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One-dimensional flow of a compressible viscous

micropolar fluid: The Cauchy problem

Nermina Mujaković∗

Abstract. The Cauchy problem for one-dimensional flow of a
compressible viscous heat-conducting micropolar fluid is considered. It
is assumed that the fluid is thermodynamically perfect and polytropic. A
corresponding initial-boundary value problem has a unique strong solu-
tion on ]0, 1[×]0, T [, for each T > 0. By using this result we construct a
sequence of approximate solutions which converges to a solution of the
Cauchy problem.
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1. Statement of the problem and the main result

In this paper we consider nonstationary 1-D flow of a compressible and heat-
conducting micropolar fluid. The equations of motion for this fluid are derived
from the integral form of conservation laws for polar fluids, under a number of sup-
plementary assumptions such as politropy, Fourier’s law, Boyle’s law and selection
of constitutive equations (see [7]). A corresponding initial-boundary value problem
has a unique strong solution on ]0, 1[×]0, T [, for each T > 0 ([8]). By using this
result we prove a global-in-time existence theorem for the Cauchy problem. In our
proof we follow some ideas of S.N.Antontsev, A.V.Kazhykhov and V.N.Monakhov,
applied to the case of a classical fluid ([1]).

Let ρ, v, ω and θ denote, respectively, the mass density, velocity, microrotation
velocity and temperature of the fluid in the Lagrangean description. Governing
equations of the flow under consideration are as follows ([7]):

∂ρ

∂t
+ ρ2 ∂v

∂x
= 0 , (1.1)

∂v

∂t
=

∂

∂x

(
ρ
∂v

∂x

)
−K

∂

∂x
(ρθ) , (1.2)
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ρ
∂ω

∂t
= A

[
ρ
∂

∂x

(
ρ
∂ω

∂x

)
− ω

]
, (1.3)

ρ
∂θ

∂t
= −Kρ2θ

∂v

∂x
+ ρ2

(
∂v

∂x

)2

+ ρ2

(
∂ω

∂x

)2

+ ω2 +Dρ
∂

∂x

(
ρ
∂θ

∂x

)
(1.4)

in R × R
+, where K,A and D are positive constants. Equations (1.1)-(1.4) are,

respectively, local forms of the conservation laws for the mass, momentum, momen-
tum moment and energy. We take the following non-homogeneous initial conditions
:

ρ(x, 0) = ρ0(x) , (1.5)

v(x, 0) = v0(x) , (1.6)

ω(x, 0) = ω0(x) , (1.7)

θ(x, 0) = θ0(x) (1.8)

for x ∈ R, where ρ0, v0, ω0 and θ0 are given functions. We assume that there exist
m,M ∈ R

+, such that

0 < m ≤ ρ0(x) ≤ M, m ≤ θ0(x) ≤ M, x ∈ R . (1.9)

The aim of this paper is to prove the following theorem.

Theorem 1.1. Let the initial functions satisfy conditions (1.9) and

ρ0 − 1, v0, ω0, θ0 − 1 ∈ H1(R). (1.10)

Then for each T ∈ R
+ there exists a state function

S(x, t) = (ρ, v, ω, θ)(x, t) (x, t) ∈ Π = R×]0, T [ , (1.11)

with the properties:

ρ− 1 ∈ L∞(0, T ;H1(R)) ∩H1(Π) , (1.12)

v, ω, θ − 1 ∈ L∞(0, T ;H1(R)) ∩H1(Π) ∩ L2(0, T ;H2(R)) (1.13)

which satisfies equations (1.1)-(1.4) in the sense of distributions in Π and conditions
(1.5)-(1.8) in the sense of traces.

