The fixed point property for arc component preserving mappings of non-metric tree-like continua

IVAN LONČAR*

Abstract. The main purpose of this paper is to study the fixed point property of non-metric tree-like continua. Using the inverse systems method, it is proved that if X is a non-metric tree-like continuum and if $f: X \to X$ is a mapping which sends each arc component into itself, then f has the fixed point property.

Key words: continuum, fixed point property, inverse system

AMS subject classifications: Primary 54H25, 54F15; Secondary 54B35

Received April 12, 2004

Accepted February 10, 2005

1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous. The weight of a space X is denoted by w(X). The cardinality of a set A is denoted by card(A). We shall use the notion of an inverse system as in [2, pp. 135-142]. An inverse system is denoted by $\mathbf{X} = \{X_a, p_{ab}, A\}$.

Let A be a partially ordered directed set. We say that a subset $A_1 \subset A$ majorates [1, p. 9] another subset $A_2 \subset A$ if for each element $a_2 \in A_2$ there exists an element $a_1 \in A_1$ such that $a_1 \geq a_2$. A subset which majorates A is called *cofinal* in A. A subset of A is said to be a *chain* if its every two elements are comparable. The symbol $\sup B$, where $B \subset A$, denotes the lower upper bound of B (if such an element exists in A). Let $\tau \geq \aleph_0$ be a cardinal number. A subset B of A is said to be τ -closed in A if for each chain $C \subset B$, with $\operatorname{card}(B) \leq \tau$, we have $\sup C \in B$, whenever the element $\sup C$ exists in A. Finally, a directed set A is said to be τ -complete if for each chain C of A of elements of A with $\operatorname{card}(C) \leq \tau$, there exists an element $\sup C$ in A.

Suppose that we have two inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ and $\mathbf{Y} = \{Y_b, q_{bc}, B\}$. A morphism of the system X into the system \mathbf{Y} [1, p. 15] is a family $\{\varphi, \{f_b : b \in B\}\}$

^{*}Faculty of Organization and Informatics Varaždin, University of Zagreb, Pavlinska 2, HR-42000 Varaždin, e-mail: ivan.loncar1@vz.tel.hr

I. LONČAR

consisting of a nondecreasing function $\varphi : B \to A$ such that $\varphi(B)$ is cofinal in A, and of maps $f_b : X_{\varphi(b)} \to Y_b$ defined for all $b \in B$ such that the following

$$\begin{array}{cccc} X_{\varphi(b)} & \stackrel{p_{\varphi(b)\varphi(c)}}{\longleftarrow} & X_{\varphi(c)} \\ \downarrow f_b & \downarrow f_c \\ Y_b & \stackrel{q_{bc}}{\longleftarrow} & Y_c \end{array} \tag{1}$$

diagram commutes. Any morphism $\{\varphi, \{f_b : b \in B\}\}$: $\mathbf{X} \to \mathbf{Y}$ induces a map, called the *limit map of the morphism*

$$\lim\{\varphi, \{f_b : b \in B\}\} : \lim \mathbf{X} \to \lim \mathbf{Y}$$
(2)

In the present paper we deal with the inverse systems defined on the same indexing set A. In this case, the map $\varphi : A \to A$ is taken to be the identity and we use the following notation $\{f_a : X_a \to Y_a; a \in A\} : \mathbf{X} \to \mathbf{Y}$.

We say that an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is factorizing [1, p. 17] if for each real-valued mapping $f : \lim \mathbf{X} \to \mathbb{R}$ there exist an $a \in A$ and a mapping $f_a : X_a \to \mathbb{R}$ such that $f = f_a p_a$.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be σ -directed if for each sequence $a_1, a_2, ..., a_k, ...$ of the members of A there is an $a \in A$ such that $a \ge a_k$ for each $k \in \mathbb{N}$.

Lemma 1. [1, Corollary 1.3.2, p. 18]. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is a σ -directed inverse system of compact spaces with surjective bonding mappings, then it is factorizing.

An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be τ -continuous [1, p. 19] if for each chain B in A with $\operatorname{card}(B) < \tau$ and $\sup B = b$, the diagonal product $\Delta \{p_{ab} : a \in B\}$ maps the space X_b homeomorphically into the space $\lim \{X_a, p_{ab}, B\}$. An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be a τ -system [1, p. 19] if:

- a) $w(X_a) \leq \tau$ for every $a \in A$,
- b) The system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is τ -continuous,
- c) The indexing set A is τ -complete.

