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On the periodic solutions of certain fourth and
fifth order vector differential equations

ErcaN TUNG*

Abstract. The aim of the present paper is to establish some suf-
ficient conditions which ensure that equations (1.1) and (1.2) have no
periodic solution other than the trivial solution X = 0.
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1. Introduction

The problems related to the periodic behaviour of solutions of a higher order non-
linear scalar differential equation have been treated by many investigators. The
papers achieved in Ezeilo [4], Tiryaki [9], Bereketoglu [2, 3] and Tejumola [8] can
be given as good examples on this subject. However, with respect to our obser-
vations, only a few studies were carried out on the same topic for the solutions
of ordinary nonlinear vector differential equations of higher orders. In this aspect
studies fulfilled by Ezeilo [5] and Tung [13] could be given as examples.

In this paper, taking into account the results obtained for the ordinary nonlinear
scalar differential equations

@ 4 f1(2) T+ fo() & +f3(2) + falz) =0
and

2O bz gy (x, 2,5, %, 2@) T 4go() &

+g3($7 j"aia 1’,{17(4)) + g4($) = 07

by Tiryaki [9], we establish two new results on the same topic for the nonlinear
vector differential equations as follows:

XD+ o(X) X +¥(X) X +F(X) +G(X) =0 (1.1)
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and

X0 4 AX® 40(X, X, X, X, X®D) X +¥(X) X
(1.2)
+O(X, X, X, X, XW) X +6(X) =0.

in which X € R"™; A is a constant n X n-symmetric matrix; ®,¥ and ) are
continuous n X n-symmetric matrices depending, in each case, on the arguments
shown; F,G,0 : R® — R™ are continuous n-vector functions. It will be assumed

F0)=0, G0)=0 (1.3)
and
2X,0,2,U,V)=0, ©(0)=0 (1.4)

for an arbitrary value of X, Z, U and V. Let Jg(X) denote the Jacobian matrix

corresponding to the function G(X), that is, Jo(X) = (ggj) , (4,7 = 1,2,...,n)

where (21,22, ...,2,) and (g1, g2, ..., gn) are the components of X and G, respec-
tively. Other than these, it will also be assumed that the Jacobian matrices Jg(X)
exist and are symmetric and continuous. The symbol (X,Y) is used to denote the

n
usual scalar product in R™ for given any X,Y in R", that is, (X,Y) = > z;y;; thus
i=1

| X||* = (X, X). The matrix A is said to be negative-definite, when (AX,X) < 0
for all non-zero X in R™, and X\;(4) (i = 1,2,...,n) are the eigenvalues of the
n X n-matrix A.

In what follows we use the following differential systems which are equivalent to
the equations (1.1) and (1.2):

X=Y,y=2,72=U
U=—®(Z)U —W(Y)Z - F(Y) - G(X)

and
V=—AV —®(X,Y,Z,UV)U - W(Y)Z - Q(X,Y, Z,U, V)Y — O(X),

respectively.

2. Main result

We shall establish here the following theorems.

Theorem 1. In addition to the basic assumptions on the ®, W, F and G, suppose
that there are constants as and ay with as > %a% such that

(i) 0 < N(U(Y)) <ag forallY € R*, (i =1,2,...,n)
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(i) Ni(Ja(X)) > aq for all X € R™, (i =1,2,...,n).

Then equation (1.1) has no periodic solution whatsoever other than X = 0 for all
arbitrary ®.

Theorem 2. In addition to the basic assumptions on the A, ®,¥,Q and O,
suppose that

(i) ©(X) #0 for X #0

(i) \i(QUX,Y,Z,U,V)) > i MN(O(X,Y, Z,U, V))]2 for arbitrary X, Y, Z, U,V then
the equation (1.2) has no periodic solution whatsoever other than X = 0 for
all arbitrary A, V.

Now, we dispose of some well known algebraic results which will be required in
the proof of theorems. The first of these is a quite standard one:
Lemma 1. Let A be a real symmetric n X n matriz and

a >XN(A)>a>0 (i=1,2,...,n), where a’,a are constants.

Then
d (X, X) > (AX, X) > a (X, X)
and
a” (X, X) > (AX, AX) > a2 (X, X).
Proof. See [7]. O

Lemma 2. Let Q,D be any two real n X n commuting symmetric matrices.
Then

(i) The eigenvalues \;(QD) (1,2,...,n) of the product matrix QD are real and
satisfy

max A (Q)A(D) > \(QD) > min A (Q)A(D)

1<j,k<n T 1<5,k<n

(i) The eigenvalues N;(Q + D) (1,2,...,n) of the sum of matrices Q and D are
real and satisfy

e 0@ + s 0D)} 2 0@ +0) = { min 2,0+ min (D) |

1<j<n 1<k<n 1<j<n 1<k<n

Proof. See [1]. O

Proof of the Theorem 1. Let (X,Y,Z,U) = (X(t),Y(¢),Z(t),U(t)) be an
arbitrary a-periodic solution of (1.5), that is

(X(8),Y (), Z(t),Ut)) = (X(t+a),Y(t+a), Z(t + ), U(t + o)) (2.1)
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for some a > 0. It will be shown that, subject to the conditions in Theorem 1,

X=Y=72=U=0.

