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On sequences of positive integers containing

arithmetical progressions

T. Šalát
∗

and J. Tomanová
†

Abstract. We study from the metrical and topological point of
view the properties of sequences of positive integers which consist in fact
that the sequences contain arbitrarily long arithmetical progressions and
infinite arithmetical progressions, respectively. At the end of the paper
we give another solution of the problem of R. C. Buck concerning the
class Dµ of all A ⊆ N having Buck’s measure µ(A).
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1. Introduction

Denote by U the class of all infinite sequences of positive integers (in an increasing
order). If A ∈ U , A = a1 < a2 < · · · < an < · · · , then in agreement with [2] we put
A(n) =

∑
a≤n,a∈A 1, d(A) = lim infn→∞

A(n)
n (the lower asymptotic density of A),

d(A) = lim supn→∞
A(n)

n (the upper asymptotic density of A) and if there exists
limn→∞

A(n)
n , then we put d(A) = limn→∞

A(n)
n (the asymptotic density of A).

Let us remark that the symbol A will also denote the set of all terms of the
sequence A.

We now introduce two fundamental results on arithmetical progressions in se-
quences A ∈ U , which encouraged the preparation of this paper.

The first of these results is due to E. Szemerédi (cf. [3], [11]).
Theorem A. If d(A) > 0, then the sequence A contains arbitrarily long arithmetic
progressions.

The second result is due to S. S. Wagstaff, Jr. (cf [12]).
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48 T. Šalát and J. Tomanová

Theorem B. To each a, b ∈ [0, 1], a ≤ b there exists an A ∈ U such that A contains
no infinite arithmetic progression and d(A) = a, d(A) = b.

Denote by F ( I ) the class of all such A ∈ U which contain arbitrarily long
finite arithmetical progressions (which contain infinite arithmetical progressions).
Evidently we have

I ⊆ F . (1)

The study of systems F , I from the metrical and topological point of view
is enabled by the mapping ρ : U → (0, 1] defined in the following way: we put
ρ(A) =

∑∞
k=1 εk2−k, where εk = 1 if k ∈ A and εk = 0 in the opposite case. It is

easy to verify that ρ is a one-to-one mapping of U onto the interval (0, 1] (cf. [5],
p. 17-18).

If S ⊆ U , then ρ(S) denote the set of all numbers ρ(A), where A ∈ S. The
study of properties of the set ρ(S) gives us an image of the class S structure.

The purpose of this paper is the investigation of topological and metrical prop-
erties of the sets ρ(F), ρ(I) and ρ(F \ I).

In what follows λ(M) and dim(M) denotes the Lebesgue measure and Hausdorff
dimension of the set M , respectively. Further if S ⊆ U , then we put Sc = U \ S.

2. Topological properties of sets ρ(F), ρ(I) and ρ(F \ I)

In this part of the paper the interval (0, 1] is considered to be a metric space with
the Euclidean metric.

Theorem 1. The set ρ(F) is residual in (0, 1].
Proof. Since ρ is a one-to-one mapping, we have

ρ(F) = (0, 1] \ ρ(Fc). (2)

It suffices to prove that ρ(Fc) is a set of the first Baire category in (0, 1].
Denote by Γ(0) the class of all such A ∈ U for which d(A) = 0. It follows from

Theorem A that Γ(0)c ⊆ F . Hence Fc ⊆ Γ(0) and so we get

ρ(Fc) ⊆ ρ(Γ(0)). (3)

Express the numbers x ∈ (0, 1] by their non-terminating dyadic developments,
hence x =

∑∞
k=1 εk(x)2−k, εk(x) = 0 or 1(k = 1, 2, . . . ) and for an infinite number

of k’s we have εk(x) = 1. Put Nn(1, x) =
∑n

k=1 εk(x). It follows from the main
result of paper [8] that the set of all such x ∈ (0, 1] for which the limit points of

the sequence
(

Nn(1,x)
n

)∞

1
fill up the interval [0, 1], is residual in (0, 1]. From this it

follows at once that the set ρ(Γ(0)) is a set of the first category in (0, 1] and the
assertion follows from (3). ✷

We can conclude from (1) that ρ(I) ⊆ ρ(F). This inclusion gives us no infor-
mation about the topological size of the set ρ(I). The following theorem together
with Theorem 1 gives us a qualitative image of the difference between the size of
the classes F and I.

On account of Theorem B it can be conjectured that class I is poor. The
following theorem certificies this conjecture.
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Theorem 2. Set ρ(I) is a set of the first Baire category in (0, 1].
Proof. If A ∈ U , A = a1 < a2 < · · · < ak < ak+1 < · · · , then the numbers

ak+1 − (ak + 1) (k = 1, 2, . . . ) are called the gaps of the sequence A. Denote by V
the class of all such A ∈ U that the sequence of gaps of A is unbounded. Then we
have evidently V ⊂ Ic (cf. [12]) and therefore

ρ(I) ⊆ ρ(Vc). (4)

Hence according to (4), it suffices to prove that ρ(Vc) is a set of the first category
in (0, 1].

