\mathcal{I} and \mathcal{I}^* convergent function sequences

F. Gezer^{*} and S. Karakuş[†]

Abstract. In this paper, we introduce the concepts of \mathcal{I} -pointwise convergence, \mathcal{I} -uniform convergence, \mathcal{I}^* -pointwise convergence and \mathcal{I}^* -uniform convergence of function sequences and then we examine the relation between them.

Key words: pointwise and uniform convergence, \mathcal{I} -convergence, \mathcal{I}^* -convergence

AMS subject classifications: 40A30

Received February 22, 2005

Accepted June 9, 2005

1. Introduction

Steinhaus [20] introduced the idea of statistical convergence [see also Fast [10]]. If K is a subset of positive integers \mathbb{N} , then K_n denotes the set $\{k \in K : k \leq n\}$ and $|K_n|$ denotes the cardinality of K_n . The natural density of K [18] is given by $\delta(K) := \lim_{n \to \infty} \frac{1}{n} |K_n|$, if it exists. The number sequence $x = (x_k)$ is statistically convergent to L provided that for every $\varepsilon > 0$ the set $K := K(\varepsilon) := \{k \in \mathbb{N} : |x_k - L| \geq \varepsilon\}$ has natural density zero; in that case we write $st - \lim x = L$ [10, 12]. Hence x is statistically convergent to L if $(C_1\chi_{K(\varepsilon)})_n \to 0$ (as $n \to \infty$, for every $\varepsilon > 0$), where C_1 is the Cesáro mean of order one and χ_K is the characteristic function of the set K. Properties of statistically convergent sequences have been studied in [2, 12, 16, 19].

Statistical convergence can be generalized by using a nonnegative regular summability matrix A in place of C_1 .

Following Freedman and Sember [11], we say that a set $K \subseteq \mathbb{N}$ has A-density if $\delta_A(K) := \lim_n (A\chi_K)_n = \lim_n \sum_{k \in K} a_{nk}$ exists, where $A = (a_{nk})$ is a nonnegative regular matrix.

The number sequence $x = (x_k)$ is A-statistically convergent to L provided that for every $\varepsilon > 0$ the set $K(\varepsilon)$ has A-density zero [3, 11, 16].

Connor gave an extension of the notion of statistical convergence where the asymptotic density is replaced by a finitely additive set function. Let μ be a finitely additive set function taking values in [0, 1] defined on a field Γ of subsets of \mathbb{N} such

^{*}Department of Mathematics, Faculty of Sciences and Arts Sinop, Ondokuz Mayıs University, 57 000, Sinop, Turkey, e-mail: fgezer@omu.edu.tr

[†]Department of Mathematics, Faculty of Sciences and Arts Sinop, Ondokuz Mayıs University, 57 000, Sinop, Turkey, e-mail: skarakus@omu.edu.tr

that if $|A| < \infty$, then $\mu(A) = 0$; if $A \subset B$ and $\mu(B) = 0$, then $\mu(A) = 0$; and $\mu(\mathbb{N}) = 1$ [4,6].

The number of sequence $x = (x_k)$ is μ -statistically convergent to L provided that $\mu \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\} = 0$ for every $\varepsilon > 0$ [4,6].

Let $X \neq \emptyset$. A class $S \subseteq 2^X$ of subsets of X is said to be an ideal in X provided that S is additive and hereditary, i.e. if S satisfies these conditions: $(i) \ \emptyset \in S, \ (ii) \ A, B \in S \Rightarrow A \cup B \in S, \ (iii) \ A \in S, \ B \subseteq A \Rightarrow B \in S \ [15].$ An ideal is called non-trivial if $X \notin S$. A non-trivial ideal S in X is called admissible if $\{x\} \in S$ for each $x \in X \ [14].$

The non-empty family of sets $F \subseteq 2^X$ is a filter on X if and only if $(i) \notin F$, (ii) for each $A, B \in F$ we have $A \cap B \in F$, (iii) for each $A \in F$ and each $B \supset A$ we have $B \in F$. $\mathcal{I} \subset 2^X$ is a non-trivial ideal if and only if $F := F(\mathcal{I}) := \{X - A : A \in \mathcal{I}\}$ is a filter on X [17].

Let F be a filter. F has property (A) if for any given countable subset $\{A_j\}$ of F, there exists an $A \in F$ such that $|A \setminus A_j| < \infty$ for each j [5].

Kostyrko, Mačaj and Šalát [14, 15] introduced two types of "ideal convergence". Let \mathcal{I} be a non-trivial ideal in \mathbb{N} . A sequence $x = (x_k)$ of real numbers is said to be \mathcal{I} -convergent to L if for every $\varepsilon > 0$ the set $A(\varepsilon) := \{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}$ belongs to \mathcal{I} [14]. In this case we write \mathcal{I} -lim x = L.

