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The increased usage of smart devices and appliances opens new venues to build applications that integrate
physical and virtual world into consumer-oriented context-sensitive cyber-physical systems (CPS). Since physical
processes are dynamic, concurrent, event-driven, and powered by various sensors, controllers, and actuators, a
combination of service-oriented architecture (SOA) and event-driven architecture (EDA) is the most promising
software architecture for virtualization of heterogeneous components into interoperable application building
blocks. In this paper, we propose a CPS design paradigm where devices, such as sensors, controllers, and
actuators, are virtualized into environmental services. To support event-driven workflow coordination, we designed
special-purpose coopetition services that provide fundamental EDA characteristics, such as decoupled interactions,
many-to-many communication, publish/subscribe messaging, event triggering, and asynchronous operations. Based
on these two groups of services, we present a design of event-driven service composition languages that target two
distinct groups of developers. Using Python as an example, we present a transformation of arbitrary general-purpose
programming language into an event-driven service composition language for developers familiar with parallel
programming using operating system kernel mechanisms. On the other hand, we present the design and cognitive
evaluation of an end-user language, whose 2D tabular workspace resembles the process of sketching an automation
application on a sheet of paper.

Key words: Cyber-physical systems, Service-oriented event-driven programming, Multi-device applications,
Tabular programming

Krajnjem korisniku prilagod̄eni programski jezici za poosobljavanje računalom upravljanih okolina.
Povećanom uporabom suvremenih elektroničkih ured̄aja otvaraju se nove mogućnosti za izgradnju primjenskih
programa koji objedinjuju fizički prostor i informacijske sustave u korisniku usmjerene računalom upravljane
okoline. Suvremeni prostori opremljeni su različitim vrstama osjetila, upravljača i pokretačkih ured̄aja koji
vremenski usklad̄eno upravljaju dinamičkim i dogad̄ajima poticanim paralelnim procesima. Spregom uslužno
usmjerene i dogad̄ajima poticane arhitekture omogućen je pristup raznorodnim fizičkim ured̄ajima u obliku
med̄usobno sukladnih gradivnih komponenti primjenskih programa. U radu je predložena paradigma izgradnje
računalom upravljanih okolina u kojoj se ured̄ajima iz okoline pristupa putem programskih usluga. Za potrebe
oblikovanja dogad̄ajima poticanih tijekova izvod̄enja programa, oblikovan je poseban skup usluga suradnje i
natjecanja. Te usluge ostvaruju osnovne značajke arhitekture zasnovane na dogad̄ajima, kao što su neizravno
med̄udjelovanje, komunikacija u grupi, objavi/pretplati komunikacija, pokretanje dogad̄aja i asinkrone operacije. Na
osnovi tih dviju skupina usluga, oblikovana su dva jezika za dogad̄ajima poticanu kompoziciju usluga. Na primjeru
jezika Python, prikazano je preoblikovanje jezika opće namjene u jezik za dogad̄ajima poticanu kompoziciju
usluga namijenjen razvijateljima paralelnih programa primjenom mehanizama jezgre operacijskog sustava. S
druge strane, prikazano je oblikovanje i kognitivno vrednovanje tabličnog jezika namijenjenog krajnjem korisniku,
gdje oblikovanje primjenskog programa unutar dvodimenzionalne radne plohe nalikuje skiciranju med̄udjelovanja
skupine ured̄aja na listu papira.

Ključne riječi: računalom upravljane okoline, programiranje zasnovano na dogad̄ajima poticanoj kompoziciji
usluga, primjenski programi za upravljanje radom skupine ured̄aja, tablično programiranje

1 INTRODUCTION
Present-day living and working environments are

equipped with various types of devices for surveillance,

ambient intelligence, traffic and transportation control,
industrial automation, elderly people care, or health care.
These devices morph successfully into our physical living
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and working space through cyber-physical systems (CPS)
that integrate physical world of devices with virtual world
of information technology [1, 2].

Cyber-physical systems are integrations of computation
and physical processes. Figure 1 presents elements of a
CPS that consists of the device space and CPS application
design space. The device space is a physical space where
CPS application is executed and where interactions of CPS
with physical environment occur. The CPS application
design space is a virtual space where computational
processes that drive the operation of CPS is designed and
implemented.

The device space includes a wide range of sensors,
controllers, and actuators interconnected through
communication networks [3, 4]. Furthermore, the
device space includes computer network that provides the
execution environment for computational part of CPS that
control the operation of devices. Devices are accessible
from computer network through communication network.

The CPS application design space provides the APIs
to access the device functionalities and programming
languages for composing devices into CPS applications. To
be suitable for integration into CPS applications, devices
have their representations in CPS application design space.

Openness to physical environments on one side, and
people that live and work in these environments on the
other, requires online, open-ended, interactive, concurrent,
and event-driven information systems that drive the
operation of CPS. As a result, the most suitable technology
for development of such information systems is based
on combination of service-oriented architecture (SOA)

Fig. 1. Cyber-physical system based on event-driven
service composition

and event-driven architecture (EDA) [2, 5-10]. In this
paper, we present a design of programming languages for
development of CPS applications based on combination of
SOA and EDA. To build a CPS application, programmer
defines a control logic that coordinates the operation of a
set of devices. We propose an event-driven SOA where
devices, such as sensors, controllers, and actuators, are
exposed to application developers as web services. To
handle events in distributed environment, we developed
special-purpose event-handling services.

