MATHEMATICAL COMMUNICATIONS 10(2005), 15-21 15

The fixed point property for arc component
preserving mappings of non-metric tree-like
continua

IvaAN LONCAR*

Abstract. The main purpose of this paper is to study the fixed point
property of non-metric tree-like continua. Using the inverse systems
method, it is proved that if X is a non-metric tree-like continuum and
if f: X — X is a mapping which sends each arc component into itself,
then f has the fized point property.
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1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous.
The weight of a space X is denoted by w(X). The cardinality of a set A is denoted
by card(A). We shall use the notion of an inverse system as in [2, pp. 135-142]. An
inverse system is denoted by X = {X,, pas, A}

Let A be a partially ordered directed set. We say that a subset A; C A majorates
[1, p. 9] another subset A C A if for each element ag € As there exists an element
a1 € Ajp such that a; > as. A subset which majorates A is called cofinal in A. A
subset of A is said to be a chain if its every two elements are comparable. The
symbol sup B, where B C A, denotes the lower upper bound of B (if such an
element exists in A). Let 7 > Xg be a cardinal number. A subset B of A is said to
be 7-closed in A if for each chain C C B, with card(B) < 7, we have supC € B,
whenever the element sup C' exists in A. Finally, a directed set A is said to be
T-complete if for each chain C of A of elements of A with card(C') < 7, there exists
an element sup C' in A.

Suppose that we have two inverse systems X = { X, pap, A} and Y = {Vs, @b, B}-
A morphism of the system X into the system Y [1, p. 15]is a family {¢, {f : b € B}}
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consisting of a nondecreasing function ¢ : B — A such that ¢(B) is cofinal in A,
and of maps fy : X,1) — Y5 defined for all b € B such that the following

Po(b)e(c)
Xow) e Xo(e)
L Jo L fe (1)
i/b qve Yc

diagram commutes. Any morphism {p,{f, : b€ B}} : X — Y induces a map,
called the limit map of the morphism

lim{p, {fp: b€ B}}:limX — limY (2)

In the present paper we deal with the inverse systems defined on the same
indexing set A. In this case, the map ¢ : A — A is taken to be the identity and we
use the following notation {f, : X, — Y,;a € A} : X =Y.

We say that an inverse system X = {X,,pa, A} is factorizing [1, p. 17] if
for each real-valued mapping f : lim X — R there exist an a € A and a mapping
fa : Xo — R such that f = f,p,.

An inverse system X = { X, pap, A} is said to be o-directed if for each sequence
ai,as, ..., ag, ... of the members of A there is an a € A such that a > ay for each k
eN.

Lemma 1. [1, Corollary 1.3.2, p. 18]. If X = {X,, pab, A} is a o-directed
inverse system of compact spaces with surjective bonding mappings, then it is fac-
torizing.

An inverse system X = {X,, pap, A} is said to be 7-continuous [1, p. 19]
if for each chain B in A with card(B) < 7 and sup B = b, the diagonal product
A {pap : a € B} maps the space X;, homeomorphically into the space lim{ X, pas, B}.

An inverse system X = {Xg, pab, A} is said to be a 7-system [1, p. 19] if:

a) w(X,) <7 for every a € A,
b) The system X = {X,, pap, A} is T-continuous,
¢) The indexing set A is T-complete.

A o-system is a T-system, where 7 = Ng. The following theorem is called the
Spectral Theorem [1, p. 19].

Theorem 1. [1, Theorem 1.8.4, p. 19]. If a T-system X = {X,, pap, A} with
surjective limit projections is factorizing, then each map of its limit space into the
limit space of another T-system Y = {Ya, qab, A} is induced by a morphism of
cofinal and T-closed subsystems. If two factorizing T-systems with surjective limit
projections and the same indexing set have homeomorphic limit spaces, then they
contain isomorphic cofinal and T-closed subsystems.

Let us remark that the requirement of surjectivity of the limit projections of
systems in Theorem 1 is essential [1, p. 21].
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2. The fixed point property of non-metric continua

A fized point of a function f: X — X is a point p € X such that f(p) = p. A space
X is said to have the fized point property provided that every mapping f: X — X
has a fixed point.