Let \mathcal{I} be an admissible ideal in \mathbb{N} . A sequence $x = (x_k)$ of real numbers is said to be \mathcal{I}^* -convergent to L if there is a set $H \in \mathcal{I}$, such that for $M = \mathbb{N} \setminus H = \{m_1 < m_2 < ...\}$ we have $\lim_k x_{m_k} = L$. In this case we write \mathcal{I}^* -lim x = L [14].

For every admissible ideal \mathcal{I} the following relation between them holds: Let \mathcal{I} be an admissible ideal in N. If \mathcal{I}^* -limit x = L, then \mathcal{I} -limit x = L [14].

Note that for some ideals the converse of this result holds (see [14, Example 3.1]). Kostyrko, Mačaj and Šalát have given the necessary and sufficient condition for equivalence of \mathcal{I} and \mathcal{I}^* -convergences. This condition is similar to the additive property for null sets in [4, 11].

An admissible ideal \mathcal{I} in \mathbb{N} is said to satisfy the condition (AP) if for every countable system $\{A_1, A_2, ...\}$ of mutually disjoint sets belonging to \mathcal{I} there exist sets $B_j \subseteq \mathbb{N}$, (j = 1, 2, ...) such that the symmetric differences $A_j \Delta B_j (j = 1, 2, ...)$ are finite and $B = \bigcup_{j=1}^{\infty} B_j$ belong to \mathcal{I} [14].

It is known that \mathcal{I} -limit $x = L \Leftrightarrow \mathcal{I}^*$ -limit x = L if and only if \mathcal{I} has the additive property [14]. Some results on \mathcal{I} -convergence may be found in [7, 8, 14, 15].

Note that if we define $\mathcal{I}_{\delta_A} = \{K \subseteq \mathbb{N} : \delta_A(K) = 0\}, \mathcal{I}_{\delta_{C_1}} = \{K \subseteq \mathbb{N} : \delta(K) = 0\}$ and $\mathcal{I}_{\mu} = \{K \subseteq \Gamma : \mu(K) = 0\}$, then we get the definition of A-statistical convergence, statistical convergence and μ -statistical convergence, respectively.

In this paper we give the \mathcal{I} analogues of results given by Duman and Orhan [9].

Throughout the paper \mathcal{I} will be an admissible ideal, $D \subseteq \mathbb{R}$ and (f_n) a sequence of real functions on D.

2. \mathcal{I} and \mathcal{I}^* convergent function sequences

Definition 1. (f_n) converges \mathcal{I}^* -pointwise to $f \Leftrightarrow \forall \varepsilon > 0$ and $\forall x \in D$, $\exists K_x \notin \mathcal{I}$ and $\exists n_0 = n_{0(\varepsilon,x)} \in K_x \ i \ \forall n \ge n_0$ and $n \in K_x$, $|f_n(x) - f(x)| < \varepsilon$. In this case we will write $f_n \to f(\mathcal{I}^* - convergent)$ on D.

Definition 2. We say that (f_n) converges \mathcal{I}^* -uniform to $f \iff \forall \varepsilon > 0$ and $\forall \varepsilon < D$, $\exists K \notin \mathcal{I}$ and $\exists n_0 = n_{0(\varepsilon)} \in K \ni \forall n \ge n_0$ and $n \in K$, $|f_n(x) - f(x)| < \varepsilon$.

In this case we will write $f_n \rightrightarrows f(\mathcal{I}^* - convergent)$ on D. **Definition 3.** (f_n) converges \mathcal{I} -pointwise to $f \iff \forall \varepsilon > 0$ and $\forall x \in D$,

 $\{n: |f_n(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}.$

In this case we will write $f_n \to f(\mathcal{I} - convergent)$ on D.

Definition 4. The sequence (f_n) of bounded functions on D converges \mathcal{I} uniformly to $f \iff \forall \varepsilon > 0$ and $\forall x \in D$, $\{n : ||f_n - f|| \ge \varepsilon\} \in \mathcal{I}$, where the form $||.||_{B(D)}$ is the usual supremum norm on B(D), the space of bounded functions on D.

In this case we will write $f_n \rightrightarrows f(\mathcal{I} - convergent)$ on D.

As in the ordinary case the property of *Definition 1* implies that of *Definition 3*; and, of course for bounded functions, the property of *Definition 2* implies that of *Definition 4*. If \mathcal{I} satisfy the condition (AP), then *Definitions 1* and 3 are equivalent, and *Definition 2* and 4 are equivalent.

