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One-dimensional flow of a compressible viscous
micropolar fluid: The Cauchy problem

NERMINA MUJAKOVIC*

Abstract. The Cauchy problem for one-dimensional flow of a
compressible viscous heat-conducting micropolar fluid is considered. It
s assumed that the fluid is thermodynamically perfect and polytropic. A
corresponding initial-boundary value problem has a unique strong solu-
tion on ]0,1[x]0,T[, for each T > 0. By using this result we construct a
sequence of approzimate solutions which converges to a solution of the
Cauchy problem.

Key words: micropolar fluid, the Cauchy problem, strong solution,
weak convergence

AMS subject classifications: 35K55, 35Q40, 76N10, 46E35

Received September 9, 2004 Accepted January 20, 2005

1. Statement of the problem and the main result

In this paper we consider nonstationary 1-D flow of a compressible and heat-
conducting micropolar fluid. The equations of motion for this fluid are derived
from the integral form of conservation laws for polar fluids, under a number of sup-
plementary assumptions such as politropy, Fourier’s law, Boyle’s law and selection
of constitutive equations (see [7]). A corresponding initial-boundary value problem
has a unique strong solution on ]0,1[x]0, T, for each T' > 0 ([8]). By using this
result we prove a global-in-time existence theorem for the Cauchy problem. In our
proof we follow some ideas of S.N.Antontsev, A.V.Kazhykhov and V.N.Monakhov,
applied to the case of a classical fluid ([1]).

Let p,v,w and 6 denote, respectively, the mass density, velocity, microrotation
velocity and temperature of the fluid in the Lagrangean description. Governing
equations of the flow under consideration are as follows ([7]):

Op = ,0v

8t+p (%—O, (1.1)
ov 0 ov 7]
ot or (Pa—x) - Ka_x () (1.2)
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in R x RT, where K, A and D are positive constants. Equations (1.1)-(1.4) are,
respectively, local forms of the conservation laws for the mass, momentum, momen-
tum moment and energy. We take the following non-homogeneous initial conditions

p(x,0) = po(x) , (1.5)
v(x,0) = vo(z) , (1.6)
w(z,0) = wo(z) , (1.7)
6(z,0) = Oo(z) (1.8)

for x € R, where pg, vg,wo and 6y are given functions. We assume that there exist
m, M € R*, such that

0<m<po(x) <M, m<O(x) <M, z€R. (1.9)

The aim of this paper is to prove the following theorem.

Theorem 1.1. Let the initial functions satisfy conditions (1.9) and
po — 1,0, wo,00 — 1 € H'(R). (1.10)
Then for each T € R there exists a state function
S(z,t) = (p,v,w,0)(x,t) (x,t) € II=Rx]0,T[, (1.11)
with the properties:
p—1¢€L>0,T; H'(R)) N HY(II) , (1.12)

v,w,0 — 1€ L®0,T; HY(R)) N H'(II) N L*(0,T; H*(R)) (1.13)

which satisfies equations (1.1)-(1.4) in the sense of distributions in 11 and conditions
(1.5)-(1.8) in the sense of traces.

We denote by B¥(R), k € No, the Banach space

B*(R) ={ue C¥(R): lim |D"u(z)| =0, 0<n<k}, (1.14)

|z|—o00

where D™ is the n-th derivative; the norm is defined by

[ull r(ry = sup{sup [D"u(x)|}. (1.15)
n<k z€R
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Remark 1.1. From Sobolev’s embedding theorem ([3, Chapter IV ])and theory
of vector-valued distributions ([4, pp. 467-480 ]) one can conclude that from (1.12)
and (1.13) it follows:

p—1€L>0,T;B°(R))nC([0,T); L*(R)), (1.16)

v,w,0 — 1€ L*0,T; BY(R))nC([0,T); H(R)) N L>=(0,T; B°(R)) (1.17)

and hence
v,w e C([0,T); B°(R)), p,0 € L=(II). (1.18)

The state function S and its distributional derivatives that occur in (1.1)-(1.4)
are locally integrable functions in II and system (1.1)-(1.4) is satisfied a. e. in II.
In other words, state function (1.11) is a strong solution of our system (1.1)-(1.4).