In an environment where embedded devices
and event-handling mechanisms are virtualized as
services, service composition is used as a design
paradigm to connect mutually independent services
into domain-specific CPS [11]. Service composition
languages are, therefore, used as process description
languages to define control processes from which the
execution of devices is orchestrated. We present two
programming languages for two different groups of
application developers with different domain knowledge
and programming skills. Using Python as an example,
we present a transformation of arbitrary general-purpose
programming language into an event-driven service
composition language for developers familiar with
parallel programming using operating system kernel
mechanisms. On the other hand, we present the design and
cognitive evaluation of an end-user language, whose 2D
tabular workspace resembles the process of cognitively
comprehensible sketching a multi-device CPS application
on a sheet of paper.

The rest of the paper is organized as follows. In Section
2, we discuss the CPS design challenges that impact the
design of programming languages for implementation of
CPS control processes. In Section 3, a generic example
of CPS application that is used throughout the paper
is given. In Section 4, we propose a combination of
EDA and SOA as a fundamental software architecture
upon which CPS applications are built. In Section
5, we describe a language design methodology where
event-driven service composition languages are derived
from widely accepted scripting and spreadsheet languages.
In Section 6, service composition language PIEthon, which
is SOA&EDA-ready version of Python, is described.
Section 7 presents an end-user tabular language HUSKY.
Section 8 concludes the paper.

2 LANGUAGE DESIGN CHALLENGES

Since CPS are integrations of physical and
computational elements whose operation has visible
and tangible impact on human surroundings or even
life, there are several challenges that have to be met
while designing such systems. These challenges also

AUTOMATIKA 53(2012) 3, 294–310 295



Programming Languages for End-User Personalization of Cyber-Physical Systems S. Srbljić, D. Škvorc, M. Popović

impact the design of programming languages used
for implementation of such systems, since some CPS
properties have to be directly expressed in the language
used by system developer.

Networking. Opposite to traditional embedded
computer systems that operate as closed boxes that do
not expose their functionality to the outside, modern
CPS will benefit from being networked. Networking of
domain-specific CPSs that usually operate in isolation
into multi-domain CPS raises two questions. First, how
to enable global networking of CPS components that
belong to different administrative domains, either being
connected permanently into long-lived applications or
dynamically into on-demand applications. Second, how
to abstract technologically diverse CPS components into
unified application modeling space and expose them to
developers as uniform application building blocks.

Timing. Reliable and safe execution of physical
processes often assumes completion of given operation
within a specific time frame. Programming abstractions
CPS designers use to develop CPS control processes have
to provide the ability to express timing constraints in user
applications.

Event-driveness. Computational parts of CPS are
naturally event-driven processes triggered by events from
physical components. Most of today’s embedded systems
react to sensor stimuli from physical environment, process
the stimuli, and control the operation of actuators to
react back to the environment. Events are occurring in
various forms, from simple notification signals to data
messages to complex structures that require multi-stage
downstream processing. Programming abstractions used
for implementation of CPS have to provide the ability to
handle events in user programs and to control the flow of
events through the system.

Concurrency. An intrinsic property of real-world
physical processes is concurrency. Composing multiple
physical processes into networked and coordinated CPS
requires programming abstractions to explicitly express
concurrent composition of CPS segments.

End-user orientation. As CPS go beyond their
traditional domains, such as industrial automation, traffic
control, or medical instrumentation, and become an
integral part of human living and working environments,
such as homes, offices, playgrounds, and shopping malls,
they have strong impact on users’ privacy and quality
of experience. Since full commodity of living in such
environments depends on individual user preferences, one
of the key challenges in CPS design is to enable end
users to tailor CPS behavior towards their personal needs,
expectations, and habits. For example, interpretation of
sensor stimuli from wind meter may require different

processing in an application used by meteorologist than in
one used by farmer, sailor, or alpinist. Users of different
profiles need application design workspaces and modeling
languages tailored to their needs, knowledge, and skill sets.

3 CPS APPLICATION EXAMPLE

CPS-driven smart environments are complex real-time
systems. For example, automating an apartment building
involves development of a sophisticated control system
for each floor. The system monitors and analyzes state,
and controls operation of numerous home appliances
spread across the building. Therefore, these systems are
based on a large number of control patterns with complex
interrelationships. The overall logic of the system manages
a large number of sensors and actuators interconnected
through sensor-controller-actuator patterns. Controllers
process the data given by sensors and prepare the control
inputs for actuators. Figure 2 presents an example of CPS
based on four sensor-controller-actuator patterns. We keep
the example simple and general, but useful enough to
present the main features of our programming languages
and show how we deal with sophisticated event-driven
control processes. The initiation Sensor0-Controller0
pattern triggers Sensor1-Controller1-Actuator1 and
Sensor2-Controller2-Actuator2 patterns, which in turn
trigger the finalization Controller3-Actuator3 pattern.

The simplest implementation architecture for the
described CPS is based on a single-task application. The
single-task application includes sequence of statements
for execution of control patterns. Control patterns access
the sensors, actuators, and controllers through memory
devices that store their data. The main advantage of
single-task application is its simplicity. However, this
type of architecture is not suitable for implementation
of event-driven automation processes. In such processes,
there is large number of distributed and embedded devices.
These devices act independently and trigger various events.

Fig. 2. An example of CPS based on concurrent control
loops
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Fig. 3. Implementation of CPS based on multitasking architecture

These events must be processed using different control
patterns and multiple events may have to be processed at
the same time and within given time frame.

To enable processing of events in a concurrent and
distributed environment, automation processes are usually
implemented using multitasking architecture. Environment
automation process logic is implemented using a set
of tasks. Tasks execute control patterns and coordinate
their execution using a set of specialized collaboration
mechanisms, such as semaphore and message queue, for
task synchronization and asynchronous communication.

Multitasking architecture enables processing of events
using different types of control patterns with different
levels of complexity. Tasks may gather and process
events independently, concurrently, or in any other
order compliant with environmental automation process
requirements. These features make the architecture flexible
and suitable for the implementation of a wide range of
automation processes.

