora

Systemdynamics simulation modelling of ship's synchronous generator

Prijelazni procesi u sinkronim generatorima mogu se opisati sljedećim jednadžbama:

$$\frac{d\psi_d}{dt} = -\frac{r_S}{X_S}\psi_d + \psi_Q \omega + \frac{r_S}{X_S}\psi_{\alpha d} + u_d$$
(14)

$$\frac{\mathrm{d}\psi_{q}}{\mathrm{d}t} = -\psi_{\mathrm{d}\omega\omega} - \frac{\mathrm{r}_{\mathrm{s}}}{\mathrm{X}_{\mathrm{s}}}\psi_{q} + \frac{\mathrm{r}_{\mathrm{s}}}{\mathrm{X}_{\mathrm{s}}}\psi_{\alpha q} + u_{q} \qquad (15)$$

$$\frac{d\psi_{f}}{dt} = -\frac{r_{f}}{X_{s}}\psi_{j} + \frac{r_{j}}{X_{s}}\psi_{\alpha d} + u_{f}$$
(16)

$$\frac{d\Psi_{1q}}{dt} = -\frac{r_{1q}}{x_s}\Psi_j + \frac{r_j}{X_s}\Psi_{\alpha d} + u_f$$
(17)

$$\frac{\mathrm{d}\psi_{\mathrm{f}}}{\mathrm{d}t} = -\frac{\mathrm{r}_{\mathrm{f}}}{\mathrm{X}_{\mathrm{S}}}\psi_{\mathrm{j}} + \frac{\mathrm{r}_{\mathrm{j}}}{\mathrm{X}_{\mathrm{S}}}\psi_{\mathrm{\alpha}\mathrm{d}} + \mathrm{u}_{\mathrm{f}} \qquad , \qquad (18)$$

$$\Psi_{aq} = X_2 \left(\frac{1}{x_s} \Psi_q + \frac{1}{x_{1q}} \Psi_{1q} \right)$$
(19)

$$u_{d} = r_{L}\dot{i}_{d} + x_{L}\frac{d\dot{i}_{d}}{dt} - x_{L}\dot{i}_{q}\omega$$
(20)

$$u_{q} = r_{L}\dot{i}_{q} + x_{L}\frac{d\dot{i}_{q}}{dt} - x_{L}\dot{i}_{d}\omega$$
(21)

$$u = \sqrt{u_d^2 + u_q^2} \tag{22}$$

$$M_{e} = \frac{1}{x_{s}} \left(\psi_{d} \psi_{\alpha q} - \psi_{q} \psi_{\alpha d} \right)$$
(23)

$$X_{1} = \frac{1}{\frac{1}{x_{ad}} + \frac{1}{x_{s}} + \frac{1}{x_{f}} + \frac{1}{x_{1d}}}$$
(24)

$$X_{2} = \frac{1}{\frac{1}{x_{aq}} + \frac{1}{x_{s}} + \frac{1}{x_{lq}}}$$
(25)

$$i_{d} = -\frac{1}{x_{s}} \left(\Psi_{d} - \Psi_{ad} \right)$$
⁽²⁶⁾

$$i_{q} = -\frac{1}{x_{s}} \left(\Psi_{q} - \Psi_{aq} \right)$$
⁽²⁷⁾

$$i = \sqrt{i_d^2 + i_q^2}$$
(28)

$$i_{f} = \frac{1}{x_{f}} \left(\Psi_{f} - \Psi_{ad} \right)$$
⁽²⁹⁾

Gdje je:

 $\psi_d\text{=}\text{PSID}$ - magnetski tok kruga statora po osi d,

 $r_{\rm S}$ =RS- aktivni otpor kruga statora,

 $X_{S=XS}$ - induktivni otpor rasipanja kruga statora,

 ψ s_q= PSIQ - magnetski tok kruga statora po osi q,

 ω = OME - kutna brzina,

 $\Psi_{\text{ad}}\text{=}\mathsf{PSAD}$ - magnetski tok uzajamne indukcije kontura po osi d,

