One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem

Nermina Mujaković*

Abstract

The Cauchy problem for one-dimensional flow of a compressible viscous heat-conducting micropolar fluid is considered. It is assumed that the fluid is thermodynamically perfect and polytropic. A corresponding initial-boundary value problem has a unique strong solution on $] 0,1[\times] 0, T[$, for each $T>0$. By using this result we construct a sequence of approximate solutions which converges to a solution of the Cauchy problem.

Key words: micropolar fluid, the Cauchy problem, strong solution, weak convergence

AMS subject classifications: $35 \mathrm{~K} 55,35 \mathrm{Q} 40,76 \mathrm{~N} 10,46 \mathrm{E} 35$
Received September 9, 2004 Accepted January 20, 2005

1. Statement of the problem and the main result

In this paper we consider nonstationary 1-D flow of a compressible and heatconducting micropolar fluid. The equations of motion for this fluid are derived from the integral form of conservation laws for polar fluids, under a number of supplementary assumptions such as politropy, Fourier's law, Boyle's law and selection of constitutive equations (see [7]). A corresponding initial-boundary value problem has a unique strong solution on $] 0,1[\times] 0, T[$, for each $T>0([8])$. By using this result we prove a global-in-time existence theorem for the Cauchy problem. In our proof we follow some ideas of S.N.Antontsev, A.V.Kazhykhov and V.N.Monakhov, applied to the case of a classical fluid ([1]).

Let ρ, v, ω and θ denote, respectively, the mass density, velocity, microrotation velocity and temperature of the fluid in the Lagrangean description. Governing equations of the flow under consideration are as follows ([7]):

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+\rho^{2} \frac{\partial v}{\partial x}=0 \tag{1.1}\\
\frac{\partial v}{\partial t}=\frac{\partial}{\partial x}\left(\rho \frac{\partial v}{\partial x}\right)-K \frac{\partial}{\partial x}(\rho \theta), \tag{1.2}
\end{gather*}
$$

[^0]\[

$$
\begin{gather*}
\rho \frac{\partial \omega}{\partial t}=A\left[\rho \frac{\partial}{\partial x}\left(\rho \frac{\partial \omega}{\partial x}\right)-\omega\right] \tag{1.3}\\
\rho \frac{\partial \theta}{\partial t}=-K \rho^{2} \theta \frac{\partial v}{\partial x}+\rho^{2}\left(\frac{\partial v}{\partial x}\right)^{2}+\rho^{2}\left(\frac{\partial \omega}{\partial x}\right)^{2}+\omega^{2}+D \rho \frac{\partial}{\partial x}\left(\rho \frac{\partial \theta}{\partial x}\right) \tag{1.4}
\end{gather*}
$$
\]

in $\mathbb{R} \times \mathbb{R}^{+}$, where K, A and D are positive constants. Equations (1.1)-(1.4) are, respectively, local forms of the conservation laws for the mass, momentum, momentum moment and energy. We take the following non-homogeneous initial conditions :

$$
\begin{gather*}
\rho(x, 0)=\rho_{0}(x), \tag{1.5}\\
v(x, 0)=v_{0}(x), \tag{1.6}\\
\omega(x, 0)=\omega_{0}(x), \tag{1.7}\\
\theta(x, 0)=\theta_{0}(x) \tag{1.8}
\end{gather*}
$$

for $x \in \mathbb{R}$, where $\rho_{0}, v_{0}, \omega_{0}$ and θ_{0} are given functions. We assume that there exist $m, M \in \mathbb{R}^{+}$, such that

$$
\begin{equation*}
0<m \leq \rho_{0}(x) \leq M, \quad m \leq \theta_{0}(x) \leq M, \quad x \in \mathbb{R} \tag{1.9}
\end{equation*}
$$

The aim of this paper is to prove the following theorem.
Theorem 1.1. Let the initial functions satisfy conditions (1.9) and

$$
\begin{equation*}
\rho_{0}-1, v_{0}, \omega_{0}, \theta_{0}-1 \in H^{1}(R) \tag{1.10}
\end{equation*}
$$

Then for each $T \in \mathbb{R}^{+}$there exists a state function

$$
\begin{equation*}
S(x, t)=(\rho, v, \omega, \theta)(x, t) \quad(x, t) \in \Pi=\mathbb{R} \times] 0, T[, \tag{1.11}
\end{equation*}
$$

with the properties:

$$
\begin{gather*}
\rho-1 \in L^{\infty}\left(0, T ; H^{1}(R)\right) \cap H^{1}(\Pi), \tag{1.12}\\
v, \omega, \theta-1 \in L^{\infty}\left(0, T ; H^{1}(R)\right) \cap H^{1}(\Pi) \cap L^{2}\left(0, T ; H^{2}(R)\right) \tag{1.13}
\end{gather*}
$$

which satisfies equations (1.1)-(1.4) in the sense of distributions in Π and conditions (1.5)-(1.8) in the sense of traces.

We denote by $B^{k}(R), k \in \mathbf{N}_{\mathbf{0}}$, the Banach space

$$
\begin{equation*}
B^{k}(R)=\left\{u \in C^{k}(R): \lim _{|x| \rightarrow \infty}\left|D^{n} u(x)\right|=0,0 \leq n \leq k\right\} \tag{1.14}
\end{equation*}
$$

where D^{n} is the n-th derivative; the norm is defined by

$$
\begin{equation*}
\|u\|_{B^{k}(R)}=\sup _{n \leq k}\left\{\sup _{x \in R}\left|D^{n} u(x)\right|\right\} \tag{1.15}
\end{equation*}
$$

Remark 1.1. From Sobolev's embedding theorem ([3, Chapter IV]) and theory of vector-valued distributions ([4, pp. 467-480]) one can conclude that from (1.12) and (1.13) it follows:

$$
\begin{gather*}
\rho-1 \in L^{\infty}\left(0, T ; B^{0}(R)\right) \cap C\left([0, T] ; L^{2}(R)\right) \tag{1.16}\\
v, \omega, \theta-1 \in L^{2}\left(0, T ; B^{1}(R)\right) \cap C\left([0, T] ; H^{1}(R)\right) \cap L^{\infty}\left(0, T ; B^{0}(R)\right) \tag{1.17}
\end{gather*}
$$

and hence

$$
\begin{equation*}
v, \omega \in C\left([0, T] ; B^{0}(R)\right), \quad \rho, \theta \in L^{\infty}(\Pi) \tag{1.18}
\end{equation*}
$$

The state function S and its distributional derivatives that occur in (1.1)-(1.4) are locally integrable functions in Π and system (1.1)-(1.4) is satisfied a. e. in Π. In other words, state function (1.11) is a strong solution of our system (1.1)-(1.4).