The following result is a \mathcal{I} analogue of the result that is well-known in analysis. **Theorem 1.** Let for all n, f_n be continuous on D. If $f_n \rightrightarrows f(\mathcal{I}^* - convergent)$ on D, then f is continuous on D.

Proof. Assume $f_n \Rightarrow f(\mathcal{I}^* - convergent)$ on D. Then for every $\varepsilon > 0$, there exists a set $K \notin \mathcal{I}$ and $\exists n_0 = n_{0(\varepsilon)} \in K$ such that $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$ for each $x \in D$ and for all $n \ge n_o$ and $n \in K$. Let $x_0 \in D$. Since f_{n_0} is continuous at $x_0 \in D$, there is a $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f_{n_0}(x) - f_{n_0}(x_0)| < \frac{\varepsilon}{3}$ for each $x \in D$. Now for all $x \in D$ for which $|x - x_0| < \delta$, we have

$$|f(x) - f(x_0)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(x_0)| + |f_{n_0}(x_0) - f(x_0)| < \varepsilon.$$

Since $x_0 \in D$ is arbitrary, f is continuous on D.

Corollary 1. Let all functions
$$f_n$$
 be continuous on a compact subset D of \mathbb{R} , and let \mathcal{I} satisfy the condition (AP).

If $f_n \rightrightarrows f(\mathcal{I} - convergent)$ on D, then f is continuous on D.

The next example shows that neither of the converses of *Theorem 5* and *Corollary 6* are true.

Example 1. Let $K \notin \mathcal{I}$ and define $f_n : [0,1) \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} \frac{1}{2} & , n \notin K\\ \frac{x^n}{1+x^n} & , n \in K. \end{cases}$$

Then we have $f_n \to f = 0$ ($\mathcal{I}^* - convergent$) on [0, 1). Hence we get $f_n \to f = 0$ ($\mathcal{I} - convergent$) on [0, 1). Though all f_n and f are continuous on [0, 1), it follows from *Definition* 4 that the $\mathcal{I} - convergent$ of (f_n) is not uniform for

$$c_n := \sup_{x \in [0,1)} |f_n(x) - f(x)| = \frac{1}{2}$$
 and $I - \lim c_n = \frac{1}{2} \neq 0.$

Now we will give the following result that is an analogue of Dini's theorem.

Theorem 2. Let \mathcal{I} satisfy the condition (AP). Let D be a compact subset of \mathbb{R} and (f_n) a sequence of continuous functions on D. Assume that f is continuous and $f_n \to f(\mathcal{I} - convergent)$ on D. Also, let (f_n) be monotonic decreasing on D; i.e. $f_n(x) \ge f_{n+1}(x)$ (n = 1, 2, ...) for every $x \in D$. Then $f_n \rightrightarrows f(\mathcal{I} - convergent)$ on D.

Proof. Write $g_n(x) = f_n(x) - f(x)$. By hypothesis, each g_n is continuous and $g_n \to 0$ ($\mathcal{I} - convergent$) on D, also (g_n) is a monotonic decreasing sequence on D. Now, since $g_n \to 0$ ($\mathcal{I} - convergent$) on D and \mathcal{I} satisfy the condition (AP), $g_n \to 0$ ($I^* - convergent$) on D. Hence for every $\varepsilon > 0$ and each $x \in D$ there exists $K_x \notin \mathcal{I}$ and a number $n(x) = n(x,\varepsilon) \in K_x$ such that $0 \leq g_n(x) < \frac{\varepsilon}{2}$ for all $n \geq n(x)$ and $n \in K_x$. Since $g_n(x)$ is continuous at $x \in D$, for every $\varepsilon > 0$ there is an open set J(x) which contains x such that $|g_{n(x)}(t) - g_{n(x)}(x)| < \frac{\varepsilon}{2}$ for all $t \in J(x)$. Hence given $\varepsilon > 0$, by monotonicity we have

$$0 \le g_n(t) \le g_{n(x)}(t) = g_{n(x)}(t) - g_{n(x)}(x) + g_{n(x)}(x)$$

$$\le |g_{n(x)}(t) - g_{n(x)}(x)| + g_{n(x)}(x)$$

for every $t \in J(x)$ and for all $n \ge n(x)$ and $n \in K_x$. Since $D \subset \bigcup_{x \in D} J(x)$ and D is a compact set, by the Heine-Borel theorem D has a finite open covering such