 $\boldsymbol{u}_{d}^{}$ =UD – napon u konturama statora po osi d,

 Ψ_{aq} = PSAQ - magnetski tok uzajamne indukcije kontura po osi q,

 u_{a} =UQ - napon u konturama statora po osi q,

u - napon u konturama statora,

 $\psi_{\rm f}$ = PSIF - magnetski tok omotača uzbude,

rf =RF – aktivni otpor omotača uzbude,

) u_f - napon uzbude,

$$\begin{split} \Psi_{1d} = PS1D - \mbox{ magnetski tok prigušnih krugova po osi d,} \\ r_{1d} = R1D - \mbox{ aktivni otpor prigušnih krugova po osi d,} \end{split}$$

 x_{1d} =X1D – induktivni otpor prigušnih krugova po osi d,

 Ψ_{1q} = PS1Q - magnetski tok prigušnih krugova po osi q,

r_{1q} =R1Q - aktivni otpor prigušnih krugova po osi q,

 $x_{1q} = X1Q$ - induktivni otpor prigušnih krugova po osi q,

Me= MEL - električni moment sinkronog generatora,

- i_d =ID jakost struje po osi d,
- i_a =IQ jakost struje po osi q,
- i_f =IF jakost struje u uzbudnom krugu,
- i =I ukupna jakost struje.

Na temelju osnovnih jednadžba moguće je izraditi strukturni dijagram, mentalno-verbalni i dijagram toka brodskog sinkronog generatora:

U promatranom sustavu postoji nekoliko krugova povratnih djelovanja (KPD).

KPD 1.(-): DPSIDDT(+)=>PSID(-)=>DPSIDDT;

KPD 2.(-): DPSIQDT(+)=>PSIQ(-)=>DPSIQDT;

KPD 3.(-): DPSIFDT(+)=>PSIF(-)=>DPSIFDT;

KPD 4.(-): DPS1DDT(+)=>PS1D(-)=>DPS1DDT;

KPD 5.(-): DPS1QDT(+)=>PS1Q(-)=>DPS1QDT;

<u>KPD6.(-):</u>U(-)=>DISK2(+)=>UF(+)=>DPSIFDT (+)>PSIF(+)=>PSAD(+)=>ID(+)=>UQ (+)=>U;

<u>KPD7.(-)</u>:U(-)=>DISK2(+)=>UF(+)=>DPSIFDT (+)=>PSIF(+)=>PSAD(+)=>ID(+)=>UD (+)=>U; KPD 8.(-): MEL(+)=>ALFAD(-)=>D2FIDT2 (+)=DFIDT(+)=>FI(+)=>OME(+)=> DPSIDDT(+)=>PSID(+)=>MEL;KPD9.(-): MEL(+)=>ALFAD(-)=> D2FIDT2(+)=>DFIDT(+)=>FI(+)=> OME(-)=>DPSIQDT(+)=>PSIQ(-)=> MEL; KPD 10.(-): MEL(+)=>ALFAD(+)=>DALFADT (-)=>D2FIDT2(+)=>DFIDT(+)=>FI(+)=>OME (-)=>DPSIQDT(+)=>PSIQ(-)=>MEL; KPD 11.(-): IQ(+)=>UQ(+)=>DPSIQDT(+)=>PSIQ (-)=>IQ; KPD 12.(-): IQ(-)=>UD(+)=>DPSIDDT(+)=>PSID(-)=>DPSIQDT(+)=>PSIQ(-)=>IQ; KPD 13.(-): ID(+)=>UD(+)=>DPSIDDT(+)=>PSID(-)=>ID; KPD 14.(-): ID(+)=>UQ(+)=>DPSIQDT(+)=>PSIQ(+)=>DPSIDDT(+)=>PSID(-)=>ID;

<u>KPD15.(+):</u> PSAQ(+)=>DPS1Q(+)=>PS1Q(+)=>PSAQ; <u>KPD16.(+):</u> PSAD(+)=>DPS1D(+)=>PS1D(+)=> PSAD;

SI. 6. Dijagram toka brodskog sinkronog generatora Fig. 6. Systemdynamics flow diagram and the computer simulation models of synchronous generator set