Figure 3 presents an implementation of the event-driven
CPS control process shown in Fig. 2 using a multitasking
architecture. The process automation logic is implemented
using three tasks collaborating using semaphore (SEM)
and message queue (MQ) mechanisms. The logic of tasks

shown in Fig. 3 is expressed in a pseudo code resembling
the constructs of a typical scripting language.

Task 1 implements the initiation Sensor0-Controller0
loop and the finalization Controller3-Actuator3 loop. Task
2 implements the Sensor1-Controller1-Actuator1 loop.
Task 3 implements the Sensor2-Controller2-Actuator2
loop. After being triggered by the Sensor0 trough the
Controler0, Task 1 triggers the execution of Task 2
and Task 3 by releasing the semaphore SEM (Release
Semaphore(SEM, 2)). Until being triggered by Task 1,
Task 2 and Task 3 stay blocked on the semaphore
SEM (Obtain Semaphore(SEM, 1)). After they finish
the execution of control loops by reading the data
from sensors (Read(SensorX)), preparing the control
data (Call(ControllerX, Y)), and activation of actuators
(Activate(ActuatorX, Y)), Task 2 and Task 3 send the
results back to Task 1 through the message MQ
(Send Message(MQ, Y)). Upon receiving two messages
from the message queue MQ (Receive Message(MQ)),
Task 1 continues its execution with the finalization
Controller3-Actuator3 loop.
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4 SOA&EDA-BASED CPS

Design of a programming language for development
of CPS applications begins with a decision in what
form environmental devices appear in the language
and how programmers manipulate with them. Many
different technologies and out-of-the-box solutions for
virtualization of devices as programming elements exist
on the market. Most of these products are specialized
in some specific domain, such as surveillance, energy
consumption optimization, or health care. Solutions
are usually mutually incompatible and use nonstandard
communication protocols, data encoding formats, and
automation process description languages.

There are several initiatives that are developing open,
common, network-independent communication interfaces
for connecting sensors, actuators, and controllers. For
example, the key feature of IEEE 1451 standard is
the definition of Transducer Electronic Data Sheets [12]
(TEDS, http://ieee1451.nist.gov). The TEDSs are memory
devices that store sensor, actuator, and controller related
information. The goal of this standard is to allow the
access to data stored in TEDSs that are attached to
sensors, actuators, and controllers through a common set
of interfaces. Thus, sensors, actuators, and controllers
become indirectly accessible from a computer network
through devices like TEDSs.

In the last couple of years, Web Services [13]
and service-oriented architecture (SOA) became the
most widely accepted technology for development of
applications comprising of heterogeneous components.
Web Services enable virtualization of heterogeneous
physical devices as services in CPS application design
space. For example, the EUREKA ITEA software Cluster
SODA project [14] has created a service-oriented
ecosystem for high-level communications between
computer systems and smart embedded software
components in low-cost devices in the so-called
"web of objects". This enables all types of devices to
communicate and interact using the same language.
Uses for this technological innovation will be in a
wide range of applications for industrial automation,
automotive electronics, home and building automation,
telecommunications, and medical instrumentation. The
concept was adopted globally by OASIS as the Devices
Profile for Web Services (DPWS) standard in mid 2009
[15].

To support global networking of distributed devices
and enable their technology-transparent composition, we
propose to use SOA as basic software architecture upon
which CPS applications are built. However, fundamental
property of any application that integrates devices such
as sensors and actuators is event-driven execution.

Therefore, the architecture and programming language for
development of such applications should enable seamless
integration of these devices into event-driven workflows.
Since basic SOA does not support event-driven workflows,
it is augmented with special-purpose event-handling
services [16-19]. These services implement fundamental
characteristics of event-driven architecture (EDA), such
as decoupled interactions, many-to-many communication,
publish/subscribe messaging, event triggering, and
asynchronous operations. In [19], we proposed an
event-driven service-oriented architecture for development
of SOA&EDA applications. The architecture is shown
in Fig. 4. It is based on three types of components:
application-specific services for application-specific
computations, coopetition services for handling events in
distributed environment, and user programs that connect
these services into event-driven service composition.

When applied for development of CPS,
application-specific services become environmental
services through which devices embedded into
the environment are virtualized into automation
application. Coopetition services are used for inter-task
communication, synchronization, and event triggering,
as sketched in Fig. 3. We have developed three types of
coopetition services: TokenCenter for synchronization
of user tasks, Queue for decoupled asynchronous
communication, and BrokerCenter for publish/subscribe
messaging [16-19]. Finally, user programs written in
event-driven service composition language contain the
logic for coordination of environmental services that
operate on devices and handling of events through
coopetition services.

Fig. 4. Event-driven SOA based on application-specific and
event-handling services
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5 LANGUAGE DESIGN METHODOLOGY

To build a CPS application, programmer defines
a control logic that coordinates the operation of a
set of devices. If these devices are virtualized into
web services, then service composition is used as a
CPS application design paradigm. A language used for
implementation of SOA&EDA based CPS applications is
considered SOA-ready if it contains first-class primitives
for invocation of environmental services. Furthermore,
since the complexity of event processing is hidden
behind the coopetition services, a language is considered
EDA-ready if it contains primitives for invocation of
coopetition services.

In our previous paper [19], we discussed the design
of event-driven service composition languages that
were primarily designed for implementation of business
applications. These languages target developers already
familiar with standardized languages for development of
SOA-based applications, such as WS-BPEL [22, 23] and
similar XML-based languages. We proposed the language
extensions that augment WS-BPEL with EDA properties.