In the proof of Theorem 1.1 we construct a sequence of approximations $S_{n}=$ $\left(\rho_{n}, v_{n}, \omega_{n}, \theta_{n}\right)_{n \in N}$ of the state function in Π; we establish some estimates of approximations S_{n} which show that $\left\{S_{n}\right\}_{n \in N}$ belongs to a fixed ball (i.e. independent of n) of a certain normed space. Using the results of weak compactness of a unit ball in a Hilbert space (resp. a Banach space or resp. the dual of a normed space) from $\left\{S_{n}\right\}_{n \in N}$ we extract a subsequence which has limit in the some weak sense. Finally, we show that this limit is the solution of our problem.

2. Approximate solutions and a priori estimates

First we introduce the restrictions of the initial functions ρ_{0} and θ_{0} to $]-n, n[$. For $n \in \mathbf{N}$ let

$$
\begin{align*}
& \left.\rho_{0 n}=\rho_{0} \text { on }\right]-n, n[, \tag{2.1}\\
& \left.\theta_{0 n}=\theta_{0} \text { on }\right]-n, n[. \tag{2.2}
\end{align*}
$$

We can easily verify that

$$
\begin{equation*}
\rho_{0 n}, \theta_{0 n} \in H^{1}(]-n, n[) \tag{2.3}
\end{equation*}
$$

Since $\mathcal{D}(R)$ is dense in $H^{1}(R)$, there exist the sequences $\left\{v_{0 n}\right\}$ and $\left\{\omega_{0 n}\right\}$ of approximations of the initial functions v_{0} and ω_{0} with the following properties:

$$
\begin{equation*}
\text { (i) } \left.v_{0 n}, \omega_{0 n} \in H_{0}^{1}(]-n, n[), \quad v_{0 n}=0, \omega_{0 n}=0 \text { on } \mathbb{R} \backslash\right]-n, n[\text {, } \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\text { (ii) } \quad v_{0 n} \rightarrow v_{0}, \omega_{0 n} \rightarrow \omega_{0} \text { strongly in } H^{1}(R) . \tag{2.5}
\end{equation*}
$$

Let us consider equations (1.1) - (1.4) on $]-n, n\left[\times \mathbb{R}^{+}\right.$, with the boundary conditions

$$
\begin{gather*}
v(-n, t)=v(n, t)=0, \omega(-n, t)=\omega(n, t)=0, \tag{2.6}\\
\frac{\partial \theta}{\partial x}(-n, t)=\frac{\partial \theta}{\partial x}(n, t)=0 \tag{2.7}
\end{gather*}
$$

for $t>0$ and with $\left(\rho_{0 n}, v_{0 n}, \omega_{0 n}, \theta_{0 n}\right)$ as the initial data on $]-n, n[$. Functions $\rho_{0 n}, v_{0 n}, \omega_{0 n}$ and $\theta_{0 n}$ satisfy the conditions taken for the initial functions in Theorem 1.1 of [8] and we conclude that, for each $n \in \mathbf{N}$ and $T>0$, problem (1.1)(1.4), (2.6)-(2.7) has a unique strong solution

$$
\begin{equation*}
\left.S_{n}(x, t)=\left(\rho_{n}, v_{n}, \omega_{n}, \theta_{n}\right)(x, t),(x, t) \in Q_{n T}=\right]-n, n[\times] 0, T[\tag{2.8}
\end{equation*}
$$

with the properties:

$$
\begin{gather*}
\rho_{n} \in L^{\infty}\left(0, T ; H^{1}(]-n, n[)\right) \cap H^{1}\left(Q_{n T}\right), \tag{2.9}\\
v_{n}, \omega_{n}, \theta_{n} \in L^{\infty}\left(0, T ; H^{1}(]-n, n[)\right) \cap H^{1}\left(Q_{n T}\right) \\
\cap L^{2}\left(0, T ; H^{2}(]-n, n[)\right), \tag{2.10}\\
\rho_{n}>0, \theta_{n}>0 \quad \text { on } \bar{Q}_{n T}, \tag{2.11}
\end{gather*}
$$

that in [7] and [8] is named a generalised solution. From embedding theorem ([6, Chapter II, Theorem 2.2.1]), theories of vector-valued distributions and interpolations ([4, pp. 467-480]) we observe that from (2.9) and (2.10) it follows:

$$
\begin{gather*}
\rho_{n} \in L^{\infty}(0, T ; C([-n, n])) \cap C\left([0, T] ; L^{2}(]-n, n[),\right. \tag{2.12}\\
v_{n}, \omega_{n}, \theta_{n} \in L^{2}\left(0, T ; C^{1}([-n, n])\right) \cap C\left([0, T] ; H^{1}(]-n, n[)\right), \tag{2.13}\\
v_{n}, \omega_{n}, \theta_{n} \in C\left(\bar{Q}_{n T}\right) . \tag{2.14}
\end{gather*}
$$

From the properties of the function ρ_{n} (see [1, pp. 44-45]) we get

$$
\begin{equation*}
\rho_{n} \in C\left(\bar{Q}_{n T}\right) \tag{2.15}
\end{equation*}
$$

Next we prove uniform (in $n \in \mathbf{N}$) a priori estimates for S_{n} in $Q_{n T}$. By $C \in \mathbb{R}^{+}$ we denote a generic constant, independent of $n \in \mathbf{N}$.