D is a compact set, by the Heine-Borel theorem *D* has a finite open covering such that $D \subset J(x_1) \cup J(x_2) \cup \ldots \cup J(x_m)$. Now, let $K := K_{x_1} \cap K_{x_2} \cap \ldots \cap K_{x_m}$ and $N := \max\{n(x_1), n(x_2), \ldots, n(x_m)\}$. Observe that $K \notin \mathcal{I}$. Then $0 \leq g_n(t) < \varepsilon$ for every $t \in D$ and for all $n \geq N$ and $n \in K$. So $g_n \rightrightarrows 0$ (\mathcal{I}^* - convergent) on *D*. Consequently $g_n \rightrightarrows 0$ (\mathcal{I} - convergent) on *D*, which completes the proof. \Box

Now we will give the Cauchy criterion for \mathcal{I} -uniform convergence but we first need a definition and a lemma:

Definition 5. (f_n) is \mathcal{I} -Cauchy if for every $\varepsilon > 0$ and every $x \in D$ there is an $n(\varepsilon) \in \mathbb{N}$ such that

$$\left\{n:\left|f_{n}\left(x\right)-f_{n\left(\varepsilon\right)}\left(x\right)\right|\geq\varepsilon\right\}\in\mathcal{I}$$

Lemma 1. Let (f_n) be a sequence of a real function on D. (f_n) is \mathcal{I} -convergent if and only if (f_n) is \mathcal{I} -Cauchy.

Proof. First we establish that a \mathcal{I} -convergent sequence is \mathcal{I} -Cauchy. Suppose that (f_n) is \mathcal{I} -convergent to f. Since $\{n : |f_n(x) - f(x)| < \frac{\varepsilon}{2}\} \notin \mathcal{I}$. We can select an $n(\varepsilon) \in \mathbb{N}$ such that $|f_{n(\varepsilon)}(x) - f(x)| < \frac{\varepsilon}{2}$. The triangle inequality now yields that $\{n : |f_n(x) - f_{n(\varepsilon)}(x)| < \varepsilon\} \notin \mathcal{I}$. Since ε was arbitrary, (f_n) is \mathcal{I} -Cauchy. Now suppose that (f_n) is \mathcal{I} -Cauchy.

Now suppose that (f_n) is \mathcal{I} -Cauchy. Select n(1) such that

$$\left\{n:\left|f_{n}\left(x\right)-f_{n\left(1\right)}\left(x\right)\right|<1\right\}\notin\mathcal{I}$$

and let $A_1 = \{n : |f_n(x) - f_{n(1)}(x)| < 1\}$. Suppose that

$$n(1) < n(2) < n(3) < \dots < n(p)$$

have been selected in such a fashion that if $1 \le r \le s \le p$ and

$$A_{s} = \left\{ n : \left| f_{n} \left(x \right) - f_{n(s)} \left(x \right) \right| < 1/2^{s-1} \right\}$$

then $A_r \notin \mathcal{I}$ and $n(s) \in A_r$. Select N such that

$$\{n: |f_n(x) - f_N(x)| < 1/2^{P+1}\} \notin \mathcal{I}.$$

Since $\bigcap_{1}^{N} A_{j} \bigcap \{n : |f_{n}(x) - f_{N}(x)| < 1/2^{P+1}\} \notin \mathcal{I}$, there exists an

$$n(p+1) \in \bigcap_{1}^{N} A_{j} \bigcap \{n : |f_{n}(x) - f_{N}(x)| < 1/2^{P+1}\}$$

such that n(p) < n(p+1) and

$$A_{p+1} = \left\{ n : \left| f_n(x) - f_{n(p+1)}(x) \right| < 1/2^p \right\} \supseteq \left\{ n : \left| f_n(x) - f_N(x) \right| < 1/2^{P+1} \right\}.$$

Observe that $A_{p+1} \notin \mathcal{I}$ and $n(p+1) \in A_s$ for all $s \leq p+1$.

Note that since $|f_{n(p)}(x) - f_{n(p+1)}(x)| < 2^{-p}$, $(f_{n(p)}(x))$ is Cauchy, and hence there exists an f(x) such that $\lim_{p} f_{n(p)}(x) = f(x)$. We claim that (f_n) is \mathcal{I} -convergent to f(x). Let $\varepsilon > 0$ be given and select $p \in \mathbb{N}$ such that

$$\left|f_{n(p)}(x) - f(x)\right| < \frac{\varepsilon}{2}$$
 and $\varepsilon > 2^{-p}$.

Note that if $|f_n(x) - f(x)| \ge \varepsilon$, then $|f_{n(p)}(x) - f_n(x)| \ge \frac{\varepsilon}{2} > 2^{1-p}$, and hence n is not an element of A_p . It follows that $\{n : |f_n(x) - f(x)| \ge \varepsilon\} \in \mathcal{I}$ and that (f_n) is \mathcal{I} -convergent to f(x).

