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ABSTRACT

The first order algebraic congruences are classified into
two basic classes which depend on their directing curves.
By the method of synthetic geometry, we investigated the
basic properties for each of these classes: the construction
of rays, singularities, decomposition into developable sur-
faces, focal properties and the types of rays. The paper
ends with a short analytical approach, which enables the
visualizations of these congruences in the program Mathe-

(1.,n) kongruencije
SAZETAK

Algebarske kongruencija prvoga reda razvrstane su u dvije
osnovne klase, ovisno o njihovim ravnalicama. Za svaku od
tih klasa, metodologijom sinteti¢ke geometrije, istraZzuju se
osnovna svjstva: konstrukcija zraka, singulariteti, dekom-
pozicija na razvojne plohe, Zari$ne osobine te vrste zraka.
Na kraju se daje i kratki analiti¢ki pristup koji je omogucio
izradu programa za vizualizaciju ovih kongruencija u pro-
gramu Mathematica Pokazano je nekoliko primjera.

matica Some exmples are shown. - . . .. .
Klju€ne rijeti: kongruencija, dekompozicija na razvojne
Key words: congruence, decomposition on developable plohe, Zarisna linija, singulariteti, vizualizacija

surfaces, focal lines, singularities, visualization
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1 Introduction ray and consecutive rays are tloeal planesof a congru-
ence. The focal surface is the envelope of the focal planes.
A congruencer is a double infinite line system, i.e. itisa A congruence clearly reciprocates into a congruence. The
set of lines in a three-dimensional space (projective, @affin focal planes and points are interchanged and the focal sur-
or Euclidean) depending on two parameters. A lirec face reciprocates into the new focal surface.

is said to be aay of the congruence. [11], [5], [9], [1]

Theorder of a congruence is the number of its rays which
pass through an arbitraty point; tokassof a congruence  Since the lines of the congruence are bitangents of the fo-
is the number of its rays which lie in an arbitrary plane. cal surface, every congruence of lines may be regarded as
mth order, nth classcongruence is signed. the system of bitangents of a surface. The surface may,
however, break up into two separate surfaces, and the orig-
inal surface, or each or either of the component surfaces
may degenerate into a curve; we have thus as congruences
the following systems of lines:

Rays in a congruence can be decomposed in two ways into

a one-parameter family of developable surfaces (torses) so 1. the bitangents of a surface,

that through every raly € ¢ pass two torses that are real
and different (the case bfyperbolicray), or imaginary (an
elliptic ray), or real and coincident garabilic ray).

A point is called thesingular pointof a congruence ifo*
rays pass through it. A plane is called tsiagular plane
of a congruence if it contains? rays.

common tangents of two surfaces,

tangents to a surface from the points of a curve,
The points of contact of a rdye ¢ with the edges of re-
gression (cuspidal edges) of these torses are callédd¢he

of |. The foci ofl are the intersection points bfvith con-
secutive rays of a congruence. The surfaces formed by the
foci of the rays of a congruence are calledftisal sur-  \yhere the last four cases being degenerate cases of the first,
faces Each ray of a congruence touches its focal surfacehich is the general one. [9, p.37]

at the foci. Two planes defined as the planes containing a

common transversales of two curves,

o M 0w N

lines “through two points” of a curve,



KoG+10-2006 V. Beni¢, S. Gorjanc: (1,n) Congruences

2 1st order congruences Thenth order space curve can possess singular points with
the highest multiplicityn — 2. If the directing curve" has

It was proved that the rays of the first order congruencesa multiple point it must lie on the liné because i€" had a

are always tranversales of two curves, or they intersect themutiple point out of the linel, the plane through that point

same space curve twice. Beside that it was proved that theand the lined would cut the curve" in more tham points,

only congruence of the first order, consisting of a system which is impossible. Thi-ple point of the curve" which

of lines meeting a proper curve twice, is when the curve is lies on the lined is signedD¥, wherei < n—k. Three ex-

a twisted cubic. ([9, p. 64], [14, pp. 1184-1185], [13, p. amples of 7th and 8th order curves with dobule and triple

32)) points are shown in Fig. 2.