We have

ρ(Vc) =
∞⋃

m=0

ρ(Bm), (5)

where Bm (m = 0, 1, . . . ) is the class of all such A ∈ U that the set of gaps of A is
bounded from above by the number m.

It suffices to prove that each Bm (m = 0, 1, . . . ) is a nowhere dense set in (0, 1].
Let m ≥ 0. The proof of the nowhere density of Bm will be realized by proving

the following assertion (cf. [4], p. 37):
If I ⊂ (0, 1] is an arbitrary interval, then there exists such an interval I

′ ⊂ I
that

I
′
∩ Bm = ∅. (6)

Let I be an interval, I ⊂ (0, 1]. Let us choose such integers n ≥ 1, 0 ≤ j ≤ 2n−1
that

J =
(
j2−n, (j + 1)2−n

)
⊂ I. (7)

It follows from the construction of dyadic expansions that there exists a finite
sequence

a1, a2, . . . , an (8)

of 0’s and 1’s such that for each x ∈ J , x =
∑∞

k=1 εk(x)2−k we have εk(x) = ak

(k = 1, 2, . . . n). For brevity we say that the interval J is associated with the
sequence (8).

Let us construct the finite sequence

a1, a2, . . . , an, 0, 0, . . . , 0︸ ︷︷ ︸
m+1 zeros

.

Then all x =
∑∞

k=1 εk(x)2−k ∈ (0, 1] with εk(x) = ak (k = 1, 2, . . . , n) and
εk(x) = 0 (k = n + 1, . . . , n + m + 1) form an interval

I
′
=

(
s2−n−m−1, (s + 1)2−n−m−1

)
, I

′ ⊆ I.

But I
′

fulfils (6) evidently. The proof is complete. ✷

In connection with classes F , I it is convenient to investigate the class F \ I of
all A ∈ U that contain arbitrarily long finite arithmetical progressions but do not
contain any infinite arithmetical progression.

Theorem 3. The set ρ(F \ I) is residual in (0, 1].
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Proof. Since ρ is a one-to-one mapping, we have

ρ(F \ I) = ρ(F) ∩ ρ(Ic). (9)

According to Theorem 1 and Theorem 2, each set on the right-hand side is
residual in (0, 1]. Hence the assertion follows at once from (9). ✷

We show that the sets ρ(F), ρ(I), ρ(F \ I) belong to the second Borel class in
(0, 1].

Theorem 4.

(i) The set ρ(F) is an Fσδ−set in (0, 1].

(ii) The set ρ(I) is a Gδσ−set in (0, 1].

(iii) The set ρ(F \ I) is an Fσδ−set in (0, 1].

Proof. (i) For a ≥ 1, d ≥ 1, m ≥ 1 denote by F(a, d, m) the class of all such
A ∈ U that contain the finite sequence

a, a + d, . . . , a + md. (10)

Put
F(m) =

⋃
(a,d)

F(a, d, m) (11)

(the union of sets on the right-hand side is taken over all ordered pairs (a, d) of
positive integers). We have

F =
∞⋂

m=1

F(m).

From this and from (11) we get

ρ(F) =
∞⋂

m=1

⋃
(a,d)

ρ(F(a, d, m)). (12)

It follows from the definition of the function ρ that for fixed a, d, m the set
ρ(F(a, d, m)) consists of the finite number of intervals of the form (s2−j , (s+1)2−j)
(j = a + dm, 0 ≤ s ≤ 2j − 1) which are associated with sequences ε1, ε2, . . . εj of 0’s
and 1’s such that εk = 1 for k = a, a + d, . . . , a + dm and εk = 0 or 1 for other k’s,
k ≤ j.

It is obvious from the foregoing that ρ(F(a, d, m)) is an Fσ-set in (0, 1] and the
assertion follows from (12).

(ii) For fixed integers a, d, a ≥ 1, d ≥ 1 denote by I(a, d) the class of all such
A ∈ U which contain the infinite arithmetical progression a, a + d, . . . , a + kd, . . . .
Then we get

I =
⋃

(a,d)

I(a, d)

(the symbol ∪(a,d) has the same meaning as in (11)).
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From this we have
ρ(I) =

⋃
(a,d)

ρ(I(a, d)). (13)

Further, we set
Hm = ρ(F(a, d, m)), m = 1, 2, . . .

(the symbol F(a, d, m) has the same meaning as at the beginning of the proof).
From the definition of Hm, m = 1, 2, . . . we obtain

H1 ⊇ H2 ⊇ . . . ⊇ Hk ⊇ . . . .

So we get

ρ(I(a, d)) =
∞⋂

m=1

Hm.