We denote by Bk(R), k ∈ N0, the Banach space

Bk(R) = {u ∈ Ck(R) : lim
|x|→∞

|Dnu(x)| = 0, 0 ≤ n ≤ k}, (1.14)

where Dn is the n-th derivative; the norm is defined by

‖u‖Bk(R) = sup
n≤k

{sup
x∈R

|Dnu(x)|}. (1.15)
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Remark 1.1. From Sobolev’s embedding theorem ([3, Chapter IV ])and theory
of vector-valued distributions ([4, pp. 467-480 ]) one can conclude that from (1.12)
and (1.13) it follows:

ρ− 1 ∈ L∞(0, T ;B0(R)) ∩ C([0, T ];L2(R)), (1.16)

v, ω, θ − 1 ∈ L2(0, T ;B1(R)) ∩ C([0, T ];H1(R)) ∩ L∞(0, T ;B0(R)) (1.17)

and hence
v, ω ∈ C([0, T ];B0(R)), ρ, θ ∈ L∞(Π). (1.18)

The state function S and its distributional derivatives that occur in (1.1)-(1.4)
are locally integrable functions in Π and system (1.1)-(1.4) is satisfied a. e. in Π.
In other words, state function (1.11) is a strong solution of our system (1.1)-(1.4).

In the proof of Theorem 1.1 we construct a sequence of approximations Sn =
(ρn, vn, ωn, θn)n∈N of the state function in Π ; we establish some estimates of ap-
proximations Sn which show that {Sn}n∈N belongs to a fixed ball (i.e. independent
of n ) of a certain normed space. Using the results of weak compactness of a unit
ball in a Hilbert space (resp. a Banach space or resp. the dual of a normed space)
from {Sn}n∈N we extract a subsequence which has limit in the some weak sense.
Finally, we show that this limit is the solution of our problem.

2. Approximate solutions and a priori estimates

First we introduce the restrictions of the initial functions ρ0 and θ0 to ]−n, n[. For
n ∈ N let

ρ0n = ρ0 on ]− n, n[, (2.1)

θ0n = θ0 on ]− n, n[. (2.2)

We can easily verify that

ρ0n , θ0n ∈ H1(]− n, n[). (2.3)

Since D(R) is dense in H1(R), there exist the sequences {v0n} and {ω0n} of ap-
proximations of the initial functions v0 and ω0 with the following properties:

(i) v0n, ω0n ∈ H1
0 (]− n, n[), v0n = 0, ω0n = 0 on R\]− n, n[, (2.4)

(ii) v0n → v0, ω0n → ω0 strongly in H1(R). (2.5)

Let us consider equations (1.1) - (1.4) on ] − n, n[×R
+, with the boundary

conditions
v(−n, t) = v(n, t) = 0, ω(−n, t) = ω(n, t) = 0, (2.6)

∂θ

∂x
(−n, t) = ∂θ

∂x
(n, t) = 0 (2.7)
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for t > 0 and with (ρ0n, v0n, ω0n, θ0n) as the initial data on ] − n, n[. Functions
ρ0n, v0n, ω0n and θ0n satisfy the conditions taken for the initial functions in The-
orem 1.1 of [8] and we conclude that, for each n ∈ N and T > 0, problem (1.1)-
(1.4), (2.6)-(2.7) has a unique strong solution

Sn(x, t) = (ρn, vn, ωn, θn)(x, t) , (x, t) ∈ QnT =]− n, n[×]0, T [ (2.8)

with the properties:

ρn ∈ L∞(0, T ;H1(]− n, n[)) ∩H1(QnT ) , (2.9)

vn, ωn, θn ∈ L∞(0, T ;H1(]− n, n[)) ∩H1(QnT )
∩L2(0, T ;H2(]− n, n[)) , (2.10)

ρn > 0 , θn > 0 on Q̄nT , (2.11)

that in [7] and [8] is named a generalised solution. From embedding theorem ([6,
Chapter II, Theorem 2.2.1]), theories of vector-valued distributions and interpola-
tions ([4, pp. 467-480 ]) we observe that from (2.9) and (2.10) it follows:

ρn ∈ L∞(0, T ;C([−n, n])) ∩ C([0, T ];L2(]− n, n[), (2.12)

vn, ωn, θn ∈ L2(0, T ;C1([−n, n])) ∩C([0, T ];H1(]− n, n[)), (2.13)

vn, ωn, θn ∈ C(Q̄nT ). (2.14)

From the properties of the function ρn (see [1, pp. 44-45]) we get

ρn ∈ C(Q̄nT ). (2.15)

Next we prove uniform (in n ∈ N) a priori estimates for Sn in QnT . By C ∈ R
+

we denote a generic constant, independent of n ∈ N.
We introduce non-negative functions Un and Vn defined on ]0, T [ by