A σ -system is a τ -system, where $\tau = \aleph_0$. The following theorem is called the Spectral Theorem [1, p. 19].

Theorem 1. [1, Theorem 1.3.4, p. 19]. If a τ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ with surjective limit projections is factorizing, then each map of its limit space into the limit space of another τ -system $\mathbf{Y} = \{Y_a, q_{ab}, A\}$ is induced by a morphism of cofinal and τ -closed subsystems. If two factorizing τ -systems with surjective limit projections and the same indexing set have homeomorphic limit spaces, then they contain isomorphic cofinal and τ -closed subsystems.

Let us remark that the requirement of surjectivity of the limit projections of systems in *Theorem 1* is essential [1, p. 21].

2. The fixed point property of non-metric continua

A fixed point of a function $f: X \to X$ is a point $p \in X$ such that f(p) = p. A space X is said to have the fixed point property provided that every mapping $f: X \to X$ has a fixed point.

The key theorem is the following.

Theorem 2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -system of compact spaces with limit X and onto projections $p_a : X \to X_a$. Let $\{f_a : X_a \to X_a\} : \mathbf{X} \to \mathbf{X}$ be a morphism. Then the induced mapping $f = \lim \{f_a\} : X \to X$ has a fixed point if and only if each mapping $f_a : X_a \to X_a$, $a \in A$, has a fixed point.

Proof. The if part. Let $F_a, a \in A$, be the set of fixed points of the mapping f_a . **Claim 1.** Every set F_a is closed. This is a consequence of the following theorem [2, Theorem 1.5.4., p. 59]: For any pair f,g of mappings of a space X into a Hausdorff space Y, the set

$$\{x \in X : f(x) = g(x)\}\tag{3}$$

is closed in X.

It suffices to set g(x) = x and Y = X.

Claim 2. If $a \leq b$, then $p_{ab}(F_b) \subset F_a$. Let x_b be any point of F_b . From the commutativity of diagram (1) it follows $p_{ab}(f_b(x)) = f_a(p_{ab}(x_b))$. We have $p_{ab}(x_b) = f_a(p_{ab}(x_b))$ since $f_b(x) = x_b$. This means that for the point $y = p_{ab}(x_b) \in X_a$ we have $y = f_a(y)$, i.e., $y \in F_a$. We infer that $p_{ab}(x_b) \in F_a$ and $p_{ab}(F_b) \subset F_a$.

Claim 3. $\mathbf{F} = \{F_a, p_{ab} | F_b, A\}$ is an inverse system of compact spaces with a non-empty limit F.

Claim 4. The set $F \subset X$ is the set of fixed points of the mapping f. Let $x \in F$ and let $x_a = p_a(x), a \in A$. Now, $f_a(x_a) = x_a$ since $x_a \in F_a$. We infer that f(x) = x since the morphism $\{f_a : a \in A\}$ induces f. The proof of the "if" part is complete.

The only if part. Suppose that the induced mapping f has a fixed point x. Let us prove that every mapping $f_a, a \in A$, has a fixed point. Now we have $f_a p_a(x) = p_a f(x)$. From f(x) = (x) it follows $f_a p_a(x) = p_a(x)$. We infer that $p_a(x)$ is a fixed point for f_a .

As an immediate consequence of this theorem and the Spectral theorem 1 we have the following result.

Theorem 3. Let a non-metric continuum X be the inverse limit of an inverse σ -system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a has the fixed point property and each bonding mapping p_{ab} is onto. Then X has the fixed point property.

3. The fixed point property of the inverse limit space of tree-like continua

A continuum X with precisely two non-separating points is called a *generalized arc*.

A simple n-od is the union of n generalized arcs $A_1O, A_2O, ..., A_{\alpha}O$, each two of which have only the point O in common. The point O is called the *vertex* or the top of the n-od.

By a branch point of a compact space X we mean a point p of X which is the vertex of a simple triod lying in X. A point $x \in X$ is said to be the *end point* of

X if for each neighborhood U of x there exists a neighborhood V of x such that $V \subset U$ and $\operatorname{card}(Bd(V)) = 1$.

Let S be the set of all end points and all branch points of a continuum X. An arc pq in X is called a *free arc* in X if $pq \cap S = \{p, q\}$.

A continuum is a *graph* if it is the union of a finite number of metric free arcs. A *tree* is an acyclic graph.

A continuum X is tree-like (arc-like) if for each open cover \mathcal{U} of X, there is a tree (arc) $X_{\mathcal{U}}$ and a \mathcal{U} -mapping $f_{\mathcal{U}} : X \to X_{\mathcal{U}}$ (the inverse image of each point is contained in a member of \mathcal{U}).

