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7 and Z* convergent function sequences

F. GEZER* AND S. KARAKUS'

Abstract. In this paper, we introduce the concepts of T—pointwise
convergence, IT—uniform convergence, IT*—pointwise convergence and
T*—uniform convergence of function sequences and then we examine
the relation between them.
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1. Introduction

Steinhaus [20] introduced the idea of statistical convergence [see also Fast [10]]. If
K is a subset of positive integers N, then K, denotes the set {k € K : k <n} and
| K'\,| denotes the cardinality of K,,. The natural density of K [18] is given by 6(K) :=
lim,, £ |K,|, if it exists. The number sequence z = () is statistically convergent
to L provided that for every e > 0 the set K := K(¢) :={ke€N: |z — L| > ¢}
has natural density zero; in that case we write st — lima = L [10,12]. Hence z is
statistically convergent to L if (01XK(5))n — 0 (as n — oo, for every € > 0), where
C1 is the Cesdro mean of order one and x f is the characteristic function of the set K.
Properties of statistically convergent sequences have been studied in [2, 12,16, 19].

Statistical convergence can be generalized by using a nonnegative regular sum-
mability matrix A in place of Cf.

Following Freedman and Sember [11], we say that a set K C N has A—density if
04 (K) = lim, (Axk), = lim, D, ank exists, where A = (anx) is a nonnegative
regular matrix.

The number sequence x = (xy,) is A—statistically convergent to L provided that
for every € > 0 the set K (¢) has A—density zero [3,11,16].

Connor gave an extension of the notion of statistical convergence where the
asymptotic density is replaced by a finitely additive set function. Let p be a finitely
additive set function taking values in [0, 1] defined on a field T" of subsets of N such
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that if |A] < oo, then p(A4) = 0; if A C B and p(B) = 0, then pu(A4) = 0; and
p(N)=1[4,6].

The number of sequence x = (x) is u—statistically convergent to L provided
that p{k € N: |z — L| > e} =0 for every ¢ > 0 [4,6].

Let X # (. A class S C 2% of subsets of X is said to be an ideal in X
provided that S is additive and hereditary, i.e. if S satisfies these conditions:
(i)D e S, (it) ABe S=AUuBeS, (iii)AeS BC A= BelS [15].
An ideal is called non-trivial if X ¢ S. A non-trivial ideal S in X is called admis-
sible if {x} € S for each z € X [14].

The non-empty family of sets f C 2% is a filter on X if and only if (i) 0 & F, (ii)
for each A, B € F we have ANB € [, (uii) for each A € | and each B D A we have
B € F.ZI C 2% is a non-trivial ideal if and only if f = f (Z) :={X - A: A€ T}
is a filter on X [17].

Let F be a filter. / has property (A) if for any given countable subset {A;} of
I, there exists an A € F such that [A\ A;| < oo for each j [5].

Kostyrko, Macaj and Salét [14, 15] introduced two types of “ideal convergence”.

Let Z be a non-trivial ideal in N. A sequence x = (xy) of real numbers is said
to be Z—convergent to L if for every € > 0 the set A(e) :={k e N: |z, — L| > ¢}
belongs to Z [14]. In this case we write Z—lim « = L.

Let Z be an admissible ideal in N. A sequence x = (zj) of real numbers is
said to be Z* —convergent to L if there is a set H € Z, such that for M = N\H =
{m1 <mgy < ...} we have 1iinacmk = L. In this case we write Z*—limz = L [14].

For every admissible ideal Z the following relation between them holds: Let 7
be an admissible ideal in N. If Z*—limit « = L, then Z—limit « = L [14].

Note that for some ideals the converse of this result holds (see [14, Example 3.1]).
Kostyrko, Mac¢aj and Saldt have given the necessary and sufficent condition for
equivalence of 7 and Z*—convergences. This condition is similar to the additive
property for null sets in [4,11].

An admissible ideal Z in N is said to satisfy the condition (AP) if for every
countable system {Aj, As,...} of mutually disjoint sets belonging to Z there exist
sets B; C N, (j =1,2,...) such that the symmetric differences A;AB;(j =1,2,...)
are finite and B = ;leBj belong to 7 [14].