In the proof of Theorem 1.1 we construct a sequence of approximations S,, =
(Pns U, Wn, O )nen of the state function in II ; we establish some estimates of ap-
proximations S, which show that {Sy, }nen belongs to a fixed ball (i.e. independent
of n ) of a certain normed space. Using the results of weak compactness of a unit
ball in a Hilbert space (resp. a Banach space or resp. the dual of a normed space)
from {S,}necn we extract a subsequence which has limit in the some weak sense.
Finally, we show that this limit is the solution of our problem.

2. Approximate solutions and a priori estimates

First we introduce the restrictions of the initial functions py and 6y to | —n, n[. For
n € N let

Pon = po on | —n,nj, (2.1)
Oon = 0p on | —n,nl. (2.2)

We can easily verify that
pon s Bon € H*(] —n,nl). (2.3)

Since D(R) is dense in H!(R), there exist the sequences {vg,} and {wo,} of ap-
proximations of the initial functions vy and wg with the following properties:

(1) Von,won € Hy(] = n,n[), von =0, wo, =0 on R\] —n,n|, (2.4)
(ii) von — vo, Won — wo strongly in H'(R). (2.5)
Let us consider equations (1.1) - (1.4) on | — n,n[xR*, with the boundary
conditions
v(—n,t) =v(n,t) =0, w(—n,t)=w(n,t)=0, (2.6)
00 00

g(—mt) = %(mt) =0 (2.7)
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for t > 0 and with (pon, Von,won, Bon) as the initial data on | — n,n[. Functions
Pon, Von, Won and B, satisfy the conditions taken for the initial functions in The-
orem 1.1 of [8] and we conclude that, for each n € N and T > 0, problem (1.1)-
(1.4), (2.6)-(2.7) has a unique strong solution

Sn(x,t) = (Pny Uny wn, 0p) (2, ), (2,1) € Qur =] — n,n[x]0, T (2.8)
with the properties:

pn € L0, T; H' (] —n,n))) N HY(Qur) , (2.9)

Up, Wn, O, € L(0, T Hl(] —n,n[))N Hl(QnT)
NL20,T; H*(] — n,n))) , (2.10)

pn>0,60,>0 onQ.r, (2.11)

that in [7] and [8] is named a generalised solution. From embedding theorem (]6,
Chapter II, Theorem 2.2.1]), theories of vector-valued distributions and interpola-
tions ([4, pp. 467-480 ]) we observe that from (2.9) and (2.10) it follows:

pn € L=(0,T;C([-n,n])) N C([0,T]; L*(] — n,n[), (2.12)
Vny Wn, Op € L?(0,T; CY([—n,n])) N C([0,T); H(] — n,n[)), (2.13)
Uy Wi, O € C(Qur). (2.14)
From the properties of the function p,, (see [1, pp. 44-45]) we get
pn € C(Qur). (2.15)

Next we prove uniform (in n € N) a priori estimates for S, in Q,r. By C € RT
we denote a generic constant, independent of n € N.
We introduce non-negative functions U,, and V;, defined on 0, T by

Y A IR S S S _
+ %(Gn —Inb, — 1)} dz, (2.16)
1 "\ pn [ Ov, 2 Pn  Own 2 w2
o=z [E (Ge) + 2 (o) + o
2
pn [ 00n
— [ — . 2.1
+D0%<ax)]dx (2.17)

Using the inequality Inz < z — 1 for U,,(0) we have

L o Loy (po—1)* 1 (6—1)°
< — — — 2.1
U, (0) < /R [QKv0n+ TAR e+ D e (2.18)
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and taking into account (1.9), (1.10) and (2.5) we immediately get
Un(0) < C. (2.19)
Now, multiply (1.1), (1.2), (1.3) and (1.4) by p~*(1 —p~!), K~'v, A7' K~ 1wp™!

and K~1(1 — 071)p~1, respectively, and integrate over | — n,n[ and over ]0,t[,t €
10, T'[. After addition of the obtained equations we find that

Un(t) + /0 t V. (r)dr = Un(0) < C. (2.20)

Lemma 2.1. Fort €]0,T],

|vn ()l L2 =nnp < C s (2.21)

lwn ()l z2q—n.np < C - (2.22)

Proof. These estimates follow from (2.20) and the inequalities

1 2 1 2
ﬁ”v’ﬂ(t)HLz(]—n,n[) < Un(?), mnwn(t)nm(}_n,n[) < Un(1). (2.23)