We introduce non-negative functions U_{n} and V_{n} defined on $] 0, T$ [by

$$
\begin{align*}
U_{n}(t)=\int_{-n}^{n}\left[\frac{1}{2 K} v_{n}^{2}+\frac{1}{2 A K} \omega_{n}^{2}\right. & +\frac{1}{\rho_{n}}\left(\rho_{n} \ln \rho_{n}-\rho_{n}+1\right) \\
& \left.+\frac{1}{K}\left(\theta_{n}-\ln \theta_{n}-1\right)\right] d x \tag{2.16}\\
V_{n}(t)=\frac{1}{K} \int_{-n}^{n}\left[\frac{\rho_{n}}{\theta_{n}}\left(\frac{\partial v_{n}}{\partial x}\right)^{2}\right. & +\frac{\rho_{n}}{\theta_{n}}\left(\frac{\partial \omega_{n}}{\partial x}\right)^{2}+\frac{\omega_{n}^{2}}{\rho_{n} \theta_{n}} \\
& \left.+D \frac{\rho_{n}}{\theta_{n}^{2}}\left(\frac{\partial \theta_{n}}{\partial x}\right)^{2}\right] d x \tag{2.17}
\end{align*}
$$

Using the inequality $\ln x \leq x-1$ for $U_{n}(0)$ we have

$$
\begin{equation*}
U_{n}(0) \leq \int_{R}\left[\frac{1}{2 K} v_{0 n}^{2}+\frac{1}{2 A K} \omega_{0 n}^{2}+\frac{\left(\rho_{0}-1\right)^{2}}{\rho_{0}}+\frac{1}{K} \frac{\left(\theta_{0}-1\right)^{2}}{\theta_{0}}\right] d x \tag{2.18}
\end{equation*}
$$

and taking into account (1.9), (1.10) and (2.5) we immediately get

$$
\begin{equation*}
U_{n}(0) \leq C \tag{2.19}
\end{equation*}
$$

Now, multiply (1.1), (1.2), (1.3) and (1.4) by $\rho^{-1}\left(1-\rho^{-1}\right), K^{-1} v, A^{-1} K^{-1} \omega \rho^{-1}$ and $K^{-1}\left(1-\theta^{-1}\right) \rho^{-1}$, respectively, and integrate over $]-n, n[$ and over $] 0, t[, t \in$ $] 0, T$. After addition of the obtained equations we find that

$$
\begin{equation*}
U_{n}(t)+\int_{0}^{t} V_{n}(\tau) d \tau=U_{n}(0) \leq C \tag{2.20}
\end{equation*}
$$

Lemma 2.1. For $t \in] 0, T$,

$$
\begin{align*}
& \left\|v_{n}(t)\right\|_{L^{2}(]-n, n[)} \leq C, \tag{2.21}\\
& \left\|\omega_{n}(t)\right\|_{L^{2}(]-n, n[)} \leq C . \tag{2.22}
\end{align*}
$$

Proof. These estimates follow from (2.20) and the inequalities

$$
\begin{equation*}
\frac{1}{2 K}\left\|v_{n}(t)\right\|_{L^{2}(]-n, n[)}^{2} \leq U_{n}(t), \frac{1}{2 A K}\left\|\omega_{n}(t)\right\|_{L^{2}(]-n, n[)}^{2} \leq U_{n}(t) \tag{2.23}
\end{equation*}
$$

Like in [1, pp. 68-75] we can conclude that for each subset $] m, m+1[, m \in$ $\{-n,-n+1, \ldots, n-1\}$, of $]-n, n\left[\right.$ there exists $\left.a_{m}(t) \in\right] m, m+1[$ such that the restriction of ρ_{n} to $\left.Q_{m T}^{\prime}=\right] m, m+1[\times] 0, T[$ has the form

$$
\begin{equation*}
\rho_{n}(x, t)=\frac{\rho_{0 n}(x) Y_{n m}(t) B_{n m}(x, t)}{1+K \rho_{0 n}(x) \int_{0}^{t} Y_{n m}(\tau) B_{n m}(x, \tau) \theta_{n}(x, \tau) d \tau} \tag{2.24}
\end{equation*}
$$

where

$$
\begin{gather*}
Y_{n m}(t)=\frac{1}{\rho_{0 n}\left(a_{m}(t)\right)} \exp \left\{K \int_{0}^{t} \rho_{n}\left(a_{m}(t), \tau\right) \theta_{n}\left(a_{m}(t), \tau\right) d \tau\right\} \tag{2.25}\\
B_{n m}(x, t)=\rho_{n}\left(a_{m}(t), t\right) \exp \left\{\int_{a_{m}(t)}^{x}\left[v_{0 n}(\xi)-v_{n}(\xi, t)\right] d \xi\right\} \tag{2.26}
\end{gather*}
$$

Also, there exist constants $C_{i}(i=1, . ., 5)$ (independent of m and n) such that the estimates

$$
\begin{gather*}
C_{1} \leq \int_{m}^{m+1} \theta_{n}(x, t) d x \leq C_{2} \tag{2.27}\\
C_{3}^{-1} \leq B_{n m}(x, t) \leq C_{3} \quad, \quad C_{4} \leq Y_{n m}(t) \leq C_{5} \tag{2.28}
\end{gather*}
$$

are satisfied for $t \in] 0, T\left[\right.$ and $(x, t) \in Q_{m T}^{\prime}$.
Because of (2.14) and (2.15) there exist positive functions

$$
\begin{equation*}
m_{\rho_{n}}(t)=\inf _{x \in]-n, n[} \rho_{n}(x, t), m_{\theta_{n}}(t)=\inf _{x \in]-n, n[} \theta_{n}(x, t), \tag{2.29}
\end{equation*}
$$

$$
\begin{equation*}
M_{\rho_{n}}(t)=\sup _{x \in]-n, n[} \rho_{n}(x, t), M_{\theta_{n}}(t)=\sup _{x \in]-n, n[} \theta_{n}(x, t) \tag{2.30}
\end{equation*}
$$

defined on $] 0, T$ [and we have the following results.
Lemma 2.2. For $t \in] 0, T$,

$$
\begin{gather*}
M_{\rho_{n}}(t) \leq C \tag{2.31}\\
m_{\rho_{n}}(t) \geq C\left(1+\int_{0}^{t} M_{\theta_{n}}(\tau) d \tau\right)^{-1} \tag{2.32}
\end{gather*}
$$

Proof. Using (1.9), (2.11), (2.29), (2.30) and estimates (2.28) from (2.24) we get (2.31) and (2.32).