Theorem 3. Let \mathcal{I} satisfy the condition (AP) and let (f_n) be a sequence of bounded functions on D. Then (f_n) is \mathcal{I} -uniformly convergent on D if and only if for every $\varepsilon > 0$ there is an $n(\varepsilon) \in \mathbb{N}$ such that

$$\left\{n: \left\|f_n - f_{n(\varepsilon)}\right\|_{B(D)} < \varepsilon\right\} \notin \mathcal{I}$$
(1)

Note: The sequence (f_n) satisfying property (1) is said to be \mathcal{I} -uniformly Cauchy on D.

Proof. Assume that (f_n) converges \mathcal{I} -uniformly to a function f defined on D. Let $\varepsilon > 0$. Then we have $\left\{ n : \|f_n - f\|_{B(D)} < \varepsilon \right\} \notin \mathcal{I}$. We can select an $n(\varepsilon) \in \mathbb{N}$ such that $\left\{ n : \|f_{n(\varepsilon)} - f\|_{B(D)} < \varepsilon \right\} \notin \mathcal{I}$. The triangle inequality yields that $\left\{ n : \|f_n - f_{n(\varepsilon)}\|_{B(D)} < \varepsilon \right\} \notin \mathcal{I}$. Since ε is arbitrary, (f_n) is \mathcal{I} -uniformly Cauchy on D.

Conversely, assume that (f_n) is \mathcal{I} -uniformly Cauchy on D. Let $x \in D$ be fixed. By (1), for every $\varepsilon > 0$ there is an $n(\varepsilon) \in \mathbb{N}$ such that $\{n : |f_n(x) - f_{n(\varepsilon)}(x)| < \varepsilon\} \notin \mathcal{I}$. Hence $\{f_n(x)\}$ is \mathcal{I} -Cauchy, so by Lemma 10 we have that $\{f_n(x)\}$ converges \mathcal{I} -convergent to f(x). Then $f_n \to f(\mathcal{I} - convergent)$ on D. Now we shall show that this convergence must be uniform. Note that since \mathcal{I} satisfy the condition (AP), by (1) there is a $K \notin \mathcal{I}$ such that $||f_n - f_{n(\varepsilon)}||_{B(D)} < \frac{\varepsilon}{2}$ for all $n \ge n(\varepsilon)$ and $n \in K$. So for every $\varepsilon > 0$ there is a $K \notin \mathcal{I}$ and $n(\varepsilon) \in \mathbb{N}$ such that

$$\left|f_{n}\left(x\right) - f_{m}\left(x\right)\right| < \varepsilon \tag{2}$$

for all $n, m \ge n$ (ε) and $n, m \in K$ and for each $x \in D$. Fixing n and applying the limit operator on $m \in K$ in (2), we conclude that for every $\varepsilon > 0$ there is a $K \notin \mathcal{I}$ and an $n(\varepsilon) \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon$ for all $n \ge n_0$ and for each $x \in D$. Hence $f_n \rightrightarrows f(\mathcal{I}^* - convergent)$ on D, consequently $f_n \rightrightarrows f(\mathcal{I} - convergent)$ on D.

3. Applications

Using \mathcal{I} -uniform convergence, we can also get some applications. We merely state the following theorems and omit the proofs.

Theorem 4. Let \mathcal{I} satisfy the condition (AP). If a function sequence (f_n) converges \mathcal{I} -uniformly on [a, b] to a function f and f_n is integrable on [a, b], then f is integrable on [a, b]. Moreover,

$$\mathcal{I} - \lim_{a} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \mathcal{I} - \lim_{a} f_{n}(x) dx = \int_{a}^{b} f(x) dx$$

Theorem 5. Let \mathcal{I} satisfy the condition (AP). Suppose that (f_n) is a function sequence such that each (f_n) has a continuous derivative on [a,b]. If $f_n \to f(\mathcal{I} - convergent)$ on [a,b] and $f'_n \rightleftharpoons g(\mathcal{I} - convergent)$ on [a,b], then $f_n \rightrightarrows f(\mathcal{I} - convergent)$ on [a,b], where f is differentiable, and f' = g.

4. Function sequences that preserve \mathcal{I} - convergence

This section is motivated by a paper of Kolk [13]. Recall that function sequence (f_n) is called convergence-preserving (or conservative) on $D \subseteq \mathbb{R}$ if the transformed sequence $\{f_n(x)\}$ converges for each convergent sequence $x = (x_n)$ from D [13]. In this section, analogously, we describe the function sequences which preserve the \mathcal{I} -convergence of sequences. Our arguments also give a sequential characterization of the continuty of \mathcal{I} -limit functions of \mathcal{I} -uniformly convergent function sequences. This result is complementary to *Theorem 5*.