Un(t) =
∫ n

−n

[
1
2K

v2
n +

1
2AK

ω2
n +

1
ρn

(ρn ln ρn − ρn + 1)

+
1
K
(θn − ln θn − 1)

]
dx, (2.16)

Vn(t) =
1
K

∫ n

−n

[
ρn
θn

(
∂vn
∂x

)2

+
ρn
θn

(
∂ωn
∂x

)2

+
ω2
n

ρnθn

+ D
ρn
θ2
n

(
∂θn
∂x

)2
]
dx. (2.17)

Using the inequality lnx ≤ x− 1 for Un(0) we have

Un(0) ≤
∫
R

[
1
2K

v2
0n +

1
2AK

ω2
0n +

(ρ0 − 1)2

ρ0
+

1
K

(θ0 − 1)2

θ0

]
dx (2.18)
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and taking into account (1.9), (1.10) and (2.5) we immediately get

Un(0) ≤ C. (2.19)

Now, multiply (1.1), (1.2), (1.3) and (1.4) by ρ−1(1 − ρ−1), K−1v , A−1K−1ωρ−1

and K−1(1 − θ−1)ρ−1, respectively, and integrate over ] − n, n[ and over ]0, t[, t ∈
]0, T [. After addition of the obtained equations we find that

Un(t) +
∫ t

0

Vn(τ)dτ = Un(0) ≤ C. (2.20)

Lemma 2.1. For t ∈]0, T [,
‖vn(t)‖L2(]−n,n[) ≤ C , (2.21)

‖ωn(t)‖L2(]−n,n[) ≤ C . (2.22)

Proof. These estimates follow from (2.20) and the inequalities

1
2K

‖vn(t)‖2
L2(]−n,n[) ≤ Un(t),

1
2AK

‖ωn(t)‖2
L2(]−n,n[) ≤ Un(t). (2.23)

✷

Like in [1, pp. 68-75 ] we can conclude that for each subset ]m,m + 1[ , m ∈
{−n,−n + 1, ..., n − 1}, of ] − n, n[ there exists am(t) ∈]m,m + 1[ such that the
restriction of ρn to Q′

mT =]m,m+ 1[×]0, T [ has the form

ρn(x, t) =
ρ0n(x)Ynm(t)Bnm(x, t)

1 +Kρ0n(x)
∫ t
0 Ynm(τ)Bnm(x, τ)θn(x, τ)dτ

, (2.24)

where

Ynm(t) =
1

ρ0n(am(t))
exp

{
K

∫ t

0

ρn(am(t), τ)θn(am(t), τ)dτ
}

, (2.25)

Bnm(x, t) = ρn(am(t), t)exp

{∫ x

am(t)

[v0n(ξ)− vn(ξ, t)]dξ

}
. (2.26)

Also, there exist constants Ci(i = 1, .., 5) (independent of m and n) such that the
estimates

C1 ≤
∫ m+1

m

θn(x, t)dx ≤ C2 , (2.27)

C−1
3 ≤ Bnm(x, t) ≤ C3 , C4 ≤ Ynm(t) ≤ C5 (2.28)

are satisfied for t ∈]0, T [ and (x, t) ∈ Q′
mT .

Because of (2.14) and (2.15) there exist positive functions

mρn(t) = inf
x∈]−n,n[

ρn(x, t) , mθn(t) = inf
x∈]−n,n[

θn(x, t), (2.29)



6 N.Mujaković

Mρn(t) = sup
x∈]−n,n[

ρn(x, t) , Mθn(t) = sup
x∈]−n,n[

θn(x, t) (2.30)

defined on ]0, T [ and we have the following results.
Lemma 2.2. For t ∈]0, T [,

Mρn(t) ≤ C , (2.31)

mρn(t) ≥ C

(
1 +

∫ t

0

Mθn(τ)dτ
)−1

. (2.32)

Proof. Using (1.9), (2.11), (2.29), (2.30) and estimates (2.28) from (2.24) we
get (2.31) and (2.32). ✷

We define non-negative functions I1n and I2n in ]0, T [ by

I1n(t) =
∫ n

−n
ρn(x, t)

(
∂θn
∂x

(x, t)
)2

dx , (2.33)