If a congruence is a system of lines meeting two direct-

ing curves of the ordens andm which havea common d e d et
points, the order of a congruencersm — a. The only

congruence of the first order of this kind is when the di- D;

recting curves are a curve of tmth order and a straight

line meeting itn— 1 times. [9, p. 64] ¢ D)

Therefore, we have only two types of the congruences of D!
the first order: z

b_\ D\//&\

<
=
E

Typel 1st odremth class congruencest are the systems O;.< Z

of lines which intersect a space curkof the order Dy
n and a straight linel, wherec" andd haven—1 Figure 2
common points.

. . l
Typell 1st order 3rd class congruen«sé is the system of 2.1.2. Singular points of;

lines which meet a twisted cubic twice. a) All singular points ofc? (the points which contaipe?
rays ofc?) lie on its directing lines" andd.

21 Congruencesof thetypel If a pointC lies on the curve" andC # DIJ then the rays

2.1.1 Directing lines o'} of C} which pass trougle form the pencil of linegC) in
the planed € [d] which contain<€ andd. (See Fig. 3)

The directing lines of a congruencg are a space curve

c" of the ordem and a straight lin@ which intersectg" c"

in n— 1 points. If all intersection points are the regular

points of c" we will sign themD?,......D! ;. Some of

these points can coincide. There are cases when the line

d is the tangent line of", the tangent at inflection, etc. If

c" andd haves-ple contact at one regular common point it

is signedDil’s, wherei <n-—s. (See Fig. 1)

Figure 3

n b) If a pointD lies on the lined andD # DiJ, then all the
lines which joinD with the points of the curve" are the
D! rays of c}. They formnth degree conép with the vertex
D. Sincec" andd haven— 1 common points, this cone
intersects (or tuoches) itself- 1 times through the lind,
Figure 1 thus the lined is (n— 1)-ple generatrix of 3. (See Fig. 4)
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2.1.3 Rays of} through an arbitrary point

Every pointA which is not the singular point of}, i.e.

A ¢ c" A¢ d, determines the plan® € [d] which cutsc”

in only one poinC which in general does not lie on the line
d. The lineAC, which cutd in one pointD, is the unique
ray of ¢} through the poinA. If the planeda contains one
of the the tangent lines @f' at the intersection poirD}‘ (or

if it is the rectifying plane aDil’S), then the point€ and

D cioncide withD¥ (D) and the lineADK (AD®) is the
unique ray of¢;! throughA. (See Fig. 6)

o
d /
&

d
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Figure 4 / /
D
c) If a point Dik is the intersection point of" andd and . é 4
if it is a k-ple point of the curve", then the rays through — D'
DK which cutc” form (n—k)th degree conég;k with the 7 :
vertexDX. The lined is (n— k — 1)-ple genetartix oﬁg_;k.
Besides that the rays through the pd])ftform k pencils Figure 6
of lines (DX) in the planes determined by the lideandk ] L
tangent lines ot" at Dik. If the intersection point isﬁ)il’s, 2.1.4  Singular planes af,
then the pencil of line$D;"®) in the rectifying plane o¢" All singular planes of'! (the planes which contain’ rays
atDil*S are also the rays of a congruence. of ¢}) are the planes of the pendd]. From 2.1.2. it is

clear that in every plan& < [d] lie thes pencil of ray$C)

The other lines of the sheef®X! and {D>°} are not re-
tor) and (b} or (DX) or (D*%). (See Fig. 7)

garded as the rays of a congruence.

The example of the rays through the regular intersection It ig posEiple'that some of the tangent Iines. at intersection

pointD? is shown in Fig. 5. points D Ilg in the same plane of'the pen@i]. In such
case there is more than one pencil of lines in the plane de-
termined by these coplanar tangent lines.
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2.1.5 Rays ot} through an arbitrary plane

Every planea which is not the singular plane af?, i.e.

o ¢ [d], containsn rays of the congruence. The plaoe
cuts lined in one pointD andnth order space cune' in

n pointsCj,j =1,...,n. The linesDC; aren rays of the
congruence} in the planea. They are the intersection of
the planex andnth degree coné} and can be real and dif-
ferent, coinciding or imaginary. k& cuts the lined in D!‘,
thenn—k rays are the intersection afand the conég;k
and otherk rays are the intersection of and the plalnes

throughd determined by the tangent Iinescc.‘?fatDik. (See
Fig 8)

Figure 8

2.1.6 Decomposition of } into developable surfaces

and the foci are imaginary. If the developables coincide,
the ray is parabolic and the foci coincide. A congruence
or the partition thereof is said to be hyperbolic, elliptic o
parabolic if its rays are hyperbolic, elliptic or parabolic

In the case of the 1st order surfaces of the type | the fo-
cal surface degenerates into the directing cuo?eandd.