Every tree-like continuum is hereditarily unicoherent. Every arc-like continuum is tree-like.

Let Y^X be the set of all mappings of X to Y. If Y is a metric space with a metric d, then on the set Y^X one can define a metric \hat{d} by letting

$$\widehat{d}(f,g) = \sup_{x \in X} d\left(f(x), g(x)\right). \tag{4}$$

Proposition 1. Let X be any tree-like continuum, let P be a polyhedron with a given metric d, r > 0 a real number and $f : X \to P$ a mapping. Then there exist a tree Q, a mapping $g : X \to Q$ and a mapping $p : Q \to P$ such that g(X) = Q and $\hat{d}(f, pg) \leq r$.

Proof. Let K be a triangulation of P of mesh not greater than r/2. Let a_i be the vertices of K, and let St a_i be the open star of K around the vertex a_i . Hence, $\{\text{St } a_i\}$ is an open covering for P, and so is $\mathcal{U} = \{f^{-1}(\text{St } a_i)\}$ for X. There exist a tree Q and a mapping $g: X \to Q$ such that g is a \mathcal{U} -mapping and g(X) = Q. There exists a triangulation L of Q with vertices b_j such that the cover $\mathcal{V} = \{g^{-1}(\text{St } b_j)\}$ refines the cover \mathcal{U} . Let x be a point of X and let s be a simplex of Q with vertices b_{j_1}, \ldots, b_{j_k} containing g(x). This means that $\{g^{-1}(\text{St } b_{j_1}), \ldots, g^{-1}(\text{St } b_{j_k})\}$ is a collection of some $g^{-1}(\text{St } b_j)$ containing x. It follows that $g^{-1}(\text{St } b_{j_1}) \cap \ldots \cap g^{-1}(\text{St } b_{j_k}) \neq \emptyset$. We infer that St $b_{j_1} \cap \ldots \cap \text{St } b_{j_k} \neq \emptyset$. Let $p: Q \to P$ be a simplicial mapping sending each vertex b_j of Q into a vertex a_i having the property that $g^{-1}(\text{St } b_i) \subset f^{-1}(\text{St } a_i)$. It remains to prove that $d(f, pg) \leq r$. Now, for each $g^{-1}(\text{St } b_{i_j}) \neq \emptyset$ it follows that $f^{-1}(\text{St } b_{i_j}) \cap \ldots \cap f^{-1}(\text{St } b_{j_k}) \neq \emptyset$, i.e., that there exists a simplex σ of K with vertices b_{j_1}, \ldots, b_{j_k} such that $f(x) \in \text{St } \sigma$. Clearly, $pg(x) \in \text{St } \sigma$. Finally, $\hat{d}(f, pg) \leq r$.

Proposition 2. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system of tree-like continua and if p_{ab} are onto mappings, then the limit $X = \lim \mathbf{X}$ is a tree-like continuum.

Proof. Let $\mathcal{U} = \{U_1, ..., U_n\}$ be an open covering of X. There exist an $a \in A$ and an open covering $\mathcal{U}_a = \{U_{1a}, ..., U_{ka}\}$ such that $\{p_a^{-1}(U_{1a}), ..., p_a^{-1}(U_{ka})\}$ refines the covering \mathcal{U} . There exist a tree T_a and a \mathcal{U}_a -mapping $f_{\mathcal{U}_a} : X_a \to T_a$ since X_a is tree-like. It is clear that $f_{\mathcal{U}_a}p_a : X \to T_a$ is a \mathcal{U} -mapping. Hence, X is tree-like.

Proposition 3. If X is a tree-like continuum, Q a tree and $f : X \to Q$ a mapping, then f(X) is also a tree.

Proof. This follows from the fact that a subcontinuum of a tree is a tree. \Box Now we shall prove an expanding theorem of tree-like continua into inverse σ -

systems of metric tree-like continua.

Theorem 4. If X is a non-metric tree-like continuum, then there exists a σ -system $\mathbf{X}_{\sigma} = \{X_{\Delta}, P_{\Delta\Gamma}, A_{\sigma}\}$ of metric tree-like continua X_{Δ} and onto mappings $P_{\Delta\Gamma}$ such that X is homeomorphic to $\lim \mathbf{X}_{\sigma}$.