It is known that Z—limit z = L < Z*—limit ¢ = L if and only if Z has the
additive property [14] . Some results on Z—convergence may be found in [7, 8,14, 15].

Note that if we define Zs, = {K CN:04 (K) =0},Zs5,, ={K CN:§(K) =0}
and Z, = {K CT: u(K) =0}, then we get the definition of A—statistical conver-
gence, statistical convergence and p—statistical convergence, respectively.

In this paper we give the Z analogues of results given by Duman and Orhan [9].

Throughout the paper Z will be an admissible ideal, D C R and (f,,) a sequence
of real functions on D.

2. 7 and 7" convergent function sequences

Definition 1. (f,) converges T*—pointwise to f <Ve>0andVex e D, 3K, ¢7
and Ing = nge ) € Kz 2V >ng andn € K, , | fo (x) — f(2)] <e.
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In this case we will write f,, — f (Z* — convergent) on D.

Definition 2. We say that (f,,) converges Z*—uniform to f <=V e >0 and V
r€D,IK¢T and Ing =nge) € K 2Vn>ng andn € K , |fn(z) — f(z)] <e.

In this case we will write f, = f (Z* — convergent) on D.

Definition 3. (f,) converges T—pointwise to f <=V e >0 andV x € D,

{n:|fn(@)—f(z) =€} el

In this case we will write f,, — f (Z — convergent) on D.

Definition 4. The sequence (fn) of bounded functions on D converges I-
uniformly to f <=V e>0andV xz € D, {n:|fn— fll >¢e} €I, where the form
|-l 5(py is the usual supremum norm on B (D), the space of bounded functions on

In this case we will write f,, = f (Z — convergent) on D.

As in the ordinary case the property of Definition I implies that of Definition 3
and, of course for bounded functions, the property of Definition 2 implies that
of Definition 4. If T satisfy the condition (AP), then Definitions 1 and 3 are
equivalent, and Definition 2 and 4 are equivalent.

The following result is a Z analogue of the result that is well-known in analysis.

Theorem 1. Let for alln, f, be continuous on D. If f,, = f (Z* — convergent)
on D, then f is continuous on D.

Proof. Assume f, =% f(Z* — convergent) on D. Then for every € > 0, there
exists a set K ¢ Z and Ing = ng) € K such that |f, (z) — f(z)| < § for each
x € D and for all n > n, and n € K. Let 29 € D. Since f,, is continuous at
xg € D, there is a § > 0 such that |z — x| < 0 implies |fpn, () — fn, (z0)| < 5 for
each x € D. Now for all & € D for which |z — x| < §, we have

[f (@) = f (o)l < [f (&) = fuo (@) + | Frg () = Frg (o) + |fny (20) = f (0)| <&

Since z¢ € D is arbitrary, f is continuous on D. O
Now from Theorem 5 we get the following.
Corollary 1. Let all functions f, be continuous on a compact subset D of R,
and let T satisfy the condition (AP).
If f. = f (Z — convergent) on D, then f is continuous on D.
The next example shows that neither of the converses of Theorem 5 and Corol-

lary 6 are true.
Example 1. Let K ¢ T and define f, : [0,1) = R by

1

s ,n¢K
f"(x):{—i" nekK

1+zm™ 2 :

Then we have f,, — f = 0(Z* — convergent) on [0,1). Hence we get f, — f =
0 (Z — convergent) on [0,1). Though all f,, and f are continuous on [0, 1), it follows
from Definition 4 that the Z — convergent of (f,) is not uniform for

1 1
en:= sup |fn(x)—f(z)]== and I -—limc,==#0.
2€[0,1) 2 2

Now we will give the following result that is an analogue of Dini’s theorem.
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Theorem 2. Let T satisfy the condition (AP). Let D be a compact subset of R
and (fy,) a sequence of continuous functions on D. Assume that f is continuous and
fn — f(Z — convergent) on D. Also, let (f,) be monotonic decreasing on D; i.e.
fn(2) > fos1(x) (n=1,2,...) for everyx € D. Then f, = f(Z — convergent) on
D.