In this paper, we discuss the design of event-driven
service composition languages that target practitioners in
environmental automation domain, where the adoption of
WS-BPEL and XML-based languages is not a common
practice. On the other side, to satisfy end-users’ needs
to personalize the behavior of CPS to their individual
habits and expectations, we discuss the design of
event-driven service composition languages for users not
formally trained in programming. Our languages for

Fig. 5. Design of event-driven service composition
automation languages

implementation of CPS applications are based on scripting
languages and spreadsheets. The influential languages that
drove the design of proposed language suite are presented
in Fig. 5.

Since scripting languages, such as Python and Perl, are
widely used general-purpose languages for development
of component-based applications, we developed an
event-driven service composition automation language
derived from Python. We chose Python due to its
popularity and wide acceptance by a wide and open user
community. To be SOA-ready, we developed a Python
module for invocation of Web Services from Python
programs. To be EDA-ready, a module for invocation
of event-handling services is developed. New language
is called PIEthon (Programmable Internet Environment
Python). In similar way as we extended Python into
PIEthon, any general-purpose system or scripting language
can be extended into an event-driven service composition
language.

To enable a comprehensive user-friendly representation
and management of CPS control logic, we developed a
spreadsheet-like tabular language named HUSKY. Because
of two-dimensional design workspace, HUSKY programs
resemble the CPS control process sketched as a graphical
scheme on a sheet of paper. HUSKY is a semi-graphical
programming language that combines properties of textual
and graphical languages.

6 PIETHON: SOA&EDA-READY PYTHON

Specialized service composition languages, such as
SSCL [19-21], enable rapid development of event-driven
SOA applications due to compact and domain-specific set
of language elements. However, designing a new language
imposes a learning curve on prospective developers since
they have to spend time to learn the lexical, syntax,
and semantic features of the language. Our goal was
to design an automation language for SOA&EDA-based
applications that is not tightly coupled to SOA community,
but rather familiar to wide population of software
developers. Second, automation logic often requires
computational logic which is not available in any service
used in composition. For example, if data formats of two
services that should be linked together do not mach, we
need a computational logic for data format conversion.
Such scenarios require Turing complete programming
language for service composition, a feature which is not
available in coordination languages such as SSCL.

To minimize the learning curve and achieve the Turing
completeness of automation language, we propose to
reuse the features and expressiveness of a general-purpose
programming language. Scripting languages are nowadays
taking a leading role in component software design,
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Fig. 6. Multitasking implementation of CPS control process in PIEthon

gathering programmers into the largest programmer
community. To open CPS development to this programmer
community, we decided to upgrade the scripting languages
to be SOA and EDA-ready languages. As an example in
this paper, we are using Python. Since standard Python
does not include built-in statements for service invocation,
we developed Python modules for managing Web Services
invocations and handling events through coopetition
services. The package including Python augmented with
service invocation and event handling modules is called
PIEthon (Programmable Internet Environment Python).
PIEthon is a SOA&EDA-ready version of Python.

Development of CPS applications in PIEthon is similar
to multitasking or multithreaded parallel programming
where set of tasks mutually collaborate using operating
system kernel mechanisms, such as semaphore, message
queue, or pipe [24]. PIEthon is, therefore, intended for
CPS developers familiar with operating system level
programming.

When PIEthon is used, the CPS application shown in
Fig. 3 is implemented using four tasks: Interrupt Handler
Task dispatches interrupts from Sensor0 to Task 1, while
Tasks 1 - 3 implement the rest of the automation process.
The tasks are implemented using the code presented
in Fig. 6. To invoke an environmental service, we use

a generic service invocation method ServiceLib.Execute.
The method accepts the service location, the operation
name, and the operation arguments as parameters.

To handle events, we use three coopetition services:
Queue, TokenCenter, and BrokerCenter. Presented
PIEthon code shows an example of using a Queue
where Task 2 and Task 3 send values to Task 1. The
communication consists of two methods: a QueueLib.Send
method to add a message to the message queue, and a
QueueLib.Receive method to acquire a message from
the queue. Both methods accept the message queue
service location as a parameter, while QueueLib.Send
method accepts the message to be queued as an additional
parameter.

Presented PIEthon code also shows an example of
synchronization of concurrent tasks. In this example, the
Task 1 runs before the Task 2 and Task 3. Synchronization
consists of two methods: TokenCentLib.Obtain and
TokenCentLib.Release. TokenCentLib.Obtain method
acquires tokens from the TokenCenter. The parameter
specifies the TokenCenter service location and the number
of tokens to be acquired. Method TokenCentLib.Release
returns tokens to the TokenCenter. The parameters specify
the TokenCenter service location and the number of tokens
to be returned to the TokenCenter.
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An example of using a BrokerCenter is the
implementation of the Interrupt Handler Task and
Task 1 where BrokerCenter is used for publish/subscribe
communication. In the presented PIEthon code, the sensor
reading acquired from Sensor0 is used to trigger the
execution of the rest of the application. The Interrupt
Handler Task is publishing information to a BrokerCenter
using a BrokerCentLib.Publish method. The parameters
specify the BrokerCenter service location and the
announcement that will be published. Task 1 subscribes
to the BrokerCenter using a BrokerCentLib.Subscribe
method. The parameters specify the BrokerCenter
service location, the terms of the subscription, and the
location of the Broker service. To keep the BrokerCenter
application-independent service, we use three-party
publish/subscribe/interpret communication model, instead
of traditional two-party publish/subscribe model. Third
parties included into the model are broker services used
for interpretation of the published announcements and
matching them with subscriptions [16, 18]. In given
example, Controller0 is used as a broker service.