I2n(t) =
∫ t

0

I1n(τ)dτ . (2.34)

Obviously, I1n and I2n belong to L1(]0, T [).
Lemma 2.3. For ε > 0 sufficiently small, there exists a constant Cε ∈ R

+ such
that, for t ∈]0, T [, the inequality

M2
θn
(t) ≤ εI1n(t) + Cε(1 + I2n(t)) (2.35)

holds true.
Proof. We introduce the function ψnm on Q′

mT by

ψnm(x, t) = θn(x, t) −
∫ m+1

m

θn(x, t)dx . (2.36)

There exists xm(t) ∈]m,m + 1[ such that ψnm(xm(t), t) = 0. By means of the
Hölder inequality we find that

|ψnm(x, t)| 32 ≤
∫ x

xm(t)

∂

∂ξ
|ψnm(ξ, t)| 32 dξ ≤

3
2
(
∫ m+1

m

ρ−1
n (ξ, t)|ψnm(ξ, t)|dξ) 1

2 (
∫ m+1

m

ρn(ξ, t)(
∂ψnm
∂ξ

(ξ, t))2dξ)
1
2 . (2.37)

Because of (2.27) we have
∫m+1

m
|ψnm(ξ, t)|dξ ≤ C (independently of m and n).

Taking into account (2.32), (2.27), (2.33) and ∂ψnm

∂ξ (ξ, t) = ∂θn

∂ξ (ξ, t) from (2.37) we
obtain

M2
θn
(t) ≤ C

[(
1 +

∫ t

0

Mθn(τ)dτ
) 2

3

(I1n(t))
2
3 + 1

]
, t ∈]0, T [. (2.38)
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Applying the Young inequality with parameter ε > 0, from (2.38) it follows

M2
θn
(t) ≤ εI1n(t) + Cε

(
1 +

∫ t

0

M2
θn
(τ)dτ

)
(2.39)

and by means of the Gronwall’s inequality ([1, p.25]) we get (2.35). ✷

Now, we introduce the function

Φn =
1
2
v2
n +

1
2A

ω2
n + (θn − 1) on QnT . (2.40)

Multiply equations (1.2), (1.3) and (1.4) by vnΦn, A−1ρ−1
n ωnΦn and ρ−1

n Φn, re-
spectively, and integrate over ] − n, n[ using (2.6) and (2.7). After addition of the
obtained equations, we have

1
2
d

dt

∫ n

−n
Φ2
ndx+

∫ n

−n
ρn

(
∂Φn
∂x

)2

+ (1 −A−1)
∫ n

−n
ρn

∂ωn
∂x

ωn
∂Φn
∂x

dx

+(D − 1)
∫ n

−n
ρn

∂θn
∂x

∂Φn
∂x

dx−K

∫ n

−n
ρnθnvn

∂Φn
∂x

dx = 0 (2.41)

on ]0, T [. Taking into account (2.21), (2.31) and (2.35), in the same way as in [8,
Lemma 2.4 ], we conclude that the inequality

d

dt

(∫ n

−n
(Φ2

n + C1v
4
n + C2ω

4
n)dx+DI2n

)

≤ C(1 +
∫ n

−n
(Φ2

n + C1v
4
n + C2ω

4
n)dx+DI2n) (2.42)

holds true. Using the embedding H1(R) ⊂ B0(R), (2.2), (1.10) and (2.5) we obtain
that ‖Φn(0)‖2

L2(]−n,n[) ≤ C and after integration (2.42) over ]0, t[, t ∈]0, T [, we
find that ∫ n

−n
(Φ2

n + C1v
4
n + C2ω

4
n)dx +DI2n ≤ C on ]0T [. (2.43)

Lemma 2.4. For t ∈]0, T [,

‖(θn − 1)(t)‖L2(]−n,n[) ≤ C , (2.44)

∫ t

0

M2
θn
(τ)dτ ≤ C , (2.45)

mρn(t) ≥ C , (2.46)∫ t

0

∥∥∥∥∂θn∂x
(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C . (2.47)

Proof. Estimate (2.44) follows from (2.43) and the inequality ‖θn−1‖2
L2(]−n,n[) ≤∫ n