3.1. Kompjutorskosimulacijski model brodskog plinskog turbogeneratora *Computing simulating model of gas turbo generator*

Scenarij simulacije The scenario of simulation

Zalet turbine izveden je trostupanjski, što znači da u TIME=1 sekundi ubrzavamo turbinu dovođenjem goriva, na 10% nominalnog broja okretaja u TIME=5 sekundi skokovito povećavamo potrošnju goriva na 35%

nominalnog broja okretaja, a u TIME=10 skokovito povećavamo dovod goriva kako bi se turbina "jednoliko" zagrijala odnosno postigla nominalan broj okretaja.U TIME=20 uključujemo u rad PID regulator, a u TIME=30	L PSID.K=PSID.J+D1*DPSIDD1.JK
	N PSID=0
	C RS=1
počinje uzbuđivanje generatora. U TIME=60 pojavljuje se stohastičko opterećenje.	A UD.K=CLIP (RE.K*ID.K+XE*SLOPE (ID.K,DT) +XE*I Q.K*OME.K,0,TIME.K,30)
Listing programa:	A RE.K=1+STEP(.2,60)*NOISE()
MACRO FUNKCIJE:	C XE=1
"PRVA DERIVACIJA-BRZINA":	SAVE DPSIDDT,PSID,OME,UD
MACRO SLOPE(X,DEL	R DPSIQDT.KL=PSID.K*OME.K-((RS*PSI Q.K)/XS) +((RS*PSAQ.K)/XS)+UQ.K
A SLOPE.K=(X.K-SMOOTH(X.K,DEL))/DT	L PSIQ.K=PSIQ.J+DT*DPSIQDT.JK
MEND	N PSIQ=0
" PID REGULATOR-UNIREG":	A UQ.K=CLIP(RE.K*IQ.K+XE*SLOPE
MACRO UNIREG(X,KPP,KPI,KPD	
INTRN ID,PREG,IREG,DREG	
A PREG.K=KPP*X.K	P DPSIEDT KI = ((-RE*PSIE K)/YE) + ((RE*PSAD K))
L ID.K=ID.J+DT*X.J)/XF)+UF.K
N ID=X	L PSIF.K=PSIF.J+DT*DPSIFDT.JK
A IREG.K=KPI*ID.K	N PSIF=0
A DREG.K=KPD*SLOPE(X.K,DT)	C RF=1
A UNIREG.K=PREG.K+IREG.K+DREG.K	SAVE DPSIFDT, PSIF
MEND	R DPS1DDT.KL=((-RID*PSID.K)/X1D)+((RID*PSAD.K)/X1D)
R DFIOM1T.KL=(1/TA1C)*(MIG.K+KOM2C*FIOM2.K-FT.K- K1*FIOM1.K)	L PS1D.K=PS1D.J+DT*DPS1DDT.JK N PS1D=0
C TA1C=.65	C RID=1
C KOM2C=.7	SAVE DPSIDDT,PSID
C K1=1.128	R DPS1QDT.KL=((-
L FIOM1.K=FIOM1.J+DT*DFIOM1T.JK	R1Q*PS1Q.K)/X1Q)+((R1Q*PSAQ.K)/X1Q)
N FIOM1=0	L PS1Q.K=PS1Q.J+DT*DPS1QDT.JK
A MIG.K=STEP(.1/6.1)+STEP(.25/6.5)+STEP	N PS1Q=0
(.45/6,10)+STEP(PIDREG.K,20)	C R1Q=1
A DISK.K=CLIP(1-FIOM1.K,0,TIME.K,20)	SAVE DPSIQDT,PSIQ
A PIDREG.K=UNIREG(DISK.K,KPP,KPI,KPD)	A PSAD.K=X1^((PSID.K/XS)+(PSIF.K/XF)+PSID.K/X1D)
C KPP=1	C XAD=1
C KPI=1	
C KPD=0	
A FT.K=-MEL.K	A PSAQ.K=X2^((PSIQ.K/XS)+(PSIQ.K/X1Q))
R DFIOM2T.KL=(1/TA2C)*(MIG.K+KOM1C*FIOM1.K- K2*FIOM2.K)	C XAQ=1 C XF=1
C TA2C=.4	C X1D=1
C KOM1C=1.616	C X1Q=1
C K2=1.2	A OME.K=FIOM1.K
L FIOM2.K=FIOM2.J+DT*DFIOM2T.JK	N OME=0
N FIOM2=0	A MEL.K=(PSID.K*PSAQ.K-PSIQ.K*PSAD.K)/XS
R DPSIDDT.KL=((-RS*PSID.K)/XS) +PSIQ.K OME.K+ ((RS*PSAD.K)/XS)+UD.K	SAVE MEL,OME