In similar way as we extended Python to PIEthon,
any system or scripting language can be extended
into an event-driven service composition language. To
transform an ordinary programming language into its
SOA&EDA-ready counterpart, one needs to develop a
collaboration library for target language that supports
invocation of Web Services and coopetition services.

7 HUSKY: TABULAR SOA&EDA LANGUAGE

Although widely used as Python, PIEthon is still
intended for users with advanced programming skills.
However, as CPS become more ubiquitous, they often need
to be personalized towards specific user expectations. To
allow end-users and automation practitioners who may
not be educated in software engineering the development
of ubiquitous CPS applications, we have designed a
programming language that targets these groups of users.
During the design of a new language, we had two
main objectives. First, a new language should exhibit
a computational model suitable for non-programmers.
Second, it should provide the design workspace that
facilitates the development of CPS applications that
include multiple event flows between multiple automation
tasks and enable a comprehensive representation and
management of automation logic.

PIEthon programming is based on imperative
computation model. Programs are based on series of
statements that execute sequentially in time. Program
state is kept in variables which are explicitly defined
and managed by language statements. Furthermore, each
task is implemented in a separate program workspace,

which does not allow a comprehensive view of the entire
automation process. As shown in Fig. 3, composing
services into environment automation application
involves dealing with multiple event flows in distributed
environment. Comparing presentations of the CPS control
process implemented in PIEthon with the application
outline shown in Fig. 3, it is obvious that PIEthon is
falling short of comprehensive view of task interrelations
that are clearly visible in Fig. 3. This makes the process of
building and maintaining the CPS, which requires constant
changes in application logic, hard and error-prone.

Describing and controlling complex event-driven
systems from end-user applications requires a paradigm
shift that extends the basic principles of imperative model.
To recognize key factors that bring the programming
close to non-programmers, we studied the most successful
computing paradigms and languages implemented in
information systems. We found that spreadsheets are
the most widely used languages in today’s end-user
applications. They are understood and used by millions
of users every day for building custom calculations
and data representations. Furthermore, two-dimensional
organization of spreadsheet programs provides a design
workspace that visually reflects the logical structure of
the CPS. Based on these assumptions, we have designed
a new tabular language for service composition on
top of PIEthon. The new language is called HUSKY:
HUman-centered Service composition worKspace and
methodologY. Just as husky dogs are harnessed into a team
to drag a sled, so HUSKY connects devices virtualized as
services into CPS application.

7.1 Tabular HUSKY Workspace

HUSKY combines the features of textual and visual
languages in a form of tabular representation. We reused
basic spreadsheet concepts, such as cells, cell values,
and cell references, and extended them with declarations
of environmental and coopetition services, as well as
imperative constructs for their invocations. Figure 7 shows
a layout of the CPS application shown in Fig. 3 in HUSKY
table. Cells contain task definitions, coopetition service
instances, environmental service definitions, and constant
values. Tasks are defined by set of events. Each event is
defined in separate table cell. Events invoke environmental
services and enable collaboration between tasks. Cells
[C5-C10], [G1-G6], and [G8-G13] contain the events
comprising Task 1-3, respectively. Interrupt Handler Task
is implemented in cells [C1-C3]. Cell [E4] contains an
instance of the TokenCenter coopetition service, while cell
[E8] contains an instance of the Queue coopetition service.
An instance of the BrokerCenter is given in cell [A2], while
broker service is defined in cell [A5]. The rest of the cells
contain either environmental service definitions or constant
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Fig. 7. A two-dimensional tabular HUSKY workspace

values (cell [E1]). Environmental service definitions are
used to identify the sensor, actuator, and controller devices.

HUSKY environment provides an intuitive paradigm
for expressing concurrency in service composition. We
introduce the time ordering relation, which transforms the
spatial organization of events in cells into their ordering
in time. The time ordering relation within a HUSKY
workspace is defined along two dimensions: horizontal
and vertical. Time progresses from left to right and from
top to bottom simultaneously. Two events are sequential
in time if they occupy two adjacent cells in a HUSKY
workspace. A set of adjacent cells makes a sequence of
events, while empty cells partition the workspace into
temporally independent event sequences. This enables a
spatial organization of four independent tasks in the same
way as outlined in Fig. 3. Each task is a sequence of events
temporally independent from any other tasks. Control
flow arrows presented in Fig. 8 denote time ordering
relation during the execution of events that comprise
given task. Separation of event sequences with empty cells
enables modeling of multiple event flows between a set of
event-driven tasks in a single workspace.

The HUSKY language is based on simple graphical
presentation of process logic, which presents CPS control
tasks and their interrelationships in a unified workspace,

similar to the scheme given in Fig. 3. The unified
workspace is defined in 2D table and presents the
overall CPS control process and significantly simplifies
the design of CPS application. The representation of
service composition is organized in a two-dimensional
space [25] that resembles the process of sketching an
idea on a sheet of paper. We have found the graphical
representation in tabular space as the most suitable form
of program representation for developers that may not be
experienced in event-driven programming, because even
expert developers find it easier and less time consuming to
organize event-driven programs in graphical than textual
form. Tabular workspace enables visual organization of
tasks in a way similar to graphical schemes presented
in Fig. 3, yet easily readable on the screen. Second, the
two-dimensional space based on cells, cell references, and
cell values as basic data handling elements do not require
the use of variables [26]. In HUSKY, users use cells as
containers for values and definitions, and reference them
with the cell indices as in any other spreadsheet-based
language [27].