First we introduce the following definition.

Definition 6. Let $D \subseteq \mathbb{R}$ and (f_n) be a sequence of real functions on D. Then (f_n) is called a function sequence preserving \mathcal{I} -convergence (or \mathcal{I} -convergent conservative) on D if the transformed sequence $\{f_n(x)\}$ converges \mathcal{I} for each \mathcal{I} -convergent sequence $x = (x_n)$ from D. If (f_n) is \mathcal{I} -convergent conservative and preserves the limits of all \mathcal{I} -convergent sequences from D, then (f_n) is called \mathcal{I} -convergent regular on D.

Hence, if (f_n) is conservative on D, then (f_n) is \mathcal{I} -convergent conservative on D. But the following example shows that the converse of this result is not true.

Example 2. Let $K \notin \mathcal{I}$. Define $f_n : [0,1] \to \mathbb{R}$ by

$$f_{n}(x) = \begin{cases} 0 \ , \ n \in K \\ 1 \ , \ n \notin K \end{cases}$$

Suppose that (x_n) from [0,1] is an arbitrary sequence such that $\mathcal{I} - \lim x = L$. Then, for every $\varepsilon > 0$, $\{n : |f_n(x_n) - 0| \ge \varepsilon\} \in \mathcal{I}$. Hence $\mathcal{I} - \lim f_n(x_n) = 0$, so (f_n) is \mathcal{I} -convergent conservative on [0,1]. But observe that (f_n) is not conservative on [0,1].

Now we give the first result of this section. But we need the following lemma:

Lemma 2. Let \mathcal{I} satisfy the condition (AP). If $(f_n^r(x))$ is a countable collection of sequences that are \mathcal{I}^* -convergent, then there exists $\lambda : \mathbb{N} \to \mathbb{N}$ such that $\lim_n f_{\lambda(k)}^r(x)$ exists for each r and $\{\lambda(k) : k \in \mathbb{N}\} \notin \mathcal{I}$.

Proof. Let F be the filter generated by convergence in \mathcal{I}^* -convergence. Since each $(f_n^r(x))$ is \mathcal{I}^* -convergent, there is an $A^r \in F$ such that $(f_n^r(x)) \in c_{A^r}$. Since F has property (A), there is an $A \in F$ such that $|A \setminus A^r| < \infty$ for each r. Suppose $A = \{n_1, n_2, \ldots\}$ where $n_1 < n_2 < \ldots$ and $\lambda : \mathbb{N} \to \mathbb{N}$ satisfies $\lambda(k) = n_k$ for all k. Now $\lim_n f_{\lambda(k)}^r(x)$ exists for each r and $\{\lambda(k) : k \in \mathbb{N}\} = A \notin \mathcal{I}$. \Box

Theorem 6. Let \mathcal{I} satisfy the condition (AP) and let (f_k) be a sequence of functions defined on closed interval $[a,b] \subset \mathbb{R}$. Then (f_k) is \mathcal{I} -convergent conservative on [a,b] if and only if (f_k) converges \mathcal{I} -uniformly convergent on [a,b] to a continuous function.

Proof. Necessity. Assume that (f_k) is \mathcal{I} -convergent conservative on [a, b]. Choose the sequence $(v_k) = (t, t, ...)$ for each $t \in [a, b]$. Since $\mathcal{I} - \lim v_k = t$, $\mathcal{I} - \lim f_k(v_k)$ exists, hence $\mathcal{I} - \lim f_k(v_k) = f(t)$ for all $t \in [a, b]$. We claim that fis continuous on [a, b]. To prove this we suppose that f is not continuous at a point $t_0 \in [a, b]$. Then there exists a sequence (u_k) in [a, b] such that $\lim u_k = t_0$, but $\lim f(u_k)$ exists and $\lim f(u_k) \neq f(t_0)$. Since $f_k \to f(\mathcal{I} - convergent)$ on [a, b]and \mathcal{I} satisfy the condition (AP), we obtain $f_k \to f(\mathcal{I}^* - convergent)$ on [a, b]. Hence, for each j, $\{f_k(u_j) - f(u_j)\} \to 0(\mathcal{I}^* - convergent)$. Hence there exists $\lambda : \mathbb{N} \to \mathbb{N}$ such that $\{\lambda(k) : k \in \mathbb{N}\} \notin \mathcal{I}$ and

$$\lim \left[f_{\lambda(k)}\left(u_{j}\right) - f\left(u_{j}\right) \right] = 0$$

for each j. Now, by the "diagonal process" [1, p.192] we can choose an increasing index sequence (n_k) in such a way that $\{n_k : k \in \mathbb{N}\} \notin \mathcal{I}$ and $\lim [f_{n_k}(u_k) - f(u_k)] = 0$. Now define a sequence $x = (t_i)$ by

$$t_{i} = \begin{cases} t_{0} , i = n_{k} \text{ and } i \text{ is odd} \\ u_{k} , i = n_{k} \text{ and } i \text{ is even} \\ 0 , otherwise. \end{cases}$$