A UF.K=UNIREG(DISK1.K,KPP1,KPI1,KPD1)

A DISK1.K=CLIP(1-U.K,0,TIME.K,30)

C KPP1=.6

C KPI1=0

C KPD1=.1

K X1=1/((1/XAD)+(1/XS)+(1/XF)+(1/X1D))

K X2=1/((1/XAQ)+(1/XS)+(1/X1D))

A ID.K=CLIP(-(PSID.K-PSAD.K)/XS,0,TIME.K,30) A IQ.K=CLIP(-(PSIQ.K-PSAQ.K)/XS,0,TIME.K,30)

A I.K=SQRT(ID.K*ID.K+IQ.K*IQ.K)

Grafički rezultati simulacije

Graphic results of simulation

A IF.K=CLIP(-(PSIF.K-PSAD.K)/XS,0,TIME.K,30) SAVE ID,IQ,IF,I

SAVE FIOM1,DFIOM1T,FIOM2,DFIOM2T,MIG,FT SPEC DT=.1,LENGTH=100,SAVPER=1

SI. 7. Relativna promjena kutne brzine prve osovine, relativna promjena kutne brzine druge osovine, relativna promjena vanjskih mogućih djelovanja tereta, relativna promjena potrošnje goriva, električni moment sinkronog generatora

Fig. 7. Relative angular speed variation of the first and second shaft, relative variation of the external possible cargo effects, relative variations of fuel consuption, electric moment of synchronous generator

SI.8. Brzina promjene relativne kutne brzine prve osovine, brzina promjene relativne kutne brzine druge osovine, brzina promjene magnetskog toka kruga statora po osi d, brzina promjene magnetskog toka kruga statora po osi q, brzina promjene magnetskog toka omotača uzbude Fig. 8. Relative angular speed variation of the first, and second shaft, speed variation of the stator flux linkage in the d-axis, q-axis, speed variation of rotor exciting flux linkage

SI. 9. Jakost struje po osi d, jakost struje po osi q, ukupna jakost struje, jakost struje u uzbudnom krugu
 Fig. 9. Stator current in the d-axis, q-axis, the total stator current and rotor exciting current

SI. 10. Magnetski tok uzajamne indukcije kontura po osi d, magnetski tok uzajamne indukcije kontura po osi q, magnetski tok omotača uzbude, magnetski tok kruga statora po osi d

Fig. 10. Stator matual flux linkage in the d-axis, q-axis, rotor exciting, flux linkage, stator flux linkage in the d-axis

SI. 12. Dijagram ovisnosti relativne kutne brzine prve osovine o svojoj derivaciji (brzini promjene) Fig. 12. Diagram of relative angular first shaft speed

dependence on its derivation (variation speed)

SI. 13. Dijagram ovisnosti magnetskog toka prigušnih krugova po osi q o svojoj derivaciji (brzini promjene) Fig. 13. Diagram of flux linkage in the g-axis dependence on

Fig. 13. Diagram of flux linkage in the q-axis dependence on its destination (variation speed)

SI. 14. Dijagram ovisnosti magnetskog toka kruga statora po osi d o svojoj derivaciji (brzini promjene) Fig. 14. Digram of status flux linkage in the d-axis dependence on its derivation (variation speed)

Nakon zaleta turbine u praznom hodu uključujemo u rad PID - regulator koji djelovanjem na dovod goriva dovodi broj okretaja turbine na nominalnu vrijednost. Uključenjem sinkronog generatora dolazi do porasta potrošnje goriva dok se broj okretaja obiju vratila relativno malo mijenja. U režimu stohastičnog opterećenja (generatorom slučajnih brojeva simuliramo naizmjenično uključenje i isključenje električnih potrošača) pokušaj stabiliziranja izlaznog napona samouzbudom po shemi faznog kompandiranja nije pokazao dovoljno dobru učinkovitost, a nakon zamjene tog dijela sklopa elektronskim PID - regulatorom vidimo iz dijagrama da izlazni napon varira u dopuštenim granicama, iako su promjene opterećenja ekstremno nepovoljne.