−nΦ
2
ndx. Integrating (2.35) over ]0, t[ and taking into account (2.33), (2.34) and
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(2.43) we get (2.45). From (2.32) and (2.45) we obtain (2.46). At last, using (2.46)
and the estimate for I2n from (2.43) we conclude that (2.47) holds. ✷

Differentiating equality (2.24) with respect to x we get

∂ρn
∂x

= ρnϕn − ρ2
nY

−1
nmB−1

nm

[
d

dx
(
1
ρ0n

) +K

∫ t

0

BnmYnm(
∂θn
∂x

+ θnϕn)dτ
]
,(2.48)

where ϕn(x, t) = v0n(x)−vn(x, t). Using (1.9), (1.10), (2.28) and (2.31) from (2.48)
we obtain∥∥∥∥∂ρn∂x

(t)
∥∥∥∥

2

L2(]−n,n[)

≤ C
(
‖v0n‖2

L2(]−n,n[) + ‖vn(t)‖2
L2(]−n,n[)

)

+C

[
1 +

∫ t

0

∥∥∥∥∂θn∂x
(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ +
∫ t

0

M2
θn
(τ)
(
‖v0n‖2

L2(]−n,n[)

+ ‖vn(τ)‖2
L2(]−n,n[)

)
dτ
]
, t ∈]0, T [. (2.49)

Lemma 2.5. For t ∈]0, T [,∥∥∥∥∂ρn∂x
(t)
∥∥∥∥
L2(]−n,n[)

≤ C. (2.50)

Proof. By means of estimates (2.21), (2.45), (2.47) and (2.5) the result follows
directly from (2.49). ✷

Multiplying (1.2) and (1.3) by vn and ρ−1
n ωn, respectively, integrating over ]−

n, n[ and using (2.21) and (2.50) in the first equation, we find that

1
2
d

dt

∫ n

−n
v2
ndx+

∫ n

−n
ρn

(
∂vn
∂x

)2

dx ≤ KMθn

∥∥∥∥∂ρn∂x

∥∥∥∥
L2(]−n,n[)

‖vn‖L2(]−n,n[)

+C
∥∥∥∥∂θn∂x

∥∥∥∥
L2(]−n,n[)

‖vn‖L2(]−n,n[) ≤ C

(
Mθn +

∥∥∥∥∂θn∂x

∥∥∥∥
L2(]−n,n[)

)
, (2.51)

1
2
d

dt

∫ n

−n
ω2
ndx+A

∫ n

−n
ρn

(
∂ωn
∂x

)2

dx+A

∫ n

−n

ω2
n

ρn
dx = 0 on ]0, T [. (2.52)

Lemma 2.6. For t ∈]0, T [,
∫ t

0

∥∥∥∥∂vn∂x
(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C, (2.53)

∫ t

0

∥∥∥∥∂ωn∂x
(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C. (2.54)

Proof. Integrating (2.51) and (2.52) over ]0, t[, t ∈]0, T [, and applying (2.45)-
(2.47), (2.5) and (2.31) we get (2.53) and (2.54). ✷
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Now, we write equation (1.1) in the form

∂

∂t

(
1
ρn

)
=

∂vn
∂x

. (2.55)

Integrating over ]0, t[, t ∈]0, T [ , squaring and integrating again over ] − n, n[, we
obtain the inequality∫ n

−n

(
1− ρn
ρn

)2

≤ C

[∫ n

−n

(
1− ρ0n

ρ0n

)2

dx+
∫ t

0

∫ n

−n

(
∂vn
∂x

)2

dxdτ

]
. (2.56)

Lemma 2.7. For t ∈]0, T [,
‖(ρn − 1)(t)‖2

L2(]−n,n[) ≤ C. (2.57)

Proof. Using (1.9), (1.10), (2.31) and (2.53), from (2.56) we easily get (2.57). ✷

Lemma 2.8. For t ∈]0, T [,∥∥∥∥∂vn∂x
(t)
∥∥∥∥

2

L2(]−n,n[)

+
∫ t

0

∥∥∥∥∂2vn
∂x2

(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C, (2.58)

∥∥∥∥∂ωn∂x
(t)
∥∥∥∥

2

L2(]−n,n[)

+
∫ t

0

∥∥∥∥∂2ωn
∂x2

(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C, (2.59)