We define non-negative functions $I_{1 n}$ and $I_{2 n}$ in $] 0, T$ by

$$
\begin{gather*}
I_{1 n}(t)=\int_{-n}^{n} \rho_{n}(x, t)\left(\frac{\partial \theta_{n}}{\partial x}(x, t)\right)^{2} d x \tag{2.33}\\
I_{2 n}(t)=\int_{0}^{t} I_{1 n}(\tau) d \tau \tag{2.34}
\end{gather*}
$$

Obviously, $I_{1 n}$ and $I_{2 n}$ belong to $L^{1}(] 0, T[)$.
Lemma 2.3. For $\varepsilon>0$ sufficiently small, there exists a constant $C_{\varepsilon} \in \mathbb{R}^{+}$such that, for $t \in] 0, T[$, the inequality

$$
\begin{equation*}
M_{\theta_{n}}^{2}(t) \leq \varepsilon I_{1 n}(t)+C_{\varepsilon}\left(1+I_{2 n}(t)\right) \tag{2.35}
\end{equation*}
$$

holds true.
Proof. We introduce the function $\psi_{n m}$ on $Q_{m T}^{\prime}$ by

$$
\begin{equation*}
\psi_{n m}(x, t)=\theta_{n}(x, t)-\int_{m}^{m+1} \theta_{n}(x, t) d x \tag{2.36}
\end{equation*}
$$

There exists $\left.x_{m}(t) \in\right] m, m+1\left[\right.$ such that $\psi_{n m}\left(x_{m}(t), t\right)=0$. By means of the Hölder inequality we find that

$$
\begin{gather*}
\left|\psi_{n m}(x, t)\right|^{\frac{3}{2}} \leq \int_{x_{m}(t)}^{x} \frac{\partial}{\partial \xi}\left|\psi_{n m}(\xi, t)\right|^{\frac{3}{2}} d \xi \leq \\
\frac{3}{2}\left(\int_{m}^{m+1} \rho_{n}^{-1}(\xi, t)\left|\psi_{n m}(\xi, t)\right| d \xi\right)^{\frac{1}{2}}\left(\int_{m}^{m+1} \rho_{n}(\xi, t)\left(\frac{\partial \psi_{n m}}{\partial \xi}(\xi, t)\right)^{2} d \xi\right)^{\frac{1}{2}} \tag{2.37}
\end{gather*}
$$

Because of (2.27) we have $\int_{m}^{m+1}\left|\psi_{n m}(\xi, t)\right| d \xi \leq C$ (independently of m and n). Taking into account $(2.32),(2.27),(2.33)$ and $\frac{\partial \psi_{n m}}{\partial \xi}(\xi, t)=\frac{\partial \theta_{n}}{\partial \xi}(\xi, t)$ from (2.37) we obtain

$$
\begin{equation*}
\left.M_{\theta_{n}}^{2}(t) \leq C\left[\left(1+\int_{0}^{t} M_{\theta_{n}}(\tau) d \tau\right)^{\frac{2}{3}}\left(I_{1 n}(t)\right)^{\frac{2}{3}}+1\right], t \in\right] 0, T[\tag{2.38}
\end{equation*}
$$

Applying the Young inequality with parameter $\varepsilon>0$, from (2.38) it follows

$$
\begin{equation*}
M_{\theta_{n}}^{2}(t) \leq \varepsilon I_{1 n}(t)+C_{\varepsilon}\left(1+\int_{0}^{t} M_{\theta_{n}}^{2}(\tau) d \tau\right) \tag{2.39}
\end{equation*}
$$

and by means of the Gronwall's inequality ([1, p.25]) we get (2.35).
Now, we introduce the function

$$
\begin{equation*}
\Phi_{n}=\frac{1}{2} v_{n}^{2}+\frac{1}{2 A} \omega_{n}^{2}+\left(\theta_{n}-1\right) \text { on } Q_{n T} . \tag{2.40}
\end{equation*}
$$

Multiply equations (1.2), (1.3) and (1.4) by $v_{n} \Phi_{n}, A^{-1} \rho_{n}^{-1} \omega_{n} \Phi_{n}$ and $\rho_{n}^{-1} \Phi_{n}$, respectively, and integrate over] - n, n [using (2.6) and (2.7). After addition of the obtained equations, we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{-n}^{n} \Phi_{n}^{2} d x+\int_{-n}^{n} \rho_{n}\left(\frac{\partial \Phi_{n}}{\partial x}\right)^{2}+\left(1-A^{-1}\right) \int_{-n}^{n} \rho_{n} \frac{\partial \omega_{n}}{\partial x} \omega_{n} \frac{\partial \Phi_{n}}{\partial x} d x \\
& \quad+(D-1) \int_{-n}^{n} \rho_{n} \frac{\partial \theta_{n}}{\partial x} \frac{\partial \Phi_{n}}{\partial x} d x-K \int_{-n}^{n} \rho_{n} \theta_{n} v_{n} \frac{\partial \Phi_{n}}{\partial x} d x=0 \tag{2.41}
\end{align*}
$$

on $] 0, T$ [. Taking into account $(2.21),(2.31)$ and (2.35), in the same way as in $[8$, Lemma 2.4], we conclude that the inequality

$$
\begin{align*}
& \frac{d}{d t}\left(\int_{-n}^{n}\left(\Phi_{n}^{2}+C_{1} v_{n}^{4}+C_{2} \omega_{n}^{4}\right) d x+D I_{2 n}\right) \\
& \quad \leq C\left(1+\int_{-n}^{n}\left(\Phi_{n}^{2}+C_{1} v_{n}^{4}+C_{2} \omega_{n}^{4}\right) d x+D I_{2 n}\right) \tag{2.42}
\end{align*}
$$

holds true. Using the embedding $H^{1}(R) \subset B^{0}(R),(2.2),(1.10)$ and (2.5) we obtain that $\left\|\Phi_{n}(0)\right\|_{L^{2}(]-n, n[)}^{2} \leq C$ and after integration (2.42) over $] 0, t[, t \in] 0, T[$, we find that

$$
\begin{equation*}
\left.\int_{-n}^{n}\left(\Phi_{n}^{2}+C_{1} v_{n}^{4}+C_{2} \omega_{n}^{4}\right) d x+D I_{2 n} \leq C \text { on }\right] 0 T[\tag{2.43}
\end{equation*}
$$

Lemma 2.4. For $t \in] 0, T[$,

$$
\begin{gather*}
\left\|\left(\theta_{n}-1\right)(t)\right\|_{L^{2}(]-n, n[)} \leq C, \tag{2.44}\\
\int_{0}^{t} M_{\theta_{n}}^{2}(\tau) d \tau \leq C, \tag{2.45}\\
m_{\rho_{n}}(t) \geq C \tag{2.46}\\
\int_{0}^{t}\left\|\frac{\partial \theta_{n}}{\partial x}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C . \tag{2.47}
\end{gather*}
$$

Proof. Estimate (2.44) follows from (2.43) and the inequality $\left\|\theta_{n}-1\right\|_{L^{2}(]-n, n[)}^{2} \leq$ $\int_{-n}^{n} \Phi_{n}^{2} d x$. Integrating (2.35) over $] 0, t[$ and taking into account (2.33), (2.34) and
(2.43) we get (2.45). From (2.32) and (2.45) we obtain (2.46). At last, using (2.46) and the estimate for $I_{2 n}$ from (2.43) we conclude that (2.47) holds.