Proof. Let us observe that *Propositions 1-3* are conditions (A)-(C) in [4, p. 220]. Then from Mardešić's General Expansion Theorem [4, Theorem 2] it follows that there exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric tree-like continua X_a and onto bonding mappings p_{ab} such that X is homeomorphic to $\lim \mathbf{X}$. It remains to prove that there exists such σ -system. The proof is broken down into several steps.

Step 1. For each subset Δ_0 of (A, \leq) we define sets Δ_n , n = 0, 1, ..., by the inductive rule $\Delta_{n+1} = \Delta_n \bigcup \{m(x, y) : x, y \in \Delta_n\}$, where m(x, y) is a member of A such that $x, y \leq m(x, y)$. Let $\Delta = \bigcup \{\Delta_n : n \in \mathbb{N}\}$. It is clear that $\operatorname{card}(\Delta) = \operatorname{card}(\Delta_0)$. Moreover, Δ is directed by \leq . For each directed set (A, \leq) we define

$$A_{\sigma} = \{ \Delta : \emptyset \neq \Delta \subset A, \operatorname{card}(\Delta) \le \aleph_0 \quad \text{and } \Delta \text{ is directed by } \le \}.$$
(5)

Step 2. If A is a directed set, then A_{σ} is σ -directed and σ -complete. Let $\{\Delta^1, \Delta^2, ..., \Delta^n, ...\}$ be a countable subset of A_{σ} . Then $\Delta_0 = \cup \{\Delta^1, \Delta^2, ..., \Delta^n, ...\}$ is a countable subset of A_{σ} . Define sets Δ_n , n = 0, 1, ..., by the inductive rule $\Delta_{n+1} = \Delta_n \bigcup \{m(x, y) : x, y \in \Delta_n\}$, where m(x, y) is a member of A such that $x, y \leq m(x, y)$. Let $\Delta = \bigcup \{\Delta_n: n \in \mathbb{N}\}$. It is clear that $\operatorname{card}(\Delta) = \operatorname{card}(\Delta_0)$. This means that Δ is countable. Moreover, $\Delta \supseteq \Delta^i$, $i \in \mathbb{N}$. Hence, A_{σ} is σ -directed. Let us prove that A_{σ} is σ -complete. Let $\Delta^1 \subset \Delta^2 \subset ... \subset \Delta^n \subset ...$ be a countable chain in A_{σ} . Then $\Delta = \cup \{\Delta^i: i \in \mathbb{N}\}$ is a countable and directed subset of A, i.e., $\Delta \in A_{\sigma}$. It is clear that $\Delta \supseteq \Delta^i$, $i \in \mathbb{N}$. Moreover, for each $\Gamma \in A_{\sigma}$ with property $\Gamma \supseteq \Delta^i$, $i \in \mathbb{N}$, we have $\Gamma \supseteq \Delta$. Hence $\Delta = \sup\{\Delta^i: i \in \mathbb{N}\}$. This means that A_{σ} is σ -complete.

Step 3. If $\Delta \in A_{\sigma}$, let $\mathbf{X}^{\Delta} = \{X_b, p_{bb'}, \Delta\}$ and $X_{\Delta} = \lim \mathbf{X}^{\Delta}$. If $\Delta, \Gamma \in A_{\sigma}$ and $\Delta \subseteq \Gamma$, let $P_{\Delta\Gamma}$: $X_{\Gamma} \to X_{\Delta}$ denote the map induced by the projections $p_{\delta}^{\Gamma}: X_{\Gamma} \to X_{\delta}, \delta \in \Delta$, of the inverse system \mathbf{X}^{Γ} .

Step 4. If $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system, then $\mathbf{X}_{\sigma} = \{X_{\Delta}, P_{\Delta\Gamma}, A_{\sigma}\}$ is a σ -directed and σ -complete inverse system such that $\lim \mathbf{X}$ and $\lim \mathbf{X}_{\sigma}$ are homeomorphic. Each thread $x = (x_a : a \in A)$ induces a thread $(x_a : a \in \Delta)$ for each $\Delta \in A_{\sigma}$, i.e., the point $x_{\Delta} \in X_{\Delta}$. This means that we have a mapping $H : \lim \mathbf{X} \to \lim \mathbf{X}_{\sigma}$ such that $H(x) = (x_{\Delta} : \Delta \in A_{\sigma})$. It is obvious that H is continuous and 1-1. The mapping H is onto since the collection of threads $\{x_{\Delta} : \Delta \in A_{\sigma}\}$ induces the thread in \mathbf{X} . We infer that H is a homeomorphism since $\lim \mathbf{X}$ is compact.

Step 5. Every X_{Δ} is a metric tree-like continuum. Apply Proposition 2.