4. Zaključak Conclusion

Sustavnodinamičko simulacijsko modeliranje kompleksnih pomorskih dinamičkih procesa autori već sedam godina primjenjuju zajedno sa svojim studentima na Pomorskom fakultetu u Splitu . Ovaj se pristup pokazao vrlo pogodnim softverskim alatom za izobrazbu nautičara i inženjera. Sustavnodinamički kompjutorsko simulacijski modeli pomorskih sustava i procesa vrlo su uspješno uvedeni u tečajeve simulacije i vježbe kao dio procesa obuke pomoraca.

U ovoj se kratkoj prezentaciji stručnjacima daju svi potrebni podatci i mogućnost prikupljanja dodatnih znanja o istom sustavu na brz, znanstveno utemeljen način istraživanja kompleksnog sustava, a to znači da dinamiku ponašanja složenih sustava ne treba simulirati istraživačkim pristupom "crne kutije", jer je praksa educiranja dizajniranja složenih sustava potvrdila da je kvalitetnije simulirati s istraživačkim pristupom "bijele kutije", tj. sustavnodinamičkom metodologijom.

5. Literatura References

[1] Forrester, Jay W.: Principles of Systems, MIT Press, Cambridge Massachusetts, USA, 1973/1971.

[2] Jadrić, M. and Frančić, B.: Dinamika električnih strojeva, (in Croatian), MANUALIA UNIVERSITATIS STUDIORUM SPALATIENSIS, GRAPHICS, Zagreb, 1996.

[3] Munitić, A. and Milić L.. and Milković M.: System Dynamics Computer Simulation Model of the Marine Diesel-Drive Generation Set 997. Automatic Control System, IMACS World Congress on Scientific Computation, Modelling and Applied Matematichs, vol.5, Wiessenschaft & Technik Verlag, Berlin, 1997.

[4] Munitić, A.: Kompjuterska simulacija uz pomoć sistemske dinamike, (in Croatian), BIS, Split, 1989.

[5] Miler, J.: Parne i plinske turbine, Zagreb, 1955.

[6] Munitić, A.: Application Possibilities of System Dynamics Modelling, System Dynamics, Edited by Susan Spencer and George Richardson, Proceedings of the SCS Western Multiconference, San Diego, California, A Society for Computer Simulation International, San Diego, USA, 1989.

[7] Richardson, George P. and Pugh III Aleksander L.: Introduction to System Dymanics Modelling with Dynamo, MIT Press, Cambridge, Massachusetts, USA, 1981.

[8] Munitić A., Milić L., M. Bupić: System Dynamics Simulation Modeling and Heuristic Optimization of the Induction Motor, Simulation Symposium, Marseille, France, Oct. 18-20,2001.

[9] Munitić,A., Oršulić,M., Krčum,M., Dvornik,J.: Sustavsko dinamičko simulacijsko modeliranje pogonskog sustava, Brodsko sidreno vitlo pogonjeno asinkronim motorom, Naše more, Dubrovnik, 2002.

[10] Munitić A., Oršulić M., Krčum M.and Dvornik J.: System Dynamic simulating modelling of driving system, Anchor windlass driven by asynchronous motor, MESM 2002, Sarjah, 28.-30. September, 2002, pages 6.

[11] Munitić A., Orsulić M., Milić L.and Dvornik J.: System Dynamics Modelling of Complex Electro Mechanical System, IASTED, AMS 2002, Cambridge, USA, 4.-6. November, 2002, 511-515.

Rukopis primljen: 16.09.2003.