O

Like in [1, pp. 68-75 ] we can conclude that for each subset Jm,m + 1], m €

{-n,—n +1,...,n — 1}, of ] — n,n[ there exists a,(t) €m, m + 1[ such that the
restriction of p, to Q.. =]m,m + 1[x]0, T has the form

pn(@,t) = 201 (2) Y (8) By (2, )
1+ Kpon(x) fg Yy (7) Brm (2, )0, (z, T)dT

7 (2.24)

where

Yom(t) =

— m@l‘p{ff/o Pn(am(t)7T)@n(am(t),T)dT} , (2.25)

Bum(z,t) = pn(am(t), t)exp {/w o

Also, there exist constants C;(i = 1,..,5) (independent of m and n) such that the
estimates

[von (§) — vn(§7t)]d§} ~ (2.26)

m+1
Cl S / 0n($,t)d{1,‘ S Cg s (227)
Cy' < Bum(z,1) < Cs , Ca < Yo(t) < Cs (2.28)

are satisfied for ¢ €]0,T[ and (x,t) € Q! 7.
Because of (2.14) and (2.15) there exist positive functions

my, (t) = inf pp(x,t), me,(t) = inf 6,(x,t), (2.29)

z€]—n,n| z€]—n,n|
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M, (t)= sup pn(z,t) , Mg, (t)= sup 6O,(z,t) (2.30)

z€]—n,n| z€]—n,n|
defined on ]0,T[ and we have the following results.
Lemma 2.2. Fort €]0,T],

M, () <C, (2.31)
" -1
my, (t) > C (1 + /0 Mo, (T)dT) . (2.32)

Proof. Using (1.9), (2.11), (2.29), (2.30) and estimates (2.28) from (2.24) we
get (2.31) and (2.32). O
We define non-negative functions I, and I, in |0, T[ by

I1n(t) = /n pu(,t) (%(x,t))2 dz | (2.33)

—n

Ion(t) = /0 Lin(r)dr . (2.34)

Obviously, I, and I, belong to L(]0,T7).
Lemma 2.3. For e > 0 sufficiently small, there exists a constant C. € R such
that, for t €]0,T|, the inequality

M§ (1) < elin(t) + Co(1 + Lon(t)) (2.35)

holds true.
Proof. We introduce the function 1., on Q!+ by

m—+1

D (1, 8) = O (2, 1) — / 0, (2, 1) (2.36)

m

There exists ., (t) €]m, m + 1] such that ¥nm(xm(t),t) = 0. By means of the
Holder inequality we find that

3 z a 3
W (2, )] < / g€ 0l <

3 e B "/}nm 1
5(/m (6 ) [V (€,1)|dE) 2 ( /m 9 (&,1)%dE)z.  (2.37)
Because of (2.27) we have [ [t (&, t)|dé < C (independently of m and n).

Taking into account (2.32), (2.27), (2.33) and aw"m (&, t) = 95" (&,t) from (2.37) we
obtain

m—+1

2
3

Mgn t)y<cC (1 + Ot My, (T)dT) (Iln(t))% +1| ,t€]0,T] (2.38)
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Applying the Young inequality with parameter ¢ > 0, from (2.38) it follows

M2 (t) < ehn(t) + Cs (1 + / Mz (T)dT) (2.39)
0

and by means of the Gronwall’s inequality ([1, p.25]) we get (2.35). O
Now, we introduce the function

1 1
d, = —v + —w2 4+ (6, —1) on Qur - (2.40)
24
Multiply equations (1.2), (1.3) and (1.4) by v, ®,, A~ p,tw,®, and p,'®,, re-
spectively, and integrate over | — n,n[ using (2.6) and (2.7). After addition of the
obtained equations, we have

1d ) 9D, [ Ow, 89,

—n

" P,
+(D—1)/ pnﬁaﬁ aa K/ pnb nvn d =0 (2.41)

on |0, T[. Taking into account (2.21), (2.31) and (2.35), in the same way as in [8,
Lemma 2.4 ], we conclude that the inequality

d

7 </ (@2 + Crovt + Cow? )dx—|—D12n)

<O+ / (@2 + C1vt + Cowst)dx + Dlsy,) (2.42)

holds true. Using the embedding H'(R) C B°(R), (2.2), (1.10) and (2.5) we obtain
that [|©,(0)[|72_, ;) < C and after integration (2.42) over |0,¢[, ¢ €]0,T[, we
find that