The developables have not the cuspidal edges, only cusp-
idal points: the verteced of the cone< ) and the points

C which are the intersections of the plardes [d] and the
curvec". Thus, each ray af ! has the foci on the directing
linesc" andd. Ifthey are real, the congruence is hyperbolic
with parabolic rays im — 1 planes through the poin&f
where the developables and foci coincide. If the directing
lines are imaginary the congruence is elliptic.

2.2 Congruencesof thetypell

If a congruences is the set of lines which cut a proper
curve twice, this curve must be a twisted cubic. Since
through an arbitrary point only one ray of the 1st order
congruence passes, the projection of the directing curve
from this point onto an arbitrary plane has only one double
point. Thus this projection is the 3rd order plane curve. As
the original curve and its projection have the same order,
then the directing line of a congruensgés a twisted cubic.
The projection of a twisted cubic onto a plane from a point
on a secant line yields a nodal cubic and from a point on a
tangent line a cuspidal cubic [4, p. 54]. (See Fig. 9)

The tangent and a secant lines of a twisted cuBidill
up the projective space and are pairwise disjoint, except at

As mentioned in the introduction every congruence can bePeINts at curve itself [4, p. 90]. Thus through an arbitrary
decomposed in two ways into a one-parameter family of POintunique ray of the congruensepasses.

developables. These two families arise if one of the two

parameters of which a congruence depends, is fixed.

In the case of the 1st order congruences of the type | the
devlopables are the sets of rays through singular poists, i.

one family is formed by thath degree cone&l, and the
other by the planes of the pendd]. Every ray ofc} is

the intersection of two developables, one from each fam-

ily. Sinced is (n— 1)-ple generatrix of}, every plane of

[d] cuts it into only one more generatrix which is the ray of
a congruence. For the rays through the intercestion points

DK thenth degree cones splitintm — k)th degree cone and
k planes through the ling. (See Figures 4,5 and 7)

2.1.7 Focal properties—
parabolic rays of'}

hyperbolic, elliptic and

In general case the ray of a congruence touches the focal
surface at foci which lie on the cuspidal edges of the de-
velopables. If the developables through the ray are real and
different, the ray is hyperbolic and the foci are real and dis
tinct. If the developables are imaginary, the ray is eltipti

8

Figure 9
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It is clear that such congruence is of the 3rd clasé),( of f331 which cutsb? at the pointsBy, B, is the part of the
because every plane cuts the cubden 3 points and the  intersecion of the cond%l, Zéz. Namely, the intersection
lines joining them are three rays of a congruence. Theseof 73 andZ3, is b®UB;B,.

. 1 By
three rays can be: three real and different (a), one real and 3. . .
two imaginary (b), three real where two of them coincide 1he curveb®is the focal curve ofs3;, it contains the cus-

(c) and three real and coinciding (d). (See Fig. 10) pidal points of¢3, B € b%. The ray of33 is hyperbolic if
the intersection pointBy, B, € b3 are real and different, it

is parabolic if they coincide (the ray is a tangenbdy and
it is elliptic if they are imaginary.

The parabolic rays orB?} form the tangent developable of
b3. (See Fig. 12)

Figure 12

The rays of such congruences are also the intersections
of the corresponding elements of two collinear bundles of
planes{Bi1}, {B.}, [7, p. 135], [14, p. 1185]. In this case
the basic points of the bundleBy( By) lie on a twisted cu-

bic b3, and the unique ray through an arbitrary point can
be constructed as the part of the intersection of two ruled
AII singullar pqints ofﬂ%% lie on theltwisted cubi<b3.. The quadrics. These quadrics pass throbgrand their rul-
|II;€S which join the poinB € b® with the other points of g5 are determined by the collineation between the bun-
b’ form 2nd degree congg. (See Fig. 11) dles{B;} and{Ba}, [7, p. 136]. In the special case when
one plane in the collineation betweéB; } and{By} cor-
responds to itself, the basic culti¢splits into one straight
line and a conic which have one common point, and the
congruences? splits into the 2nd class congruenckand

the field of lines in the plane of the conic. These congru-
ences are elaborated in detail in [2].