Differentiating equality (2.24) with respect to x we get

$$
\begin{equation*}
\frac{\partial \rho_{n}}{\partial x}=\rho_{n} \varphi_{n}-\rho_{n}^{2} Y_{n m}^{-1} B_{n m}^{-1}\left[\frac{d}{d x}\left(\frac{1}{\rho_{0 n}}\right)+K \int_{0}^{t} B_{n m} Y_{n m}\left(\frac{\partial \theta_{n}}{\partial x}+\theta_{n} \varphi_{n}\right) d \tau\right],(\tag{2.48}
\end{equation*}
$$

where $\varphi_{n}(x, t)=v_{0 n}(x)-v_{n}(x, t)$. Using (1.9), (1.10), (2.28) and (2.31) from (2.48) we obtain

$$
\begin{align*}
& \left\|\frac{\partial \rho_{n}}{\partial x}(t)\right\|_{L^{2}(]-n, n[)}^{2} \leq C\left(\left\|v_{0 n}\right\|_{L^{2}(]-n, n[)}^{2}+\left\|v_{n}(t)\right\|_{L^{2}(]-n, n[)}^{2}\right) \\
& \quad+C\left[1+\int_{0}^{t}\left\|\frac{\partial \theta_{n}}{\partial x}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau+\int_{0}^{t} M_{\theta_{n}}^{2}(\tau)\left(\left\|v_{0 n}\right\|_{L^{2}(]-n, n[)}^{2}\right.\right. \\
& \left.\left.\left.\quad+\left\|v_{n}(\tau)\right\|_{L^{2}(]-n, n[)}^{2}\right) d \tau\right], \quad t \in\right] 0, T[\tag{2.49}
\end{align*}
$$

Lemma 2.5. For $t \in] 0, T[$,

$$
\begin{equation*}
\left\|\frac{\partial \rho_{n}}{\partial x}(t)\right\|_{L^{2}(]-n, n[)} \leq C \tag{2.50}
\end{equation*}
$$

Proof. By means of estimates (2.21), (2.45), (2.47) and (2.5) the result follows directly from (2.49).

Multiplying (1.2) and (1.3) by v_{n} and $\rho_{n}^{-1} \omega_{n}$, respectively, integrating over] n, n [and using (2.21) and (2.50) in the first equation, we find that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{-n}^{n} v_{n}^{2} d x+\int_{-n}^{n} \rho_{n}\left(\frac{\partial v_{n}}{\partial x}\right)^{2} d x \leq K M_{\theta_{n}}\left\|\frac{\partial \rho_{n}}{\partial x}\right\|_{L^{2}(]-n, n[)}\left\|v_{n}\right\|_{L^{2}(]-n, n[)} \\
& \quad+C\left\|\frac{\partial \theta_{n}}{\partial x}\right\|_{L^{2}(]-n, n[)}\left\|v_{n}\right\|_{L^{2}(]-n, n[)} \leq C\left(M_{\theta_{n}}+\left\|\frac{\partial \theta_{n}}{\partial x}\right\|_{L^{2}(]-n, n[)}\right) \tag{2.51}\\
& \left.\frac{1}{2} \frac{d}{d t} \int_{-n}^{n} \omega_{n}^{2} d x+A \int_{-n}^{n} \rho_{n}\left(\frac{\partial \omega_{n}}{\partial x}\right)^{2} d x+A \int_{-n}^{n} \frac{\omega_{n}^{2}}{\rho_{n}} d x=0 \text { on }\right] 0, T[. \tag{2.52}
\end{align*}
$$

Lemma 2.6. For $t \in] 0, T[$,

$$
\begin{align*}
& \int_{0}^{t}\left\|\frac{\partial v_{n}}{\partial x}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C, \tag{2.53}\\
& \int_{0}^{t}\left\|\frac{\partial \omega_{n}}{\partial x}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C \tag{2.54}
\end{align*}
$$

Proof. Integrating (2.51) and (2.52) over $] 0, t[, t \in] 0, T[$, and applying (2.45)(2.47), (2.5) and (2.31) we get (2.53) and (2.54).

Now, we write equation (1.1) in the form

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\frac{1}{\rho_{n}}\right)=\frac{\partial v_{n}}{\partial x} \tag{2.55}
\end{equation*}
$$

Integrating over $] 0, t[, t \in] 0, T[$, squaring and integrating again over $]-n, n[$, we obtain the inequality

$$
\begin{equation*}
\int_{-n}^{n}\left(\frac{1-\rho_{n}}{\rho_{n}}\right)^{2} \leq C\left[\int_{-n}^{n}\left(\frac{1-\rho_{0 n}}{\rho_{0 n}}\right)^{2} d x+\int_{0}^{t} \int_{-n}^{n}\left(\frac{\partial v_{n}}{\partial x}\right)^{2} d x d \tau\right] \tag{2.56}
\end{equation*}
$$

Lemma 2.7. For $t \in] 0, T[$,

$$
\begin{equation*}
\left\|\left(\rho_{n}-1\right)(t)\right\|_{L^{2}(]-n, n[)}^{2} \leq C . \tag{2.57}
\end{equation*}
$$

Proof. Using (1.9), (1.10), (2.31) and (2.53), from (2.56) we easily get (2.57).
Lemma 2.8. For $t \in] 0, T[$,

$$
\begin{align*}
& \left\|\frac{\partial v_{n}}{\partial x}(t)\right\|_{L^{2}(]-n, n[)}^{2}+\int_{0}^{t}\left\|\frac{\partial^{2} v_{n}}{\partial x^{2}}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C, \tag{2.58}\\
& \left\|\frac{\partial \omega_{n}}{\partial x}(t)\right\|_{L^{2}(]-n, n[)}^{2}+\int_{0}^{t}\left\|\frac{\partial^{2} \omega_{n}}{\partial x^{2}}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C, \tag{2.59}\\
& \left\|\frac{\partial \theta_{n}}{\partial x}(t)\right\|_{L^{2}(]-n, n[)}^{2}+\int_{0}^{t}\left\|\frac{\partial^{2} \theta_{n}}{\partial x^{2}}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C . \tag{2.60}
\end{align*}
$$

Proof. After multiplying (1.2) by $\partial^{2} v_{n} / \partial x^{2}$ and integrating by parts over] $n, n[$ and over $] 0, t$, in the same way as in [1, pp.53-54], we obtain (2.58). Multiplying (1.3) and (1.4) by $A^{-1} \rho_{n}^{-1} \partial^{2} \omega_{n} / \partial x^{2}$ and $\rho_{n}^{-1} \partial^{2} \theta_{n} / \partial x^{2}$, respectively, and integrating by parts over $]-n, n[$ and over $] 0, t[$, in the same way as in $[8$, Lemmas 2.7, 2.8] we get estimates (2.59) and (2.60).