(®2 + Cyvt + Cowd)dx + DIy, < C on |0T]. (2.43)

—n

Lemma 2.4. Fort €]0,T],

1(0n = DOl L2q—nmp < C, (2.44)
¢
/ Mg (t)dr < C, (2.45)
0
my, (t) = C, (2.46)
09, , |
o le2Qennp
Proof. Estimate (2.44) follows from (2.43) and the inequality ”0"_1“%2(}*71,71[) <

J" ®2dz. Integrating (2.35) over ]0,t[ and taking into account (2.33), (2.34) and
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(2.43) we get (2.45). From (2.32) and (2.45) we obtain (2.46). At last, using (2.46)

and the estimate for I, from (2.43) we conclude that (2.47) holds. O
Differentiating equality (2.24) with respect to x we get
Opn _1 _1 d, 1 / 00,
—— = Pn¥n B K | BumYom Onon)dr| ,(2.48
oy = Pren = PuYum 2 o) T (5, T Onen)dr| ,(2.48)

where @, (z,t) = von () —vn(z,t). Using (1.9), (1.10), (2.28) and (2.31) from (2.48)
we obtain

apn
% <c (Hv%uizﬂ_n,n[) (O )
L2( —n,n|)
00,
+01+/ d+/M vonll220 1 n
N A T 3. (Ionl 32—
+ an(T)H%Q(}_n,nD> dT:| N tE]O,T[ (249)

Lemma 2.5. Fort €]0,T],

2 (1) <cC. (2.50)

L2(J=n,n[)

Proof. By means of estimates (2.21), (2.45), (2.47) and (2.5) the result follows
directly from (2.49). O

Multiplying (1.2) and (1.3) by v, and p,, w,, respectively, integrating over ] —
n,n| and using (2.21) and (2.50) in the first equation, we find that

1d " vy, 2 Opn
sai | aes [ o (Ge) aesan ] el
o6 90,
+o|| 52 lonllzzg-naty < © M, + | 52 e
L2(J=n,n[) T llL2(—n,np)
1d/ widr + A ! Ouon 2alac—f—A nw—?‘dx—OOH}OT[ (2.52)
2dt o Pr\ "oz n P Y '
Lemma 2.6. Fort €]0,T],
t 2
/ Oem (1) dr < C, (2.53)
o 192" llz2q—nnp
t 2
/ Oon dr < C. (2.54)
o 197 " "llLzqonnp

Proof. Integrating (2.51) and (2.52) over ]0,¢[,¢t €]0, T, and applying (2.45)-
(2.47), (2.5) and (2.31) we get (2.53) and (2.54). O
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Now, we write equation (1.1) in the form

0 (1 vy,

— | — ) =—=. 2.55

ot ( pn> Oz (2.55)
Integrating over |0,¢[,t €]0,T[ , squaring and integrating again over | — n,n[, we

obtain the inequality

n _ 2 n _ 2 t n 2

/ (1 'O”) <CV (ﬂ) d:c+// <%> dxdT]. (2.56)
n On _n Pon 0 Jon \ Oz
Lemma 2.7. Fort €]0,T],

1o = DONIZ2 =y < C- (2.57)
Proof. Using (1.9), (1.10), (2.31) and (2.53), from (2.56) we easily get (2.57). O

Lemma 2.8. Fort €]0,T],

Ovy, 2 t 8%v, 2
Ha—x(t) T / 5 (T)‘ dr < C, (2.58)
r2(-nnp) o L2(j=n,n))
Owy, 2 02w, 2
' (1) T / 55 (7) dr < C, (2.59)
L2(-nnp) o L2(]=n,n)
00, |7 tla2e, , |7
(it + / —(7)’ dr < C. (2.60)
H O " Npz2q-nnp  Jo 11 022 llp2gonnp

Proof. After multiplying (1.2) by 02v,, /022 and integrating by parts over |—n, n|
and over ]0,¢[, in the same way as in [1, pp.53-54], we obtain (2.58). Multiplying
(1.3) and (1.4) by A~1p,10%w,, /02* and p;, 1020,,/0x?, respectively, and integrating
by parts over | — n,n[ and over |0,¢[ , in the same way as in [8, Lemmas 2.7, 2.8 ]
we get estimates (2.59) and (2.60). O