7.2 Application Implementation in HUSKY

Figure 8 presents the complete HUSKY implementation
of the CPS application shown in Fig. 3 and outlined in Fig.
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Fig. 8. HUSKY implementation of CPS application

7.
The application implements the following event flow.

The Interrupt Handler Task defined in cells [C1-C3]
invokes Sensor0 and waits for a sensor reading. When a
reading is acquired, it is published as an announcement
to the BrokerCenter service defined in cell [A2]. If the
published announcement satisfies the subscription terms
defined in cell [E1], the execution of the Task 1 defined
in cells [C5-C10] is triggered. When started, Task 1
uses the TokenCenter defined in cell [A2] to activate the
execution of the Task 2 in cells [G1-G6] and Task 3 in
cells [G8-G13]. Tasks 2 and 3 invoke their sensor devices
Sensor1 and Sensor2 defined in cells [D15] and [F15] and
acquire a sensor reading, process the reading by invoking
Controller1 and Controller2 services defined in cells [I1]
and [I8], and output the result by invoking Actuator1 and
Actuator2 services defined in cells [E15] and [G15]. They

use the instance of Queue service defined in cell [E8] to
send the sensor readings to Task 1. After retrieving the
sensor readings, the Task1 proceeds to process the readings
using the Controller3 service defined in cell [A9] and
output the result using the Actuator3 service defined in cell
[C15].

7.3 HUSKY Language Constructs

The following sections describe the most important
HUSKY language constructs specified within the
HUSKY cells. These include the definition of
environmental services, instantiation of coopetition
services, and definition of events for service
invocation, publish-subscribe messaging, communication,
synchronization, and several additional constructs.
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7.3.1 Service invocation

Service invocation events are denoted by the Execute
keyword. Cell [G3] in Fig. 8 shows an example of service
invocation in HUSKY. To invoke a service, the service
location and the operation name must be specified. For
example, cell [G3] contains the event for invocation of the
Controller1 service:

Execute [I1] "Calculate" [G2]

where Execute determines that the cell contains a service
invocation event, [I1] specifies a cell in which the service
location is defined, "Calculate" specifies the operation that
the invoked service should perform, and [G2] specifies
the cell that contains service invocation parameters. After
execution of the Execute event in cell [G3], this cell will
contain the result of execution of the Controller1 service.
The result of the Execute event in cell [G3] is used as the
input parameter for the execution of the Execute event in
cell [G4].

To keep the syntax of the service invocation event
compact, the service location is specified in a separate
cell. For example, cell [I1] contains the definition of the
Controller1 service:

Service "http://mynet.com/controller1"

where Service determines that the cell contains a service
definition, while "http://mynet.com/controller1" is the
endpoint URL where the service representing the device
is available.

7.3.2 Communication

To enable asynchronous communication between tasks,
the Queue service is used. The instance of Queue service
is defined in the cell [E8], using the Queue keyword. Cell
[G5] contains an event for sending a message to the Queue:

Put [G4] to [E8]

where Put and to are keywords for this type of event. The
parameter [G4] specifies the cell that contains the message,
while the parameter [E8] specifies the cell where the Queue
is instantiated.

Cells [C7] and [C8] contain events for reading a
message from the Queue:

Get [E8]

where Get is a keyword for the event for acquiring a
message from a Queue. The parameter [E8] specifies the
cell in which the Queue is instantiated. After execution of

these two events, cells [C7] and [C8] will contain the result
of the Get event.

7.3.3 Synchronization

To synchronize the execution of concurrent automation
tasks, the TokenCenter service is used. We define an istance
of TokenCenter service in cell [E3]:

TokenCenter Initially "0"

where the TokenCenter keyword represents the instance of
a TokenCenter service, while Initially defines the initial
number of tokens.

Synchronization consists of two events: Get Token and
Return Token, which acquire tokens from and return them
back to the TokenCenter.

Cells [G1] and [G8] contain a Get Token event:

Get Token [E3]

where Get Token determines an event for acquiring a token
from the TokenCenter. The parameter [E3] specifies the
cell in which the TokenCenter is instantiated. If a token
is not available in TokenCenter, execution of the sequence
will be suspended until one becomes available through
execution of the Return Token event elsewhere in the
HUSKY workspace.

Cell [C6] contains a Return Token event:

Return Token [E4] Count "2"

where Return Token determines an event for returning
tokens to the TokenCenter. The parameter [E4] specifies
the cell in which the TokenCenter is defined, while Count
specifies the number of tokens to be returned to the
TokenCenter.

7.3.4 Publish-Subscribe Messaging

For content-based messaging using publish/subscribe
paradigm, the BrokerCenter service is used. The instance
of the BrokerCenter service is defined in the cell [A2]. An
example of a Broker service definition is given in cell [A5]:

Broker "http://mynet/controller0"

The Broker keyword defines a Broker service, while
the literal "http://mynet/controller0" represents the URL
where the Broker service is available.

The cell [C5] defines an example of the Subscribe event:

Subscribe BrokerCenter [A2]
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Broker [A5] Terms [E1]

The parameter [A2] specifies the cell that contains the
instance of the BrokerCenter service, the parameter [A5]
specifies the cell that contains the definition of the Broker
service, while the parameter [E1] specifies the cell that
contains the terms of the subscription.

The cell [C2] defines an example of Publish event:

Publish BrokerCenter [A2] Announcement [C1]

The parameter [A2] specifies the cell that contains the
instance of the BrokerCenter, while the parameter [C1]
specifies the cell that contains the announcement that will
be published.

7.3.5 Event Execution Control Flow

Since event sequences are temporally independent, the
execution of each sequence proceeds within its local time
which is controlled by a local clock. Ticks of the clock
are aligned with the cells that comprise the sequence. The
local clock makes a tick each time an event (i.e. cell) of
the sequence is executed. For example, the local clock of
sequence [C1-C3] in Fig. 8 makes the following ticks: C1,
C2, and C3. Cell [C3] contains special event Set Clock
which is used to control the execution flow of the event
sequence:

Set Clock [C1]

where Set Clock determines an event for controlling the
ticks of the sequence’s local clock. The parameter [C1]
specifies the cell to which the flow of control will be
redirected after the execution of the event.