Lemma 2.9. For $t \in] 0, T$,

$$
\begin{align*}
& \int_{0}^{t}\left\|\frac{\partial \rho_{n}}{\partial t}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C, \tag{2.61}\\
& \int_{0}^{t}\left\|\frac{\partial v_{n}}{\partial t}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C, \tag{2.62}\\
& \int_{0}^{t}\left\|\frac{\partial \omega_{n}}{\partial t}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C, \tag{2.63}\\
& \int_{0}^{t}\left\|\frac{\partial \theta_{n}}{\partial t}(\tau)\right\|_{L^{2}(]-n, n[)}^{2} d \tau \leq C . \tag{2.64}
\end{align*}
$$

Proof. We square equations (1.1) and (1.2), integrate over $]-n, n[$ and $] 0, t[$. Then in the same way as in [1, pp.53-54] we get (2.61) and (2.62). Also, squaring equations (1.3) and (1.4), integrating over $]-n, n[$ and $] 0, t[$ in the same way as in [8, Lemmas 2.7, 2.8] we obtain (2.63) and (2.64).

3. Proof of Theorem 1.1

Let us denote again by ρ_{n} and θ_{n} the extensions of ρ_{n} and θ_{n} by 1 from $Q_{n T}$ to Π and by v_{n} and ω_{n} the extensions of v_{n} and ω_{n} by zero outside of $Q_{n T}$.

We can find a function $\varphi \in \mathcal{D}(R)$ such that

$$
\varphi(x)=\left\{\begin{array}{l}
1 \text { if }|x| \leq 1 \tag{3.1}\\
0 \text { if }|x| \geq 2
\end{array}\right.
$$

and then we define φ_{n} by

$$
\begin{equation*}
\varphi_{n}(x)=\varphi\left(\frac{2 x}{n}\right), \quad n \in N . \tag{3.2}
\end{equation*}
$$

For v_{n} and ω_{n} we put

$$
\begin{equation*}
\bar{v}_{n}=v_{n} \varphi_{n}, \quad \bar{\omega}_{n}=\omega_{n} \varphi_{n} \tag{3.3}
\end{equation*}
$$

and for ρ_{n} and θ_{n} we introduce

$$
\begin{equation*}
\bar{\rho}_{n}=\left(\rho_{n}-1\right) \varphi_{n}+1, \quad \bar{\theta}_{n}=\left(\theta_{n}-1\right) \varphi_{n}+1 \tag{3.4}
\end{equation*}
$$

One can easily conclude that the function $\bar{S}_{n}=\left(\bar{\rho}_{n}, \bar{v}_{n}, \bar{\omega}_{n}, \bar{\theta}_{n}\right)$ satisfies system (1.1)-(1.4) a.e. in $]-\frac{n}{2}, \frac{n}{2}[\times] 0, T[$ and initial data (2.1), (2.2) and (2.4) a.e. in] $-\frac{n}{2}, \frac{n}{2}$ [. Using the properties of $\rho_{n}, v_{n}, \omega_{n}$ and θ_{n} from (3.2)-(3.4) we observe that

$$
\begin{equation*}
\bar{\rho}_{n 0}-1 \rightarrow \rho_{0}-1, \quad \bar{\theta}_{n 0}-1 \rightarrow \theta_{0}-1 \text { strongly in } L^{2}(R) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{v}_{n 0} \rightarrow v_{0}, \quad \bar{\omega}_{n 0} \rightarrow \omega_{0} \text { strongly in } L^{2}(R), \tag{3.6}
\end{equation*}
$$

where

$$
\begin{gather*}
\bar{\rho}_{n 0}=\bar{\rho}_{n}(x, 0), \bar{\theta}_{n 0}=\bar{\theta}_{n}(x, 0) \\
\bar{v}_{n 0}=\bar{v}_{n}(x, 0), \bar{\omega}_{n 0}=\bar{\omega}_{n}(x, 0), x \in \mathbb{R} \tag{3.7}
\end{gather*}
$$

In order to simplify a notation in what follows we write ρ_{n} instead $\bar{\rho}_{n}$, etc..
From Lemmas 2.5, 2.7 and 2.9 we conclude that

$$
\begin{equation*}
\left\{\rho_{n}-1\right\} \text { is bounded in } L^{\infty}\left(0, T ; H^{1}(R)\right) \text { and } H^{1}(\Pi) . \tag{3.8}
\end{equation*}
$$

Moreover, taking into account (2.31) and (2.46), from (3.4) we obtain that

$$
\begin{equation*}
\left\{\rho_{n}\right\} \text { is bounded in } L^{\infty}(\Pi) . \tag{3.9}
\end{equation*}
$$

By means of Lemmas 2.1, 2.4, 2.6, 2.8 and 2.9 from (3.3) and (3.4) we get that

$$
\begin{gather*}
\left\{v_{n}\right\},\left\{\omega_{n}\right\},\left\{\theta_{n}-1\right\} \text { are bounded in } L^{\infty}\left(0, T ; H^{1}(R)\right), H^{1}(\Pi) \tag{3.10}\\
\text { and } L^{2}\left(0, T ; H^{2}(R)\right) .
\end{gather*}
$$

Lemma 3.1. There exists a function

$$
\begin{equation*}
\rho-1 \in H^{1}(\Pi) \cap L^{\infty}\left(0, T ; H^{1}(R)\right) \tag{3.11}
\end{equation*}
$$

and a subsequence of $\left\{\rho_{n}-1\right\}$ (for simplicity denoted again as $\left\{\rho_{n}-1\right\}$) such that

$$
\begin{gather*}
\rho_{n}-1 \rightarrow \rho-1 \text { weakly } \text { in } L^{\infty}\left(0, T ; H^{1}(R)\right), \tag{3.12}\\
\rho_{n}-1 \rightarrow \rho-1 \text { weakly in } H^{1}(\Pi) . \tag{3.13}
\end{gather*}
$$