∥∥∥∥∂θn∂x
(t)
∥∥∥∥

2

L2(]−n,n[)

+
∫ t

0

∥∥∥∥∂2θn
∂x2

(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C. (2.60)

Proof. After multiplying (1.2) by ∂2vn/∂x
2 and integrating by parts over ]−n, n[

and over ]0, t[, in the same way as in [1, pp.53-54], we obtain (2.58). Multiplying
(1.3) and (1.4) by A−1ρ−1

n ∂2ωn/∂x
2 and ρ−1

n ∂2θn/∂x
2, respectively, and integrating

by parts over ]− n, n[ and over ]0, t[ , in the same way as in [8, Lemmas 2.7, 2.8 ]
we get estimates (2.59) and (2.60). ✷

Lemma 2.9. For t ∈]0, T [,∫ t

0

∥∥∥∥∂ρn∂t (τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C, (2.61)

∫ t

0

∥∥∥∥∂vn∂t (τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C, (2.62)

∫ t

0

∥∥∥∥∂ωn∂t
(τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C, (2.63)

∫ t

0

∥∥∥∥∂θn∂t (τ)
∥∥∥∥

2

L2(]−n,n[)

dτ ≤ C. (2.64)

Proof. We square equations (1.1) and (1.2), integrate over ] − n, n[ and ]0, t[.
Then in the same way as in [1, pp.53-54] we get (2.61) and (2.62). Also, squaring
equations (1.3) and (1.4), integrating over ]− n, n[ and ]0, t[ in the same way as in
[8, Lemmas 2.7, 2.8 ] we obtain (2.63) and (2.64). ✷
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3. Proof of Theorem 1.1

Let us denote again by ρn and θn the extensions of ρn and θn by 1 from QnT to Π
and by vn and ωn the extensions of vn and ωn by zero outside of QnT .

We can find a function ϕ ∈ D(R) such that

ϕ(x) =
{
1 if |x| ≤ 1
0 if |x| ≥ 2 (3.1)

and then we define ϕn by

ϕn(x) = ϕ(
2x
n
), n ∈ N. (3.2)

For vn and ωn we put
v̄n = vnϕn, ω̄n = ωnϕn (3.3)

and for ρn and θn we introduce

ρ̄n = (ρn − 1)ϕn + 1, θ̄n = (θn − 1)ϕn + 1. (3.4)

One can easily conclude that the function S̄n = (ρ̄n, v̄n, ω̄n, θ̄n) satisfies system
(1.1)-(1.4) a.e. in ] − n

2 ,
n
2 [×]0, T [ and initial data (2.1), (2.2) and (2.4) a.e. in

]− n
2 ,

n
2 [. Using the properties of ρn, vn, ωn and θn from (3.2)-(3.4) we observe that

ρ̄n0 − 1 → ρ0 − 1, θ̄n0 − 1 → θ0 − 1 strongly in L2(R) (3.5)

and
v̄n0 → v0, ω̄n0 → ω0 strongly in L2(R), (3.6)

where
ρ̄n0 = ρ̄n(x, 0), θ̄n0 = θ̄n(x, 0),

v̄n0 = v̄n(x, 0), ω̄n0 = ω̄n(x, 0), x ∈ R. (3.7)

In order to simplify a notation in what follows we write ρn instead ρ̄n, etc..
From Lemmas 2.5, 2.7 and 2.9 we conclude that

{ρn − 1} is bounded in L∞(0, T ;H1(R)) and H1(Π). (3.8)

Moreover, taking into account (2.31) and (2.46), from (3.4) we obtain that

{ρn} is bounded in L∞(Π) . (3.9)

By means of Lemmas 2.1, 2.4, 2.6, 2.8 and 2.9 from (3.3) and (3.4) we get that

{vn}, {ωn}, {θn − 1} are bounded in L∞(0, T ;H1(R)), H1(Π) (3.10)

and L2(0, T ;H2(R)) .