In addition to enforcing unconditional control flow, the
local sequence clock can be controlled using a conditional
control flow

If [C4] Set Clock [C1]

where [C4] specifies a cell that contains a service
invocation event that evaluates to Boolean value, while
[C1] specifies the cell to which the flow of control will be
redirected if the referenced cell contains the Boolean value
true.

7.4 HUSKY to PIEthon Translation Framework

Figure 9 presents the HUSKY translation and execution
framework that consists of the HUSKY Editor and
the Execution Environment. The HUSKY Editor is a
user-friendly GUI for development of event-driven CPS
applications based on service composition. The Execution

Environment consists of host machines and devices that
participate in the execution of CPS applications written in
HUSKY Editor.

Figure 9 shows the execution environment which
consists of a set of interpreters [28-30], coopetition
services, and environmental services. HUSKY Compiler
translates the service composition to a set of PIEthon tasks.
For example, we translate the application presented in Fig.
8 to a set of PIEthon tasks shown in Fig. 6.

Coopetition services are stored in the Coopetition
Service Repository [31, 32] and dispatched on network
machines before the execution of PIEthon tasks. Before
tasks are scheduled on the interpreters, Coopetition
Extractor analyzes the coopetition service invocations and
generates the coopetition service list. This list includes
references to all coopetition services used in application
and references to hosts where they must be executed.
Using the coopetition service list, the Dispatcher obtains
executable coopetition services code from the repository,
and deploys and executes it on target hosts.

Once the coopetition services are deployed, PIEthon
tasks are scheduled and executed on the machines of
the computer network that host Python interpreters. The
Coopetition libraries run on top of interpreters and
provide the support for invocation of coopetition and
environmental services from Python. Finally, devices of
the sensor, actuator, and controller network are virtualized
and made accessible through a set of environmental
services that execute on host machines.

7.5 Cognitive Evaluation of HUSKY from End-User
Perspective

This section presents analysis and comparison of
cognitive features of textual, graphical, and HUSKY
programming languages for service composition. The
focus of the analysis is the simplicity and cognitive burden
imposed on users of each group of languages. Languages
have been evaluated using Cognitive Dimensions
framework [33]. This framework enables designers
of information system to analyze and evaluate system’s
features from the end-user’s perspective. To date, the
framework has been successfully applied for evaluation
of visual interfaces and programming languages. The
framework is not tied to any particular application domain,
but is based on psychological factors that impact human
mental performance during interaction with any kind
of notational system. Therefore, it enables qualitative
comparison of programming languages with different
properties, intended application domain, and targeted user
base.

Using Cognitive Dimensions framework, we analyze
syntactic and semantic properties of developed
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Fig. 9. HUSKY translation and execution

programming languages. Cognitive analysis of syntactic
properties deals with the number of elementary language
elements, their representation on the screen, the technique
to compose a set of elementary elements into an
application, and the ease of manipulation with elementary
elements in order to create or modify an application.
Cognitive analysis of semantic properties deals with
closeness of visual representation of language elements to
the real-world concepts they represent and inspects how
a constellation of elementary elements in a workspace
define the program behavior in terms of data flow, control
flow, and concurrency. Cognitive analysis of languages
presented in this paper has been made using following
set of cognitive dimensions: consistency, closeness of
mapping, abstraction, visibility, viscosity, and hidden
dependencies. The results are presented in Table 1.

Visual notation. Visual notation of programming
languages is evaluated using closeness of mapping,
abstraction, visibility, and viscosity. Textual languages,
like scripting languages, are based on simple lexical
and syntactic features resembling written form of natural
language. As a result, these languages have fair closeness
of mapping and abstraction level. On the other hand,
XML-based languages, although still based on textual

notation, use special machine-readable markup and
syntactic structure that have negative impact on closeness
of mapping and abstraction level. As the complexity of
service composition grows, textual representation becomes
less visible and more difficult to change. Graphical
languages use glyphs and icons that map closely to users’
cognitive models and have good level of abstraction.
However, the graphical descriptions become difficult to
manage as the complexity scales because of an increasing
number of intersecting arcs, which results in a cluttered
view. HUSKY combines the best notational elements from
both textual and graphical languages. Textual elements are
used to convey semantics of language statements which
results in good closeness of mapping and abstraction.
Furthermore, just as in spreadsheet languages, tabular
form provides simple layout with good visibility and fair
viscosity features.

Temporal properties. Temporal properties of
programming languages are evaluated using closeness of
mapping, abstraction, visibility, and hidden dependencies.
Textual languages are based on one-dimensional flow
of time which is aligned with users’ cognitive models
of time. However, the use of multitasking models that
incurs multiple interwoven control and event flows
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Table 1. HUSKY Cognitive Dimensions Evaluation

in one dimension lowers visibility and incurs hidden
dependencies. Graphical languages use a model based on
free two-dimensional flow of time. This model is based
on using arcs connecting tasks and defining temporal
relationships which can be well understood by users.
However, larger graphical descriptions often suffer from
low readability because of free-form layout and crossed
or overlapping arcs, and thus incur low visibility and
hidden dependencies. HUSKY uses temporal model which
is two dimensional but does not use free-form layout as
in graphical languages. By restricting flow of time to
horizontal and vertical directions, HUSKY’s flow of time is
suitable to be modeled in tabular space which is simple to
understand and manage. Moreover, tabular form enables
simple and visible presentation of temporal dependencies
with fair level of hidden dependencies.