Step 6. Every projection P_{Δ} : $\lim \mathbf{X}_{\sigma} \to X_{\Delta}$ is onto. This follows from the assumption that the bonding mappings p_{ab} are surjective.

Finally, $\mathbf{X}_{\sigma} = \{X_{\Delta}, P_{\Delta\Gamma}, A_{\sigma}\}$ is the desired σ -system.

By a similar proof we obtain the following theorem.

Theorem 5. If X is a non-metric arc-like continuum, then there exists a σ -system $\mathbf{X}_{\sigma} = \{X_{\Delta}, P_{\Delta\Gamma}, A_{\sigma}\}$ of metric arc-like continua X_{Δ} and onto mappings $P_{\Delta\Gamma}$ such that X is homeomorphic to $\lim \mathbf{X}_{\sigma}$.

From [4, Theorem 1], [4, Theorem 2] and [4, Corollary 1] we obtain the following well known result [5, Theorem 2.13, p. 24].

Theorem 6. Each metrizable tree-like (arc-like) continuum is homeomorphic with the inverse limit of an inverse sequence of trees (arcs).

Now we shall investigate the fixed point property of non-metric tree-like continua. Let us recall the following known result.

Theorem 7. [3, Theorem 1.2]. Suppose f is a map of a tree-like metric continuum M that sends each arc component of M into itself. Then f has a fixed point.

A map $f: X \to X$ is a deformation if there exists a map $H: X \times [0,1] \to X$ onto X such that H(p,0) = p and H(p,1) = f(p) for each point $p \in X$. We say that a map $f: X \to X$ is a generalized deformation if there exist a generalized arc L (with end points 0 and 1) and a map $H: X \times L \to X$ onto X such that H(p,0) = pand H(p,1) = f(p) for each point $p \in X$. Since (generalized) deformations send arc-components into themselves, we have [3, Corollary 1.3].

Corollary 1. Every metric tree-like continuum has the fixed point property for deformations.

For non-metric tree-like continua we shall prove the following theorem.

Theorem 8. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse σ -system of metric tree-like continua with onto bonding mappings and with limit X. If $f : X \to X$ is a mapping which sends each arc component into itself, then f has a fixed point.

Proof. By virtue of *Theorem 1* there exist a cofinal subset B(f) of A and mappings $f_b: X_b \to Y_b$, where $b \in B(f)$, such that the mapping f is induced by a collection $\{f_b: b \in B(f)\}$. From *Theorems 2* and 7 it follows that it suffices to prove that each f_b sends each arc component into itself. Let $x_b \in X_b$. We have to prove that x_b and $f_b(x_b)$ lie in some arc component of X_b , i.e., there is an arc in X_b with end points x_b and $f_b(x_b)$. There exists a point $x \in X$ such that $x_b = p_b(x)$. There exists a generalized arc L in X with end points x and f(x) since f sends each arc component into itself. This means that $f_b(L)$ contains the points $p_b(x) = x_b$ and $p_b f(x) = f_b(p_b(x)) = f_b(x_b)$. We infer that there is an arc with end points x_b and $f_b(x_b)$ since $f_b(L)$ is arcwise connected [6, p. 201, Theorem 9]. The proof is complete.

The non-metric analogue of *Theorem* 7 is the following result.

Theorem 9. Let X be a non-metric continuum tree-like. If $f : X \to X$ is a mapping which sends each arc component into itself, then f has a fixed point.

Proof. Apply *Theorems 4, 7* and 8.

Corollary 2. Every non-metric tree-like continuum has the fixed point property for generalized deformations.

Corollary 3. Let X be a non-metric tree-like arcwise connected continuum. If $f: X \to X$, then f has a fixed point.

Acknowledgement. The author is very grateful to the referee for his help and valuable suggestions.

References

[1] A. CHIGOGIDZE, *Inverse Spectra*, Elsevier, Amsterdam, 1996.

[2] R. ENGELKING, General Topology, PWN, Warszawa, 1977.

- [3] C. L. HAGOPIAN, The fixed point property for deformations of tree-like continua, Fund. Math. 155(1998), 161-176.
- [4] S. MARDEŠIĆ, Chainable continua and inverse limits, Glas. Mat. Fiz. i Astr. 14(1959), 219-232.
- [5] S. B. NADLER, JR., Continuum Theory, Marcel Dekker, New York, 1992.
- [6] L. B. TREYBIG, Arcwise connectivity in continuous images of ordered compacta, Glas. Mat. Ser. III 21(41)(1986), 201 - 211.