Hence $t_i \to t_0 (\mathcal{I}^* - convergent)$, which implies $\mathcal{I} - \lim t_i = t_0$. But if $i = n_k$ and i is odd, then $\lim f_{n_k}(t_0) = f(t_0)$, and if $i = n_k$ and i is even, then $\lim f_{n_k}(u_k) = \lim [f_{n_k}(u_k) - f(u_k)] + \lim f(u_k) \neq f(t_0)$. Hence $\{f_i(t_i)\}$ is not \mathcal{I}^* - convergent since the sequence $\{f_i(t_i)\}$ converges to two different limit points and has two disjoint subsequences whose index set does not belong to \mathcal{I} . So, the sequence $\{f_i(t_i)\}$ is not \mathcal{I} -convergent, which contradicts the hypothesis. Thus f must be continuous on [a, b]. It remains to prove that (f_k) converges \mathcal{I} -convergent uniformly on [a, b] to f. Assume that (f_k) is not \mathcal{I} -uniformly convergent on [a, b] to f. Hence, for an arbitrary index sequence (n_k) with $\{n_k : k \in \mathbb{N}\} \notin \mathcal{I}$, there exists a number $\varepsilon_0 > 0$

and numbers $t_k \in [a, b]$ such that $|f_{n_k}(t_k) - f(t_k)| \ge 2\varepsilon_0$ $(k \in \mathbb{N})$. The bounded sequence $x = (t_k)$ contains a convergent subsequence (t_{k_i}) , $\mathcal{I} - \lim t_{k_i} = \alpha$, say. By the continuity of f, $\lim f(t_{k_i}) = f(\alpha)$. So there is an index i_0 such that $|f(t_{k_i}) - f(\alpha)| < \varepsilon_0$ $(i \ge i_0)$. For the same i's, we have

$$\left|f_{n_{k_i}}(t_{k_i}) - f(\alpha)\right| \ge \left|f_{n_{k_i}}(t_{k_i}) - f(t_{k_i})\right| - \left|f(t_{k_i}) - f(\alpha)\right| \ge \varepsilon_0.$$
(3)

Now, defining

$$u_j = \begin{cases} \alpha & , \ j = n_{k_i} \text{ and } j \text{ is odd} \\ t_{k_i} & , \ j = n_{k_i} \text{ and } j \text{ is even} \\ 0 & , \text{ otherwise,} \end{cases}$$

we get $u_j \to \alpha \left(\mathcal{I}^* - convergent \right)$. Hence $\mathcal{I} - \lim u_j = \alpha$. But if $j = n_{k_i}$ and j is odd, then $\lim f\left(t_{k_i}\right) = f\left(\alpha\right)$, and if $j = n_{k_i}$ and j is even, then, by (3), $\lim f\left(t_{k_i}\right) \neq f\left(\alpha\right)$. Hence $\{f_i\left(t_i\right)\}$ is not \mathcal{I}^* -convergent since the sequence $\{f_i\left(t_i\right)\}$ converges to two different limit points and has two disjoint subsequences whose index set does not belong to \mathcal{I} So, the sequence $\{f_i\left(t_i\right)\}$ is not \mathcal{I} -convergent, which contradicts the hypothesis. Thus (f_k) must be \mathcal{I} -uniformly convergent to f on [a, b].