The function ρ belongs to $L^{\infty}(\Pi)$ and has the properties:

$$
\begin{gather*}
\rho(x, 0)=\rho_{0}(x) \text { a.e. in } \mathbb{R} \tag{3.14}\\
m_{1} \leq \rho \leq M_{1} \text { a.e. in } \Pi \tag{3.15}
\end{gather*}
$$

where $m_{1}, M_{1} \in \mathbb{R}^{+}$.
Proof. Since the sequence $\left\{\rho_{n}-1\right\}$ is bounded in $L^{\infty}\left(0, T ; H^{1}(R)\right)$ (dual of $L^{1}\left(0, T ; H^{-1}(R)\right)$), it is possible to extract a subsequence (denoted again as $\left\{\rho_{n}-1\right\}$) such that $\rho_{n}-1 \rightarrow \rho-1$ weakly * in $L^{\infty}\left(0, T ; H^{1}(R)\right)$ (see [4, pp.498-503]). It means that for $g \in L^{1}\left(0, T ; H^{-1}(R)\right),\left(g(t)=\left(g_{1}(t), g_{2}(t)\right) \in L^{2}(R) \times L^{2}(R)\right)$ we have

$$
\begin{equation*}
\int_{\Pi}\left(\rho_{n}-1\right) g_{1} d x d t+\int_{\Pi} \frac{\partial \rho_{n}}{\partial x} g_{2} d x d t \rightarrow \int_{\Pi}(\rho-1) g_{1} d x d t+\int_{\Pi} \frac{\partial \rho}{\partial x} g_{2} d x d t \tag{3.16}
\end{equation*}
$$

Specially, for all $\varphi \in \mathcal{D}(\Pi)$ from (3.16) we obtain

$$
\begin{align*}
\int_{\Pi}\left(\rho_{n}-1\right) \varphi d x d t & \rightarrow \int_{\Pi}(\rho-1) \varphi d x d t \tag{3.17}\\
\int_{\Pi} \frac{\partial \rho_{n}}{\partial x} \varphi d x d t & \rightarrow \int_{\Pi} \frac{\partial \rho}{\partial x} \varphi d x d t \tag{3.18}
\end{align*}
$$

Also, $\left\{\rho_{n}\right\}$ is bounded in $L^{\infty}(\Pi)$ and therefore there exists a subsequence (denoted by $\left\{\rho_{n}\right\}$) such that $\rho_{n} \rightarrow \rho$ weakly* in $L^{\infty}(\Pi)$. Specially, for all $\varphi \in \mathcal{D}(\Pi)$ we get

$$
\begin{equation*}
\int_{\Pi} \rho_{n}(x, t) \varphi(x, t) d x d t \rightarrow \int_{\Pi} \rho(x, t) \varphi(x, t) d x d t \tag{3.19}
\end{equation*}
$$

Because of (3.8) we can take a further subsequence of $\left\{\rho_{n}-1\right\}$ such that $\rho_{n}-1 \rightarrow$ $\rho-1$ weakly in $H^{1}(\Pi)$. From this convergence we find out that for $\varphi \in \mathcal{D}(\Pi)$, it holds

$$
\begin{equation*}
\int_{\Pi} \frac{\partial \rho_{n}}{\partial t}(x, t) \varphi(x, t) d x d t \rightarrow \int_{\Pi} \frac{\partial \rho}{\partial t}(x, t) \varphi(x, t) d x d t \tag{3.20}
\end{equation*}
$$

Statement (3.11) is a consequence of the above convergences.
Taking into account (2.31), (2.46), (3.1), (3.2), (3.4) and (3.19) we conclude that there exist $m_{1}, M_{1} \in \mathbb{R}^{+}$such that (3.15) holds. From the embedding theorem (see [4, p.473]) we observe that functions $\rho_{n}-1, \rho-1$ belong to $C\left([0, T] ; L^{2}(R)\right)$ being equipped with the norm of uniform convergence. Now we may speak of the traces $\rho_{n}(x, 0)-1$ and $\rho(x, 0)-1$.
Let $\psi \in C^{\infty}([0, T]), \psi(0) \neq 0$ and ψ vanishes in a neighbourhood of T. Applying Green's formula ([4, p.477]) we obtain

$$
\begin{array}{r}
\int_{0}^{T} \int_{R} \frac{\partial \rho_{n}}{\partial t}(x, t) u(x) \psi(t) d x d t+\int_{0}^{T} \int_{R}\left(\rho_{n}-1\right)(x, t) u(x) \frac{d \psi}{d t}(t) d x d t \\
=-\psi(0) \int_{R}\left(\rho_{n 0}-1\right) u(x) d x \\
\int_{0}^{T} \int_{R} \frac{\partial \rho}{\partial t}(x, t) u(x) \psi(t) d x d t+\int_{0}^{T} \int_{R}(\rho-1)(x, t) u(x) \frac{d \psi}{d t}(t) d x d t \\
=-\psi(0) \int_{R}(\rho(x, 0)-1) u(x) d x \tag{3.22}
\end{array}
$$

for all $u \in \mathcal{D}(R)$. Comparing (3.21) and (3.22) (when $n \rightarrow \infty$) and using (3.17), (3.20) and (3.5) we find that $\rho(x, 0)=\rho_{0}(x)$ in the sense of distributions in \mathbb{R}.

Lemma 3.2. There exist functions

$$
\begin{equation*}
v, \omega, \theta-1 \in L^{\infty}\left(0, T ; H^{1}(R)\right) \cap H^{1}(\Pi) \cap L^{2}\left(0, T ; H^{2}(R)\right) \tag{3.23}
\end{equation*}
$$

and a subsequence of $\left\{v_{n}, \omega_{n}, \theta_{n}-1\right\}$ (denoted again as $\left\{v_{n}, \omega_{n}, \theta_{n}-1\right\}$) such that

$$
\begin{gather*}
\left\{v_{n}, \omega_{n}, \theta_{n}-1\right\} \rightarrow\{v, \omega, \theta-1\} \text { weakly }^{*} \text { in }\left(L^{\infty}\left(0, T ; H^{1}(R)\right)^{3}\right. \tag{3.24}\\
\left\{v_{n}, \omega_{n}, \theta_{n}-1\right\} \rightarrow\{v, \omega, \theta-1\} \text { weakly in }\left(H^{1}(R)\right)^{3} \tag{3.25}\\
\left\{v_{n}, \omega_{n}, \theta_{n}-1\right\} \rightarrow\{v, \omega, \theta-1\} \text { weakly in }\left(L^{2}\left(0, T ; H^{2}(R)\right)^{3} .\right. \tag{3.26}
\end{gather*}
$$