Proof. Write g, (x) = fn () — f (z). By hypothesis, each g, is continuous and
gn — 0(Z — convergent) on D, also (g,) is a monotonic decreasing sequence on
D. Now, since g, — 0(Z — convergent) on D and Z satisfy the condition (AP),
gn — 0(I* — convergent) on D. Hence for every ¢ > 0 and each z € D there
exists K, ¢ Z and a number n (z) = n(r,e) € K, such that 0 < g, () < § for
all n > n(z) and n € K,. Since g, (x) is continuous at = € D, for every ¢ > 0
there is an open set J (z) which contains x such that |g, ) (t) — gn@) (z)| < § for
all t € J (z). Hence given € > 0, by monotonicity we have

for every t € J(z) and for all n > n(z) and n € K,. Since D ¢ |J J(z) and
xzeD
D is a compact set, by the Heine-Borel theorem D has a finite open covering such

that D C J (z1) UJ (x2) U...UJ (Tp). Now, let K := K, N K,, N...N K, and
N := max{n(z1),n(x2),....,n (xm)}. Observe that K ¢ Z. Then 0 < g, (t) < ¢
for every t € D and for allm > N and n € K. So g, = 0(Z* — convergent) on D.
Consequently g, = 0 (Z — convergent) on D, which completes the proof. O

Now we will give the Cauchy criterion for Z—uniform convergence but we first
need a definition and a lemma:

Definition 5. (f,) is Z—Cauchy if for every ¢ > 0 and every x € D there is
an n(¢) € N such that

{n:]fa (@) = fa) (@) 2} €T

Lemma 1. Let (f,) be a sequence of a real function on D. (f,) is T—convergent
if and only if (fr) is T— Cauchy.

Proof. First we establish that a Z—convergent sequence is Z—Cauchy. Suppose
that (f,) is Z—convergent to f. Since {n : |f, (z) — f (z)| < £} ¢ T .We can select
an n () € N such that |fn(s) ()= f (x)’ < 5. The triangle inequality now yields
that {n : |fn (x) = fu@e (@)| <€} ¢ I. Since € was arbitrary, (f,) is Z—Cauchy.

Now suppose that (fy,) is Z—Cauchy. Select n (1) such that

{n:|fa(@) = foqy (@) <1} ¢ T
and let Ay = {n:|fu (x) — foq) (z)| <1} . Suppose that
n(l)<n(2)<n(3) <..<n(p)
have been selected in such a fashion that if 1 <r < s < p and

As = {n: |fa (@) = fae @] < 1/2°7}
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then A, ¢ 7 and n (s) € A,. Select N such that
{n:lfa(@) = fn(2)] <1/27H1} ¢ 1.
Since N} 4;N {n:|fu(@) = fn (x)] < 1/2°T1} ¢ T, there exists an

n(p+1)e ﬂA ({n: 1 (2) = fn ()] < 172741}

such that n (p) <n(p+ 1) and

Apir =A{n: [ fn (2) = fasn) (@)] <1/2PF 2 {n: [ fa (2) = fu ()] < 1/2741.

Observe that App1 ¢ Z and n(p+1) € A; forall s <p+1.

Note that since |fn(p) (%) = frp+1) (x)| < 27P, (fu(p (z)) is Cauchy, and hence
there exists an f(x) such that lim, f,,) () = f(z). We claim that (f,) is
T—convergent to f (x). Let € > 0 be given and select p € N such that

|fn(p) (x)—f(x)| < % and & >27P.
Note that if | f, (z) — f ()| > €, then |f,p) (@) — fu (z)| = % > 217P and hence n
is not an element of A,. It follows that {n : |f, (z) — f ()| > ¢} € T and that (f,,)
is Z—convergent to f (z). O

Theorem 3. Let I satisfy the condition (AP) and let (f,) be a sequence of
bounded functions on D. Then (f,) is Z—uniformly convergent on D if and only if
for every e > 0 there is an n () € N such that

{n: an _fn(s)”B(D) < E} ¢I (1)

Note: The sequence (f,) satisfying property (1) is said to be Z—uniformly
Cauchy on D.
Proof. Assume that (f,) converges Z—uniformly to a function f defined on

D. Let € > 0. Then we have {n: 1 fn = fllgpy < é‘} ¢ ZT. We can select an
n (¢) € N such that {n : ||fn(€) — fHB(D) < 5} ¢ T. The triangle inequality yields

that {n: an — f”(E)”B(D) < E} ¢ T. Since ¢ is arbitrary, (f,) is Z—uniformly
Cauchy on D.