Lemma 3.1. There exists a function

ρ− 1 ∈ H1(Π) ∩ L∞(0, T ;H1(R)) (3.11)
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and a subsequence of {ρn − 1} (for simplicity denoted again as {ρn − 1}) such that

ρn − 1 → ρ− 1 weakly∗ in L∞(0, T ;H1(R)), (3.12)

ρn − 1 → ρ− 1 weakly in H1(Π). (3.13)

The function ρ belongs to L∞(Π) and has the properties:

ρ(x, 0) = ρ0(x) a.e. in R, (3.14)

m1 ≤ ρ ≤ M1 a.e. in Π, (3.15)

where m1,M1 ∈ R
+.

Proof. Since the sequence {ρn − 1} is bounded in L∞(0, T ;H1(R)) (dual of
L1(0, T ;H−1(R))), it is possible to extract a subsequence (denoted again as {ρn−1})
such that ρn−1 → ρ−1 weakly∗ in L∞(0, T ;H1(R)) (see [4, pp.498-503]). It means
that for g ∈ L1(0, T ;H−1(R)), (g(t) = (g1(t), g2(t)) ∈ L2(R)× L2(R)) we have∫

Π

(ρn − 1)g1dxdt+
∫

Π

∂ρn
∂x

g2dxdt →
∫

Π

(ρ− 1)g1dxdt +
∫

Π

∂ρ

∂x
g2dxdt . (3.16)

Specially, for all ϕ ∈ D(Π) from (3.16) we obtain∫
Π

(ρn − 1)ϕdxdt →
∫

Π

(ρ− 1)ϕdxdt , (3.17)

∫
Π

∂ρn
∂x

ϕdxdt →
∫

Π

∂ρ

∂x
ϕdxdt . (3.18)

Also, {ρn} is bounded in L∞(Π) and therefore there exists a subsequence (denoted
by {ρn}) such that ρn → ρ weakly∗ in L∞(Π). Specially, for all ϕ ∈ D(Π) we get∫

Π

ρn(x, t)ϕ(x, t)dxdt →
∫

Π

ρ(x, t)ϕ(x, t)dxdt . (3.19)

Because of (3.8) we can take a further subsequence of {ρn − 1} such that ρn − 1 →
ρ − 1 weakly in H1(Π). From this convergence we find out that for ϕ ∈ D(Π), it
holds ∫

Π

∂ρn
∂t

(x, t)ϕ(x, t)dxdt →
∫

Π

∂ρ

∂t
(x, t)ϕ(x, t)dxdt . (3.20)

Statement (3.11) is a consequence of the above convergences.
Taking into account (2.31), (2.46), (3.1), (3.2), (3.4) and (3.19) we conclude that

there exist m1,M1 ∈ R
+ such that (3.15) holds. From the embedding theorem (see

[4, p.473]) we observe that functions ρn − 1, ρ− 1 belong to C([0, T ];L2(R)) being
equipped with the norm of uniform convergence. Now we may speak of the traces
ρn(x, 0)− 1 and ρ(x, 0)− 1.
Let ψ ∈ C∞([0, T ]), ψ(0) �= 0 and ψ vanishes in a neighbourhood of T . Applying
Green’s formula ([4, p.477]) we obtain
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∫ T

0

∫
R

∂ρn
∂t

(x, t)u(x)ψ(t)dxdt +
∫ T

0

∫
R

(ρn − 1)(x, t)u(x)
dψ

dt
(t)dxdt

= −ψ(0)
∫
R

(ρn0 − 1)u(x)dx , (3.21)

∫ T

0

∫
R

∂ρ

∂t
(x, t)u(x)ψ(t)dxdt +

∫ T

0

∫
R

(ρ− 1)(x, t)u(x)
dψ

dt
(t)dxdt

= −ψ(0)
∫
R

(ρ(x, 0)− 1)u(x)dx , (3.22)

for all u ∈ D(R). Comparing (3.21) and (3.22) (when n → ∞) and using (3.17),
(3.20) and (3.5) we find that ρ(x, 0) = ρ0(x) in the sense of distributions in R. ✷

Lemma 3.2. There exist functions

v, ω, θ − 1 ∈ L∞(0, T ;H1(R)) ∩H1(Π) ∩ L2(0, T ;H2(R)) (3.23)

and a subsequence of {vn, ωn, θn − 1} (denoted again as {vn, ωn, θn − 1}) such that

{vn, ωn, θn − 1} → {v, ω, θ − 1} weakly ∗ in (L∞(0, T ;H1(R))3, (3.24)