The key theorem is the following.

Theorem 2. Let X = {X,, pay, A} be a o-system of compact spaces with
limit X and onto projections pg : X — X4. Let {fo: Xo — Xo} : X = X be a
morphism. Then the induced mapping f = lim{f,} : X — X has a fized point if
and only if each mapping fo : Xq — X4, a € A, has a fized point.

Proof. The if part. Let F,,a € A, be the set of fixed points of the mapping f,.

Claim 1. Fvery set Fy is closed. This is a consequence of the following theorem
[2, Theorem 1.5.4., p. 59]: For any pair f,g of mappings of a space X into a
Hausdorff space Y, the set

{reX: flx)=9g(@)} 3)

is closed in X.

It suffices to set g(z) =z and Y = X.

Claim 2. If a < b, then pa(Fy) C F,. Let xp be any point of Fj. From
the commutativity of diagram (1) it follows pay(fp(2)) = fa(Pas(xp)). We have
Pav(Tp) = fa(Pabr(xp)) since fp(x) = xp. This means that for the point y = pap(xs) €
X, we have y = fu(y), i.e., y € F,. We infer that pap(zp) € F, and pap(Fp) C F.

Claim 3. F = {F,, pas|Fp, A} is an inverse system of compact spaces with a
non-empty limit F.

Claim 4. The set F C X is the set of fized points of the mapping f. Let x € F
and let x, = pa(z), a € A. Now, fu(z,) = x4 since z, € F,. We infer that f(z) =«
since the morphism {f, : a € A} induces f. The proof of the ”if” part is complete.

The only if part. Suppose that the induced mapping f has a fixed point . Let
us prove that every mapping f,,a € A, has a fixed point. Now we have fu,pq(z) =
paf(z). From f(z) = (z) it follows fupa(z) = pa(x). We infer that p,(z) is a fixed
point for f,. O

As an immediate consequence of this theorem and the Spectral theorem 1 we
have the following result.

Theorem 3. Let a non-metric continuum X be the inverse limit of an inverse
o-system X = {X,, pab, A} such that each X, has the fized point property and each
bonding mapping pap is onto. Then X has the fized point property.

3. The fixed point property of the inverse limit space of
tree-like continua

A continuum X with precisely two non-separating points is called a generalized arc.
A simple n-od is the union of n generalized arcs A10, A50, ..., A,O, each two
of which have only the point O in common. The point O is called the vertex or the
top of the n-od.
By a branch point of a compact space X we mean a point p of X which is the
vertex of a simple triod lying in X. A point x € X is said to be the end point of
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X if for each neighborhood U of x there exists a neighborhood V' of z such that
V C U and card(Bd(V)) =1.

Let S be the set of all end points and all branch points of a continuum X. An
arc pqg in X is called a free arc in X if pgN S = {p,q}.

A continuum is a graph if it is the union of a finite number of metric free arcs.
A tree is an acyclic graph.

A continuum X is tree-like (arc-like) if for each open cover U of X, there is a
tree (arc) Xy and a U-mapping fi; : X — Xy (the inverse image of each point is
contained in a member of U).

Every tree-like continuum is hereditarily unicoherent. Every arc-like continuum
is tree-like.

Let YX be the set of all mappings of X to Y. If Y is a metric space with a
metric d, then on the set YX one can define a metric d by letting

~

d(f,g9) = jlelgd(f(x),g(x)% (4)

Proposition 1. Let X be any tree-like continuum, let P be a polyhedron with
a given metric d, r > 0 a real number and f : X — P a mapping. Then there exist
a tree Q, a mapping g : X — Q and a mapping p : Q — P such that g(X) = Q and