Since Hm is both an Fσ and Gδ set in (0, 1] (m = 1, 2, . . . ), the set ρ(I(a, d)) is
a Gδ set in (0, 1], too and the assertion follows from (13).

(iii) Let us consider that

ρ(Ic) = (0, 1] \ ρ(I)

and use (9). The assertion follows. ✷

3. Metric properties of the sets ρ(F), ρ(I) and ρ(F \ I)

We show that the class F is also rich from the metric point of view (compare the
following theorem with Theorem 1).

Theorem 5. We have λ(ρ(F)) = 1.
Proof. Denote by T the class of all such A ∈ U for which d(A) = 1

2 . Then
Theorem A implies that T ⊆ F , hence ρ(T ) ⊆ ρ(F). But it is well-known that
λ(ρ(T )) = 1 ([5], p. 190). The assertion follows. ✷

Theorem 6. We have λ(ρ(I)) = 0.
Proof. It follows from (13) that

λ(ρ(I)) ≤
∑
(a,d)

λ(ρ(I(a, d))). (14)

It is not difficult to show that λ(ρ(I(a, d))) = 0 for each a, d (see also Lemma
in [10]). The assertion follows from (14). ✷

Let us notice that Theorems 5 and 6 give an analogous look on the size of the
classes F , I, as Theorems 1 and 2.

From Theorem 5 and Theorem 6 we get
Theorem 7. We have λ(ρ(F \ I)) = 1.
The problem appears to determine the precise value of the Hausdorff dimensions

of the null-sets ρ(Fc), ρ(I). The problem is solved in the following
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Theorem 8. We have

(i) dim(ρ(Fc)) = 0.

(ii) dim(ρ(I)) = 1.

Proof. (i) It is well-known that dim(Γ(0)) = 0 (cf. [5], p. 195). But then
from (3) we get dim(ρ(Fc)) = 0.

(ii) It follows from (13) that for each positive integer d we have

ρ(I) ⊃ ρ(I(1, d)). (15)

We shall determine dim(ρ(I(1, d))). Let us consider that ρ(I(1, d)) is the set
of all such x =

∑∞
k=1 εk(x)2−k ∈ (0, 1] for which ε1+jd(x) = 1 (j = 0, 1, . . . ) and

εk(x) = 0 or 1 for k �= 1 + jd (j = 0, 1, . . . ).
From Theorem 2.7 of paper [9] the following result can be easily deduced:

dim(ρ(I(1, d))) = lim inf
n→∞

log
∏

k≤n,k �=1+jd

2

n log 2
. (16)

By a simple calculation for the number pn of k’s, k ≤ n, k �= 1+jd (j = 0, 1, . . . )
we get the equality

pn = n −
([

n − 1
d

]
+ 1

)

and this used in (16) yields

dim(ρ(I(1, d))) = 1 − 1
d
. (17)

From (15) and (17) we obtain

dim ρ(I) ≥ 1 − 1
d
.

This is true for each positive integer d, hence by d → +∞ we get dim(ρ(I)) = 1.
✷

At the end of our considerations we shall use the foregoing results to give another
solution of a problem formulated by R. C. Buck. In [1] a finitely additive measure
µ is defined on an algebra Dµ of sets A ⊆ U which contains all sets that are finite
unions of arithmetic progressions or which differ from these by finite sets. It is
proved in [1] that Dµ has the power of the continuum, and ρ(Dµ) is a set of the
first Baire categoty in (0, 1]. The author says on p. 580: ”It would be of interest to
know if this set (i.e. ρ(Dµ)) is measurable, and if so, whether its measure is zero or
one”.

The answer to this question was already given by M. Parnes in [6]. We shall
give a quite different solution, based on Theorem 6 and the following result:
Theorem C (Theorem 3.1 in [7]). If A ∈ Dµ and µ(A) > 0, then A belongs
to I.

Theorem 9. We have λ(ρ(Dµ)) = 0.
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Proof. Evidently we have Dµ = {A ∈ Dµ; µ(A) > 0}
⋃
{A ∈ Dµ; µ(A) = 0} .

Hence according to Theorem C, we get

ρ(Dµ) ⊆ ρ(I) ∪ ρ(W0),

where W0 = {A ⊆ N ; d(A) = 0}. But λ(ρ(I)) = 0 (Theorem 6) and λ(ρ(W0)) = 0
(This is an easy consequence of Borel’s theorem on distribution of digits in dyadic
developments of real numbers - see [5], p. 190.).

Hence the set ρ(Dµ) as a subset of a set of Lebesgue measure zero is L-measurable
and its measure equals zero. ✷

In connection with Theorem 9 the question arises whether ρ(Dµ) is a Borel set,
and if so, which Borel clas it belongs to. Further it would be interesting to determine
the Hausdorff dimension of ρ(Dµ).
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