Functions v, ω and θ have the properties:

$$
\begin{equation*}
v(x, 0)=v_{0}(x), \omega(x, 0)=\omega_{0}(x), \theta(x, 0)=\theta_{0}(x) \text { a.e. in } \mathbf{R} . \tag{3.27}
\end{equation*}
$$

Proof. Conclusions (3.23)-(3.26) follow immediately from (3.10). From the weak convergences we conclude that for $\varphi \in \mathcal{D}(\Pi)$, it follows

$$
\begin{align*}
\int_{\Pi} v_{n}(x, t) \varphi(x, t) d x d t & \rightarrow \int_{\Pi} v(x, t) \varphi(x, t) d x d t \tag{3.28}\\
\int_{\Pi} \frac{\partial v_{n}}{\partial x}(x, t) \varphi(x, t) d x d t & \rightarrow \int_{\Pi} \frac{\partial v}{\partial x}(x, t) \varphi(x, t) d x d t \tag{3.29}\\
\int_{\Pi} \frac{\partial v_{n}}{\partial t}(x, t) \varphi(x, t) d x d t & \rightarrow \int_{\Pi} \frac{\partial v}{\partial t}(x, t) \varphi(x, t) d x d t \tag{3.30}\\
\int_{\Pi} \frac{\partial^{2} v_{n}}{\partial^{2} x}(x, t) \varphi(x, t) d x d t & \rightarrow \int_{\Pi} \frac{\partial^{2} v}{\partial^{2} x}(x, t) \varphi(x, t) d x d t \tag{3.31}
\end{align*}
$$

(when $n \rightarrow \infty$), which is true for $\left\{\omega_{n}\right\}$ and $\left\{\theta_{n}-1\right\}$ also. By means of Green's formula we get properties (3.27) in the same way as (3.14).

Lemma 3.3. Functions ρ, v, ω and θ, defined by Lemma 3.1 and Lemma 3.2 satisfy equations (1.1)-(1.4) a.e. in Π.

Proof. Let $\left\{S_{n}=\left(\rho_{n}, v_{n}, \omega_{n}, \theta_{n}\right): n \in \mathbf{N}\right\}$ be the subsequence defined by Lemmas 3.1 and 3.2. By means of (3.9) and (3.15) we obtain the inequalities

$$
\begin{align*}
\left|\int_{\Pi}\left(\rho_{n}^{2} \frac{\partial v_{n}}{\partial x}-\rho^{2} \frac{\partial v}{\partial x}\right) \varphi d x d t\right| \leq & \left|\int_{\Pi} \rho_{n}^{2}\left(\frac{\partial v_{n}}{\partial x}-\frac{\partial v}{\partial x}\right) \varphi d x d t\right| \\
& +\left|\int_{\Pi} \frac{\partial v}{\partial x}\left(\rho_{n}-\rho\right)\left(\rho_{n}+\rho\right) \varphi d x d t\right| \\
\leq & C\left|\int_{\Pi}\left(\frac{\partial v_{n}}{\partial x}-\frac{\partial v}{\partial x}\right) \varphi d x d t\right| \\
& +C\left|\int_{\Pi} \frac{\partial v}{\partial x}\left(\rho_{n}-\rho\right) \varphi d x d t\right| \tag{3.32}
\end{align*}
$$

for all $\varphi \in \mathcal{D}(\Pi)$ and after integrating by parts we get

$$
\begin{align*}
\left|\int_{\Pi}\left(\rho_{n}^{2} \frac{\partial v_{n}}{\partial x}-\rho^{2} \frac{\partial v}{\partial x}\right) \varphi d x d t\right| \leq & C\left|\int_{\Pi}\left(\frac{\partial v_{n}}{\partial x}-\frac{\partial v}{\partial x}\right) \varphi d x d t\right| \\
& +C\left|\int_{\Pi} v\left(\frac{\partial \rho_{n}}{\partial x}-\frac{\partial \rho}{\partial x}\right) \varphi d x d t\right| \\
& +C\left|\int_{\Pi} v\left(\rho_{n}-\rho\right) \frac{\partial \varphi}{\partial x} d x d t\right| \tag{3.33}
\end{align*}
$$

Taking into account (3.29), (3.19), (3.18) and (1.18), we conclude that for all $\varphi \in$ $\mathcal{D}(\Pi)$, from (3.33) it follows

$$
\begin{equation*}
\int_{\Pi} \rho_{n}^{2} \frac{\partial v_{n}}{\partial x} \varphi d x d t \rightarrow \int_{\Pi} \rho^{2} \frac{\partial v}{\partial x} \varphi d x d t \tag{3.34}
\end{equation*}
$$

For $\varphi \in \mathcal{D}(\Pi)$ there exists $n_{0} \in \mathbf{N}$ such that for all $n \geq n_{0}$ functions ρ_{n} and v_{n} satisfy (1.1) in the sense of distributions in Π and therefore we have

$$
\begin{equation*}
\int_{\Pi}\left(\frac{\partial \rho_{n}}{\partial t}+\rho_{n}^{2} \frac{\partial v_{n}}{\partial x}\right) \varphi d x d t=0 \tag{3.35}
\end{equation*}
$$

Applying (3.20) and (3.34), from (3.35) we get

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\rho^{2} \frac{\partial v}{\partial x}=0 \text { a.e in } \Pi . \tag{3.36}
\end{equation*}
$$

In the same way one can prove that equations (1.2), (1.3) and (1.4) are satisfied.

References

[1] S. N. Antontsev, A. V. Kazhykhov, V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, 1990.
[2] H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983.
[3] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Techonology, Vol.2, Springer-Verlag, Berlin, 1988.
[4] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Techonology, Vol.5, Springer-Verlag, Berlin, 1992.
[5] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol.1, Springer-Verlag, Berlin, 1972.
[6] G. Lukaszewicz, Micropolar Fluids: Theory and Applications, Birkhäuser, Boston, 1999.
[7] N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem, Glasnik Matematički 33(53)(1998), 71-91.
[8] N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem, Glasnik Matematički 33(53) (1998), 199-208.

[^0]: *Department of Mathematics, Faculty of Philosophy, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia, e-mail: mujakovic@inet.hr