Lemma 2.9. Fort €]0,T],

t ap 2
—(1) dr < C, (2.61)
ot
0 L2(J~n,n])
t 2
0o (1 dr < C, (2.62)
ot
0 L2(]—n.n))
t 2
Oon dr < C, (2.63)
ot
0 L2(~n,n])
t 2
%(7) dr < C. (2.64)
ot
0 L2(~n,n])

Proof. We square equations (1.1) and (1.2), integrate over | — n,n[ and ]0, ¢[.
Then in the same way as in [1, pp.53-54] we get (2.61) and (2.62). Also, squaring
equations (1.3) and (1.4), integrating over | — n,n[ and ]0, ¢[ in the same way as in
[8, Lemmas 2.7, 2.8 ] we obtain (2.63) and (2.64). O
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3. Proof of Theorem 1.1

Let us denote again by p, and 6,, the extensions of p,, and 6, by 1 from @, to II
and by v, and w, the extensions of v, and w, by zero outside of Q.
We can find a function ¢ € D(R) such that

_J1if x| <1
p(z) = {0 if 2] > 2 (3.1)
and then we define ,, by
2z
gon(x):go(z), n e N. (3.2)
For v,, and w,, we put
Up = UnPn, Wn = WnPn (3.3)
and for p, and 6,, we introduce
pn=(pn—Von+1, 0, =0, 1Dy, + 1. (3.4)

One can easily conclude that the function S,, = (pn, Un,@n, 0, ) satisfies system
(1.1)-(1.4) a.e. in ] — &, &[x]0,T[ and initial data (2.1), (2.2) and (2.4) a.e. in
| =%, %[ Using the properties of p,, vy, wy and 6, from (3.2)-(3.4) we observe that

pro— 1 —po—1, 0,0 —1— 60y —1 strongly in L*(R) (3.5)

and
Tpo — Vo, Wno — wo strongly in L2(R), (3.6)

where - -
Pno = ﬁn(x70)7 Ono = an(xa 0)7

Uno = Un(2,0), Wno = wp(z,0), z € R. (3.7)

In order to simplify a notation in what follows we write p,, instead p,, etc..
From Lemmas 2.5, 2.7 and 2.9 we conclude that

{pn — 1} is bounded in L*(0,T; H*(R)) and H*(IT). (3.8)
Moreover, taking into account (2.31) and (2.46), from (3.4) we obtain that
{pn} is bounded in L°°(II) . (3.9)
By means of Lemmas 2.1, 2.4, 2.6, 2.8 and 2.9 from (3.3) and (3.4) we get that
{vn}, {wn}, {0, — 1} are bounded in L>°(0,T; H*(R)), H"(1I) (3.10)

and L*(0,T; H*(R)) .

Lemma 3.1. There exists a function

p—1e€ HYI)NL>®0,T; H'(R)) (3.11)
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and a subsequence of {p, — 1} (for simplicity denoted again as {pn — 1}) such that
pn — 1 — p—1 weakly* in L>°(0,T; H'(R)), (3.12)

pn — 1 — p—1 weakly in H(IT). (3.13)

The function p belongs to L*°(1I) and has the properties:
p(x,0) = po(x) a.e.inR, (3.14)

my < p< M a.e.inll (3.15)

where my, M, € RT.

Proof. Since the sequence {p, — 1} is bounded in L°°(0,T; H*(R)) (dual of
LY(0,T; H-'(R))), it is possible to extract a subsequence (denoted again as {p,—1})
such that p, —1 — p—1 weakly™ in L>°(0,T; H'(R)) (see [4, pp.498-503]). It means
that for g € LY(0,T; H=*(R)), (9(t) = (91(t), g2(t)) € L*(R) x L*(R)) we have

/(Pn — 1)gidadt +/ —ggdxdt —>/ — 1) grdzdt +/ —gadxdt . (3.16)
II

Specially, for all ¢ € D(II) from (3.16) we obtain

(pn — Dpdadt — | (p— 1)edzdt , (3.17)
/. Jo

/ap” dwdt — /a pdwdt . (3.18)

Also, {pn} is bounded in L>°(II) and therefore there exists a subsequence (denoted
by {p»}) such that p,, — p weakly* in L>°(II). Specially, for all ¢ € D(II) we get

/pn(x,t)go(x,t)dxdta/p(x,t)gp(x,t)da:dt. (3.19)
m I

Because of (3.8) we can take a further subsequence of {p,, — 1} such that p, — 1 —
p — 1 weakly in H(IT). From this convergence we find out that for ¢ € D(II), it
holds

Opn

O / (2, (. t)dadt . (3.20)

Statement (3.11) is a consequence of the above convergences.