~

d(f,pg) <.
Proof. Let K be a triangulation of P of mesh not greater than r/2. Let a; be

the vertices of K, and let St a; be the open star of K around the vertex a;. Hence,
{St a;} is an open covering for P, and so is U = {f~1(St a;)} for X. There exist
a tree () and a mapping g : X — @ such that ¢ is a U-mapping and g(X) = Q.
There exists a triangulation L of Q with vertices b; such that the cover V = {g~!(St
b;)} refines the cover Y. Let x be a point of X and let s be a simplex of @ with
vertices bj, , ..., b;, containing g(z). This means that {g='(St b;,),...,g~*(St bj, )}
is a collection of some g~!(St b;) containing x. It follows that g=*(St b;,)N ... N
g1 (St bj,) # 0. We infer that St b;;N ... N St b, # 0. Let p: Q — P be a
simplicial mapping sending each vertex b; of ) into a vertex a; having the property
that g='(St b;) C f~!(St a;). It remains to prove that d(f,pg) < r. Now, for each
g~ (St b;;) we have some f~!(St a;,) with g=*(St b;,) C f~'(St a;,). From g~*(St
bj )N ... N g7 (St bj,) # 0 it follows that f=1(St by, )N ... N F71(St b;,) # 0, i.e.,
that there exists a simplex o of K with vertices bj, ,...,b;, such that f(z) € St o.

~

Clearly, pg(z) € St o. Finally, d(f,pg) <. O
Proposition 2. If X = {X,, pap, A} is an inverse system of tree-like continua
and if pap are onto mappings, then the limit X = lim X is a tree-like continuum.
Proof. Let U ={Uy,..., U,} be an open covering of X. There exist an a €
A and an open covering Uy, = {Uta, ..., Ura} such that {p;*(Uia), ..., Pz (Ura)}
refines the covering U. There exist a tree T, and a U,-mapping fi, : Xo — T,
since X, is tree-like. It is clear that fi,p, : X — T, is a U-mapping. Hence, X is
tree-like. O
Proposition 3. If X is a tree-like continuum, @ a tree and f : X — Q a
mapping, then f(X) is also a tree.
Proof. This follows from the fact that a subcontinuum of a tree is a tree. O
Now we shall prove an expanding theorem of tree-like continua into inverse o-
systems of metric tree-like continua.
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Theorem 4. If X is a non-metric tree-like continuum, then there exists a o-
system Xy = {Xa, Par, Ao} of metric tree-like continua Xa and onto mappings
Par such that X is homeomorphic to lim X, .

Proof. Let us observe that Propositions 1-8 are conditions (A)-(C) in [4, p.
220]. Then from Mardesié¢’s General Expansion Theorem [4, Theorem 2] it follows
that there exists an inverse system X = {X,, pap, A} of metric tree-like continua X,
and onto bonding mappings pgp such that X is homeomorphic to lim X. It remains
to prove that there exists such o-system. The proof is broken down into several
steps.

Step 1. For each subset Ag of (4, <) we define sets A,, n = 0,1, ..., by the
inductive rule A,41 = A, U {m(x,y) : z, y € A}, where m(z,y) is a member of
A such that z,y < m(x,y). Let A = [J{A, : n € N}. It is clear that card(A) =
card(Ag). Moreover, A is directed by <. For each directed set (A4, <) we define

A, ={A:0#A C A, card(A) <Xy and A is directed by <}. (5)

Step 2. If A is a directed set, then A, is o-directed and o-complete. Let {Al,
A2 ..., A" ..} be a countable subset of A,. Then Ag = U{A!, A2 ..., A" ..}
is a countable subset of A,. Define sets A,, n = 0,1,..., by the inductive rule
Apt1 = AU {m(x,y) : x, y € Ay}, where m(z, y) is a member of A such that
xz,y <m(x,y). Let A = [J{A,: n € N}. It is clear that card(A) = card(Ag). This
means that A is countable. Moreover, A D A? i € N. Hence, A, is o-directed.
Let us prove that A, is o-complete. Let A! € A%2 C ...C A™ C ... be a countable
chain in A,. Then A = U{A?: i € N} is a countable and directed subset of A, i.e.,
A € A,. It is clear that A D A%, i € N. Moreover, for each I' € A, with property
I DA% i €N, wehave I' O A. Hence A = sup{A®: i € N}. This means that A, is
o-complete.