Figure 10

3 Analytical approach and Mathematica
visualizations

If two algebraic space curvag andc; are given by the
following parametric equations

Figure 11

Ci..Xx=x1(u), y=vyi(u), z=2z(u),

Since every plane contains exactly three raysgfthere .
/ery p 1 y ysb x1,Y1,21: 11— R, 11 CR, x1,y1,21 € CH(I)
are no singular planes af3.

1 . . C2---X:X2(V)7 YZYZ(V)a Z:ZZ(V)v
B85 can be decomposed into one family of developables. _ 1
This family consists of the conég, B € b®. Every ray X2,¥2:2 12 = R, 12 C R, X2,¥2,22 € C(12), (1)
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then the set of lines which join the points@fandc, are
given by the following equations

X=x(u)  y-yi(u)  z—z(
xa(U) —xa(v)  ya(u) —ya(v)  za(u)—2z2(v)’
(u,v) €l x 1, CRZ.

(2)

In the previous section, for drawing the directing lines of
c#, we used the following parametric functions:

d..xy(u)y=0, yi(uy=0, z(u)=u, U€eR,

(
A" Xo(V) =ax(V—V1) - (V= Vq_1),
(

(3)

It is clear that the linal is the axiszandc" is thenth order
space curve which cuts the axst the pointd;(0,0,v;),
ie{l,..,n—1}.

If the polynomial x2(v), from (3), contains the factor
(v—v)%, theni < n—sandd andc" haves—ple contact
at the poinD;(0,0,V;).

If the polynomialzz(v), from (3), takes the form

(4)

(V) =V(V—Viy) - (V= Vi), Vi; #0,
i1,...,ik€{l,....n=1}, k<n-2

then(0,0,0) is thek—ple singular point o€" and the coor-
dinates of intersection points ot andd are(0,0,2(v;)).

(3) and (2) give the following equations of the rayscf
X y  u-z
X (V) Ya2(v)  u—2(v)

., (uv) €R2

(5)

X
The above equations enable computer visualization of the

rays ofct and$31. Based on this we made the program in
webMathematicavhich enables interactive visualizations
of ¢} on the internet. It is available at the following ad-
dress:

www.grad.hr/itprojectmath/Links/webmath/indexeng.html

3.1 Examples

In the following examples the graphics are produced with

the progranMathematica

EXAMPLE 1

Two dsiplays of the same 2nd class congruence are shown

in Fig. 13. The directing lines of this} are the axiz and
the circle given by the following parametric equations:

X(v) =cosv+1, y(v) =sinv, z(v)=0, ve [0,2r].

10

Figure 13

EXAMPLE 2

The rays of the 4th class congruence are shown in Fig. 14.
The directing lines of this congruence are the Viviani's
curvec* which cuts the axig in two points, but one of
the intersection points is the double pointf The para-
metric equations of* are:

(V) = g(cosv— 2sin‘—2’ ~1), y(v)=siny,
z(v) = ?(coswr Zsin\—zl -1), ve[-2m2m.

Figure 14
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EXAMPLE 3

EXAMPLE 4

Two displays of the same 7th class congrence are shown inThe visualization of83 whose directing curve is given by

Fig. 15. The directing lines of this; are the axiz and
the curvec’ which is given by the following parametric

equations:

X(v) = iv(v— 1)(v—2)(v—3)(v—3.5)(v—4),

- 10
y(v) = 2vx(v),
zZ(v)=v, VveR.

Figure 15

the following parametric equations

X(V) =V,
y(v)
Z(v)

=(v=1)(v+1),

=(v-13%*v+1), veR

is shown in Fig. 16. The same congruence, with red
parabolic rays, is shown in Fig. 17 for two different view

points.

Figure 17

11
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