Taking into account (2.31), (2.46), (3.1), (3.2), (3.4) and (3.19) we conclude that
there exist my, My € RT such that (3.15) holds. From the embedding theorem (see
[4, p.473]) we observe that functions p, — 1, p — 1 belong to C([0,T]; L?(R)) being
equipped with the norm of uniform convergence. Now we may speak of the traces
pn(z,0) — 1 and p(x,0) — 1.

Let ¢ € C>°([0,T1]),4(0) # 0 and ¢ vanishes in a neighbourhood of T. Applying
Green’s formula ([4, p.477]) we obtain
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//a”" da:dt+// = 1)( ()C;—w()ddt

= ¢(0)/}%(pn0—1) u(z)dr , (3.21)

T ap T dw
/0 RE(%t)u(x)z/;(t)dxdt—i—/o /R(,o—l)(%t)U(x)E

= =0(0) [ (pfe.0) = Duta)ds . (322

(t)dxdt

for all u € D(R). Comparing (3.21) and (3.22) (when n — oo) and using (3.17),
(3.20) and (3.5) we find that p(z,0) = po(x) in the sense of distributions in R. O
Lemma 3.2. There exist functions

v,w,0 —1¢€ L>®0,T; H(R)) N H (IT) N L*(0, T; H*(R)) (3.23)

and a subsequence of {vp,wn, 0, — 1} (denoted again as {vn,wn, 0, — 1}) such that

{0, Wny O — 1} — {v,w,0 — 1} weakly * in (L>=(0,T; H(R))?, (3.24)
{Vn,wn, 0p — 1} — {v,w,0 — 1} weakly in (H'(R))?, (3.25)
{Vn,Wn, O — 1} — {v,w,0 — 1} weakly in (L*(0,T; H*(R))3. (3.26)

Functions v,w and 6 have the properties:

v(x,0) = vo(z) , w(z,0) =wo(x), 0(z,0) =6O(x) a.e. inR. (3.27)

Proof. Conclusions (3.23)-(3.26) follow immediately from (3.10). From the
weak convergences we conclude that for ¢ € D(II), it follows

/H vn (@, )0 (@, £)dadt — /H o, (e, t)dad, (3.28)
%””(x oz, t)dwdt — / 2 (o )l ) (3.29)
a;:(x B, t)dwdt — / o (r. Yol ), (3.30)
‘9;2”"( 2, ), t)dwdt — / o, t)dzdt (3.31)

(when n — o0), which is true for {w,} and {0, — 1} also. By means of Green’s
formula we get properties (3.27) in the same way as (3.14). O

Lemma 3.3. Functions p,v,w and 0, defined by Lemma 3.1 and Lemma 3.2
satisfy equations (1.1)-(1.4) a.e. in II.
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Proof. Let {S, = (pn,Un,wn,0n) : n € N} be the subsequence defined by
Lemmas 3.1 and 3.2. By means of (3.9) and (3.15) we obtain the inequalities

(piaaﬁ— 200 gadxdt‘ ‘/ %——) da dt‘
I €T

)(pn + p)wdwdt‘

8vn ov
< zm 77
<C (836 pe )wdzdt'
+C p)pdxdt| | (3.32)
for all ¢ € D(IT) and after integrating by parts we get
v 50V Ov Ov
277n 277 < Zn 7
( Py —P ax)godxdt‘ <C ( 9 9 )gadxdt‘
Opn  Op
+C /v(pn —p)a—@dxdt‘ . (3.33)
11 a.’IJ

Taking into account (3.29), (3.19), (3.18) and (1.18), we conclude that for all ¢ €
D(II), from (3.33) it follows

/pn%g)da:dta/f@gpd:cdt. (3.34)
11 11 a.’IJ

For ¢ € D(II) there exists ng € N such that for all n > ng functions p,, and v,
satisfy (1.1) in the sense of distributions in IT and therefore we have

apn 2 8 _
/H< En + 05 o )godxdt—o. (3.35)
Applying (3.20) and (3.34), from (3.35) we get
dp =~ 0v .
En +p Er 0 a.ein II (3.36)

In the same way one can prove that equations (1.2), (1.3) and (1.4) are satisfied. O
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