Our main tool in the proof of Theorem 1 is the function ' =T'(X,Y, Z,U) given
by:

= f1<a<I>(aZ)Z Z) da+f (0Y)Y, Z) do + (U, Z)
0 1 (2.2)
+(Y,G(X)) + [(F(oY),Y) do.
0

Consider the function

DX (), Y (1), Z(t), U(2))-

P(t)

Since T' is continuous and X, Y, Z,U are periodic in ¢, ¢(¢) is clearly bounded. An
elementary differentiation will show that

1 1
=4 [(0®(02)Z,Z)do + & [ (9(aY)Y, Z) do + (U,U) — (Z,®(Z)U)
0 0

—(Z,9(Y)Z) —(Z,F(Y)) + (Y, Ja(X)Y +%j1‘ F(oY),Y)do.
0

But
%}(F(aY),Y} do = fla<JF(aY)Z Y) da+f Y), Z) do
0 0
= flaa% (F(oY), Z) da+f F(oY),Z)do (2.4)
0 0
=0 (F(0Y),Z) (|)= (F(Y),Z),
%j(a@(aZZZ flafI)UZUZ da—l—fa (Jo(c2)ZU, Z) do
0 0

¢ [ 0®(02)2,U) do
0 (2.5)

o

03i (c®(cZ)U, Z) da—!—j(a@(aZ)U, Z)do

Il
C—

o2 (D(aZ)U, Z) |= (B(2)U, Z)

1
0
and similarly we have

1
4

© [ wov )y, 2)do = (w(v)2,2) + / (W (oYY, U) do. (2.6)
0

0
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Upon gathering the estimates (2.4), (2.5) and (2.6) into (2.3) we obtain

. 1
I'=(U.U)+ [(¥(oY)Y,U)do + (Y, Ja(X)Y)
0
> U7 = az [V |U]| + as Y]
(2.7)
2
= (IUll - Lax [Y])" + as |Y))* = La3 V|
2
= (IUll - La2 |Y])" + (as — 2a3) [IY]* > 0.

Hence 9 (t) > 0, so that ¢(t) is monotone in ¢, and therefore, being bounded, tends
to a limit, g say, as t — oo. It is readily checked that

P(t) =1 for all £. (2.8)
From by (2.1),
P(t) = P(t + ma) (2.9)

for any arbitrary fixed ¢ an for arbitrary integer m, and then letting m — oo in the
right-hand side of (2.9) leads to (2.8).
The result (2.8) itself implies that

¢ (t) =0 for all t
from which, by (2.7), it follows from assumptions on¥ and G , that
Y =0 for all ¢, (2.10)
which in turn implies that
X =¢ (constant), Y =0=2=0U for all t. (2.11)

Since (X,Y,Z,U) is a solution of (1.5), it is evident from (2.10) and (2.11) that
G(&) =0, so that £ =0, by (1.3). Hence

(X,Y,Z,U)=(0,0,0,0)
This completes the proof of Theorem 1. O

Proof of Theorem 2. Let (X,Y,Z, U, V) = (X(t),Y(t),Z(t),U(t),V(t)) be
an arbitrary w-periodic solution of (1.6), that is

(X(@),Y(),Z1),U@®), V() =(X(t+w),Y(t+w),Zt+w),Ult+w),V(t+w))

for some w > 0.
Consider the function W = W(X,Y, Z,U, V) defined by

W = 1(AZ,Z) + (Z,U) — (Y, V) — (Y, AU)

_‘0}<O'\I/(O'Y)Y, Y) da'_‘0}<@(O'X),X> do. (2.12)



140 E. Tung

It is clear that W is bounded. An elementary differentiation from (1.6) and (2.12)
yields

W:wﬂ%HYﬂXYZUVwmwmeYzavauxmx»

YUY ﬁfa@ayyvauunﬁngLXﬂw (2.13)
But
o
E—/10WcﬂﬁY}®d — (W(Y)Z,Y) (2.14)
and 0
2 [ o). 3100 0091 .
5

Using the estimates (2.14) and (2.15) in (2.13) we obtain
w={(U,U)+ (Y, o X,Y,Z,UVU)+ (Y, QX,Y,Z, U V)Y)
—ﬂW+%mYZUVYn Y, QX,Y,Z,U,V)Y)
_Z <(I)(X’Y’Z7U7V)Y7¢)(X7Y7Za Ua V)Y>
> <Y?Q(XaYaZ7U7V)Y> - i <¢)(X7Y7Za Ua V)Y7¢)(X7Y7Za Ua V)Y> > 0

Therefore, the rest of the proof, can be shown in the same way as the proof of
Theorem 1, which gives

X=Y=Z=U=V=0.
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