Step 3. If A € A,, let X2 = {X}, ppyy, A} and Xa = lim X2, If A, T € A,
and A C T', let Par: Xr — XA denote the map induced by the projections
pL : Xr — X5, 8 € A, of the inverse system X'.

Step 4. If X = {X,, pay, A} is an inverse system, then X, = {Xa, Par,
Ay} is a o-directed and o-complete inverse system such that im X and lim X, are
homeomorphic. Each thread x = (x, : a € A) induces a thread (z, : a € A) for each
A € A,, i.e., the point o € Xa. This means that we have a mapping H : lim X
— lim X, such that H(z) = (za : A € A,). It is obvious that H is continuous and
1-1. The mapping H is onto since the collection of threads {za : A € A, } induces
the thread in X. We infer that H is a homeomorphism since lim X is compact.

Step 5. FEvery Xa is a metric tree-like continuum. Apply Proposition 2.

Step 6. Every projection Pa : lim X, — Xa is onto. This follows from the
assumption that the bonding mappings pq, are surjective.

Finally, X, = {Xa, Par, A,} is the desired o-system. O

By a similar proof we obtain the following theorem.

Theorem 5. If X is a non-metric arc-like continuum, then there ezists a o-
system X, = {Xa, Par, Ao} of metric arc-like continua XA and onto mappings
Par such that X is homeomorphic to lim X, .

From [4, Theorem 1], [4, Theorem 2] and [4, Corollary 1] we obtain the following
well known result [5, Theorem 2.13, p. 24].
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Theorem 6. Fach metrizable tree-like (arc-like) continuum is homeomorphic
with the inverse limit of an inverse sequence of trees (arcs).

Now we shall investigate the fixed point property of non-metric tree-like con-
tinua. Let us recall the following known result.

Theorem 7. [3, Theorem 1.2]. Suppose f is a map of a tree-like metric
continuum M that sends each arc component of M into itself. Then f has a fized
point.

A map f: X — X is a deformation if there exists a map H : X x [0,1] — X
onto X such that H(p,0) = p and H(p,1) = f(p) for each point p € X. We say that
amap f: X — X is a generalized deformation if there exist a generalized arc L
(with end points 0 and 1) and a map H : X x L — X onto X such that H(p,0) = p
and H(p,1) = f(p) for each point p € X. Since (generalized) deformations send
arc-components into themselves, we have [3, Corollary 1.3].

Corollary 1. Every metric tree-like continuum has the fixed point property for
deformations.

For non-metric tree-like continua we shall prove the following theorem.

Theorem 8. Let X = {X,, pap, A} be an inverse o-system of metric tree-like
continua with onto bonding mappings and with limit X. If f : X — X is a mapping
which sends each arc component into itself, then f has a fized point.

Proof. By virtue of Theorem 1 there exist a cofinal subset B(f) of A and
mappings fp : X, — Y}, where b € B(f), such that the mapping f is induced by
a collection {fy : b € B(f)}. From Theorems 2 and 7 it follows that it suffices to
prove that each f, sends each arc component into itself. Let x, € X;,. We have to
prove that x; and fy(xp) lie in some arc component of Xj, i.e., there is an arc in X}
with end points x;, and fp(zp). There exists a point « € X such that z, = py(x).
There exists a generalized arc L in X with end points z and f(x) since f sends each
arc component into itself. This means that f,(L) contains the points py(z) = xp
and pp f () = fo(pp(x)) = fo(xp). We infer that there is an arc with end points xp
and fp(xp) since fp(L) is arcwise connected [6, p. 201, Theorem 9]. The proof is
complete. O

The non-metric analogue of Theorem 7 is the following result.

Theorem 9. Let X be a non-metric continuum tree-like. If f : X — X is a
mapping which sends each arc component into itself, then f has a fized point.

Proof. Apply Theorems 4, 7 and 8. O

Corollary 2. Every non-metric tree-like continuum has the fixed point property
for generalized deformations.

Corollary 3. Let X be a non-metric tree-like arcwise connected continuum. If
f:X — X, then f has a fized point.
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