{vn, ωn, θn − 1} → {v, ω, θ − 1} weakly in (H1(R))3 , (3.25)

{vn, ωn, θn − 1} → {v, ω, θ − 1} weakly in (L2(0, T ;H2(R))3. (3.26)

Functions v, ω and θ have the properties:

v(x, 0) = v0(x) , ω(x, 0) = ω0(x) , θ(x, 0) = θ0(x) a.e. in R. (3.27)

Proof. Conclusions (3.23)-(3.26) follow immediately from (3.10). From the
weak convergences we conclude that for ϕ ∈ D(Π), it follows∫

Π

vn(x, t)ϕ(x, t)dxdt →
∫

Π

v(x, t)ϕ(x, t)dxdt, (3.28)

∫
Π

∂vn
∂x

(x, t)ϕ(x, t)dxdt →
∫

Π

∂v

∂x
(x, t)ϕ(x, t)dxdt, (3.29)

∫
Π

∂vn
∂t

(x, t)ϕ(x, t)dxdt →
∫

Π

∂v

∂t
(x, t)ϕ(x, t)dxdt, (3.30)

∫
Π

∂2vn
∂2x

(x, t)ϕ(x, t)dxdt →
∫

Π

∂2v

∂2x
(x, t)ϕ(x, t)dxdt (3.31)

(when n → ∞), which is true for {ωn} and {θn − 1} also. By means of Green’s
formula we get properties (3.27) in the same way as (3.14). ✷

Lemma 3.3. Functions ρ, v, ω and θ, defined by Lemma 3.1 and Lemma 3.2
satisfy equations (1.1)-(1.4) a.e. in Π.
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Proof. Let {Sn = (ρn, vn, ωn, θn) : n ∈ N} be the subsequence defined by
Lemmas 3.1 and 3.2. By means of (3.9) and (3.15) we obtain the inequalities∣∣∣∣

∫
Π

(ρ2
n

∂vn
∂x

− ρ2 ∂v

∂x
)ϕdxdt

∣∣∣∣ ≤
∣∣∣∣
∫

Π

ρ2
n(
∂vn
∂x

− ∂v

∂x
)ϕdxdt

∣∣∣∣
+
∣∣∣∣
∫

Π

∂v

∂x
(ρn − ρ)(ρn + ρ)ϕdxdt

∣∣∣∣
≤ C

∣∣∣∣
∫

Π

(
∂vn
∂x

− ∂v

∂x
)ϕdxdt

∣∣∣∣
+C

∣∣∣∣
∫

Π

∂v

∂x
(ρn − ρ)ϕdxdt

∣∣∣∣ , (3.32)

for all ϕ ∈ D(Π) and after integrating by parts we get∣∣∣∣
∫

Π

(ρ2
n

∂vn
∂x

− ρ2 ∂v

∂x
)ϕdxdt

∣∣∣∣ ≤ C

∣∣∣∣
∫

Π

(
∂vn
∂x

− ∂v

∂x
)ϕdxdt

∣∣∣∣
+C

∣∣∣∣
∫

Π

v(
∂ρn
∂x

− ∂ρ

∂x
)ϕdxdt

∣∣∣∣
+C

∣∣∣∣
∫

Π

v(ρn − ρ)
∂ϕ

∂x
dxdt

∣∣∣∣ . (3.33)

Taking into account (3.29), (3.19), (3.18) and (1.18), we conclude that for all ϕ ∈
D(Π), from (3.33) it follows∫

Π

ρ2
n

∂vn
∂x

ϕdxdt →
∫

Π

ρ2 ∂v

∂x
ϕdxdt. (3.34)

For ϕ ∈ D(Π) there exists n0 ∈ N such that for all n ≥ n0 functions ρn and vn
satisfy (1.1) in the sense of distributions in Π and therefore we have∫

Π

(
∂ρn
∂t

+ ρ2
n

∂vn
∂x

)
ϕdxdt = 0. (3.35)

Applying (3.20) and (3.34), from (3.35) we get

∂ρ

∂t
+ ρ2 ∂v

∂x
= 0 a.e in Π. (3.36)

In the same way one can prove that equations (1.2), (1.3) and (1.4) are satisfied. ✷
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