Control flow. Control flow of programming languages
is evaluated using consistency, abstraction, visibility, and
hidden dependencies. Textual languages use specialized
statements for managing the control flow. The use
of these statements breaks the basic principles of
unidirectional, continuous, and one-dimensional flow
of time. The statements can divert the flow back in
time or into the future and cause gaps in the control

flow. Thus, the use of these statements is inconsistent
with basic model of time. Large compositions may
have many control flow statements that divert the
control flow in complex ways and cause lower level
of visibility and hidden dependencies. Control flow in
graphical languages is described by defining temporal
precedence of statements with connecting arcs. Arcs
are consistent with two-dimensional flow of time and
provide a good basic construct for managing control flow.
However, basic arcs cannot describe complex patterns
like conditional branching and often additional symbols
are used. Furthermore, control flow description quickly
loses its visibility and includes hidden dependencies for
complex descriptions. Control flow in HUSKY is based on
statements that extend basic concepts behind tabular form,
cells, and cell references in a consistent way. The control
flow paradigm is based on clock ticks abstraction which is
aligned with real-world clocks. Furthermore, control flow
statements include cell references which are visible as cell
contents. This has positive effect on overall visibility and
lowers hidden dependencies.

Data flow. Data flow of programming languages
is evaluated using closeness of mapping, abstraction,
visibility, and hidden dependencies. Variables are the
basic constructs for building dataflow in textual languages.
Variables are abstract mathematical constructs that are
not aligned with end-users’ mental models. Furthermore,
overall dataflow is implicitly described as series of
data transformation mediated through variables. This
reduces visibility and imposes hidden dependencies. In
graphical languages, data-flow dependencies are expressed
using specialized arcs that are consistent with the basis
of the notation. Describing data-flow using arcs is a
simple paradigm understood by end-users. However,
complex descriptions often exhibit lower visibility due to
many overlapping arcs and include hidden dependencies.
HUSKY data flow is directly supported by extension
of tabular form where variables are replaced by cells,
and data flow is expressed by referencing cells as in
any spreadsheet language. HUSKY is based on simple
abstractions understood by many spreadsheet users.
Moreover, tabular form enables fair visibility and reduces
hidden dependencies.

Comments. Comments in programming languages are
evaluated using closeness of mapping, abstraction, and
visibility. Textual languages enable comments written in
natural language. The use of natural language exhibits
good closeness of mapping, simple abstractions, and
visibility. Graphical languages enable use of auxiliary
symbols and text for describing user comments. Auxiliary
symbols impose new abstractions and lower the overall
visibility of the description. HUSKY enables users to
mix-in the comments between statements placed in each
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cell. Thus, users are able to use comments to increase
visibility of the description. For example, the statement Put
[G4] to [E8] placed in cell [G5] in Fig. 8 augmented with
inline comments may look like this:

Put temperature [G4] from living room thermometer
to air condition feedback queue [E8]

The HUSKY-style inline comments unobtrusively
complement the keywords that make service compositions
more readable.

8 CONCLUSION

In this paper, we present service composition as a
paradigm for development of cyber-physical systems
(CPS) that integrate physical world of devices with virtual
world of software-controlled automation processes. We
propose an event-driven service-oriented architecture,
where devices, such as sensors, controllers, and actuators,
appear as environmental services that are linked into
automation applications using event-driven service
composition languages. To enable development of
event-driven automation processes, special-purpose
event-handling coopetition services are developed as
fundamental components of the architecture.

We have designed a suite of event-driven service
composition languages that enable development of CPS
control processes on different levels of abstraction. To
build a language suitable for wide programmer community,
we propose a transformation of a general-purpose scripting
language into an event-driven service composition
language. As an example, we extended Python with
modules for invocation of Web Services and handling
events through coopetition services.

While upgraded Python is convenient for use by a
wide community of professional programmers, end-users
and automation practitioners still find this language
complex and intractable. The main obstacle of textual
languages is their hard perception from the point
of automation process design. Event-driven automation
processes are often sketched on a paper using graphical
schemes. To augment an automation language with a
graphical design workspace, we design semi-graphical
end-user language HUSKY (HUman-centered Service
composition worKspace and methodologY) that resemble
design methodology usual in automation practice. HUSKY
enables a comprehensive user-friendly representation and
management of automation logic in two-dimensional
tabular workspace. HUSKY programs resemble the
automation process sketched as a graphical scheme on a
sheet of paper. Cognitive evaluation of HUSKY against
textual and graph-based service composition languages
shows its advantages with respect to consistency, closeness

of mapping, level of abstraction, hidden dependencies,
visibility, and viscosity.

To enable a seamless cooperation between application
developers with different skills and knowledge, we
define a multistage process for translation of automation
logic from high to low level of abstraction. The high
level application specification written in HUSKY is
translated into PIEthon, which is then executed on Python
interpreter augmented with modules for invocation of
Web services and handling of events through coopetition
services. Multistage translation enables cooperation
between end-users and professional programmers. For
example, end-users may define the core automation logic
in HUSKY. After being translated into the low-level and
more expressive language, such as PIEthon, professional
programmers may augment the core automation process
with additional logic, such as conversion of service
parameter data formats, which is required for correct
execution of service compositions.

Future work in the field requires further opening of
CPS design towards end-users. New, consumer-oriented
CPS design paradigms are needed to manage diversity
and amount of environmental stimuli on one side, and
meet individual user preferences caused by vast number
of imaginable use cases on the other. In [34], authors
propose an application development paradigm that extends
GUI from a well-known "language of interaction" into
an application development language. Because of its
suitability for users not trained in software engineering,
this paradigm may serve as a starting point towards future
consumer-driven CPS development.
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