Sufficiency. Assume that $f_n \rightrightarrows f(\mathcal{I} - convergent)$ on [a, b] and f is continuous. Let $x = (x_n)$ be a \mathcal{I} -convergent sequence in [a, b] with $\mathcal{I} - \lim x_n = x_0$. Since \mathcal{I} satisfy the condition (AP), $x_n \to x_0$ ($\mathcal{I}^* - convergent$), so there is an index sequence $\{n_k\}$ such that $\lim x_{n_k} = x_0$ and $\{n_k : k \in \mathbb{N}\} \notin \mathcal{I}$. By the continuity of f at x_0 , $\lim f(x_{n_k}) = f(x_0)$. Hence $f(x_n) \to f(x_0)$ ($\mathcal{I}^* - convergent$). Let $\varepsilon > 0$ be given. Then there exists $K_1 \notin \mathcal{I}$ and a number $n_1 \in K_1$ such that $|f(x_n) - f(x_0)| < \frac{\varepsilon}{2}$ for all $n \ge n_1$ and $n \in K_1$. By assumption \mathcal{I} satisfy the condition (AP). Hence the \mathcal{I} -uniform convergence is equivalent to the \mathcal{I}^* -uniform convergence, so there exists a $K_2 \notin \mathcal{I}$ and a number $n_2 \in K_2$ such that $|f_n(t) - f(t)| < \frac{\varepsilon}{2}$ for every $t \in [a, b]$ for all $n \ge n_2$ and $n \in K_2$. Let $N := \max\{n_1, n_2\}$ and $K := K_1 \cap K_2$. Observe that $K \notin \mathcal{I}$. Hence taking $t = x_n$ we have

$$|f_n(x_n) - f(x_0)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x_0)| < \varepsilon$$

for all $n \geq N$ and $n \in K$. This shows that $f_n(x_n) \to f(x_0)(\mathcal{I}^* - convergent)$ which necessarily implies that $\mathcal{I} - \lim f_n(x_n) = f(x_0)$, whence the proof follows.

Theorem 6 contains the following necessary and sufficient condition for the continuity of \mathcal{I} -convergence limit functions of function sequences that converge \mathcal{I} -convergent uniformly on a closed interval.

Theorem 7. Let \mathcal{I} satisfy the condition (AP) and let (f_k) be a sequence of functions that converges \mathcal{I} -convergent uniformly on a closed interval [a,b] to a function f. The function f is continuous on [a,b] if and only if (f_k) is \mathcal{I} -convergent conservative on [a,b].

Now, we study the \mathcal{I} -convergence regularity of function sequences. If (f_k) is \mathcal{I} -convergent regular on [a, b], then obviously $\mathcal{I} - \lim f_k(t) = t$ for all $t \in [a, b]$. So, taking f(t) = t in *Theorem 6*, we immediately get the following.

Theorem 8. Let \mathcal{I} satisfy the condition (AP) and let (f_k) be a sequence of functions on [a,b]. Then (f_k) is \mathcal{I} -convergent regular on [a,b] if and only if \mathcal{I} -convergent uniformly on [a,b] to the function f defined by f(t) = t.

References

- R. G. BARTLE, *Elements of Real Analysis*, John Wiley & Sons, Inc., New York, 1964.
- [2] J. CONNOR, The statistical and strong p- Cesáro convergence of sequences, Analysis 8(1988), 47-63.
- [3] J. CONNOR, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32(1989), 194-198.
- [4] J. CONNOR, Two valued measures and summability, Analysis 10(1990), 373-385.
- [5] J. CONNOR, *R-Type summability methods, Cauchy criteria, P-sets and statis*tical convergence, Proc. Amer. Math. Soc. 115(1992), 319-327.
- [6] J. CONNOR J. KLINE, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197(1996), 389-392.
- [7] K. DEMIRCI, *I-limit superior and limit inferior*, Mathematical Communications 6(2001), 165-172.
- [8] K. DEMIRCI S. YARDIMCI, σ-core and *I* core of bounded sequences, J. Math.Anal. Appl. **290**(2004), 414-422.
- [9] O. DUMAN C. ORHAN, μ-statistically convergent function sequences, Czech. Math. Journal, 54(129) (2004), 143-422.
- [10] H. FAST, Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
- [11] A. R. FREEDMAN J. J. SEMBER, Densities and summability, Pacific J. Math. 95(1981), 293-305.
- [12] J. A. FRIDY, On statistical convergence, Analysis 5(1985), 301-313.
- E. KOLK, Convergence-preserving function sequences and uniform convergence, J. Math. Anal. Appl. 238(1999), 599-603.
- [14] P. KOSTYRKO, M. MAČAJ, T. ŠALÁT, Statistical convergence and *I*convergence, Real Anal. Exchange, to appear
- [15] P. KOSTYRKO, M. MAČAJ, T. ŠALÁT, *I-convergence*, Real Anal. Exchange, to appear
- [16] H. I. MILLER, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347(1995), 1811-1819.
- [17] J. NAGATA, Modern General Topology, North Holland, Amsterdam-London, 1974.
- [18] I. NIVEN, H. S. ZUCKERMAN, An Introduction to the Theory of Numbers, fourth ed., Wiley, New York, 1980.

- [19] T. ŠALÁT, On statistically convergent sequences of real numbers, Math. Slovaca 30(1980), 139-150.
- [20] H. STEINHAUS, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2(1951), 73-74.

80