Conversely, assume that (f,,) is Z—uniformly Cauchy on D. Let = € D be fixed.
By (1), for every e > 0 thereis ann (¢) € Nsuch that {n : | fu () — far) ()| <e} ¢
Z. Hence {f, (z)} is T—Cauchy, so by Lemma 10 we have that {f, ()} converges
Z—convergent to f (z). Then f, — f(Z — convergent) on D. Now we shall show
that this convergence must be uniform. Note that since Z satisfy the condition
(AP), by (1) there is a K ¢ T such that an - f”(E)HB(D) < 5 for alln > n(¢) and
n € K. So for every € > 0 there is a K ¢ 7 and n (¢) € N such that

[fn (2) = fm (2)] <& (2)
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for all n,m > n(e) and n,m € K and for each € D. Fixing n and applying the
limit operator on m € K in (2), we conclude that for every € > 0 thereisa K ¢ 7
and an n (¢) € N such that |f, (z) — f (z)| < ¢ for all n > ng and for each x € D.
Hence f,, = f (Z* — convergent) on D, consequently f, = f(Z — convergent) on
D. O

3. Applications

Using Z—uniform convergence, we can also get some applications. We merely state
the following theorems and omit the proofs.

Theorem 4. Let T satisfy the condition (AP). If a function sequence (f)
converges T—uniformly on [a,b] to a function f and f, is integrable on [a,b], then
f 1is integrable on [a,b]. Moreover,

I—lim/abfn(ac)dx:/:I—limfn(x)dx:/abf(ac)dx

Theorem 5. Let T satisfy the condition (AP). Suppose that (f,) is a func-
tion sequence such that each (fy) has a continuous derivative on [a,b]. If f, —
f (T — convergent) on [a,b] and f, = g (I — convergent) on [a,b], then f, =
f (T — convergent) on [a,b], where f is differentiable, and f/ =g.

4. Function sequences that preserve 7— convergence

This section is motivated by a paper of Kolk [13]. Recall that function sequence
(frn) is called convergence-preserving (or conservative) on D C R if the transformed
sequence {f, ()} converges for each convergent sequence xz = (z,,) from D [13].
In this section, analogously, we describe the function sequences which preserve the
T —convergence of sequences. Our arguments also give a sequential characterization
of the continuty of Z—limit functions of Z—uniformly convergent function sequences.
This result is complementary to Theorem 5.

First we introduce the following definition.

Definition 6. Let D C R and (f,) be a sequence of real functions on D. Then
(frn) is called a function sequence preserving Z-convergence (or I-convergent conser-
vative) on D if the transformed sequence { f, (x)} converges T for each T—convergent
sequence x = (xy,) from D. If (f,) is T—convergent conservative and preserves the
limits of all T— convergent sequences from D, then (fy) is called T— convergent reg-
ular on D.

Hence, if (f,) is conservative on D, then (f,) is Z—convergent conservative on
D. But the following example shows that the converse of this result is not true.

Example 2. Let K ¢ Z. Define f, : [0,1] — R by

o ={1 e
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Suppose that (z,,) from [0, 1] is an arbitrary sequence such that Z — limz = L.
Then, for every e > 0, {n : |f, (xn) — 0| > €} € Z. Hence Z—lim f,, (x,) = 0, so (f»,)
is T—convergent conservative on [0, 1]. But observe that (f,,) is not conservative on
[0,1].

Now we give the first result of this section. But we need the following lemma:

Lemma 2. Let T satisfy the condition (AP). If (fI (x)) is a countable collec-
tion of sequences that are I*—convergent, then there exists X\ : N — N such that
limy, f} ) (2) exists for each r and {\ (k) : k € N} ¢ T.

Proof. Let Fbe the filter generated by convergence in Z*—convergence. Since
each (f} (x)) is T*—convergent, there is an A™ € | such that (f] (x)) € car. Since
F has property (A), there is an A € [ such that |4\ A"| < co for each r. Suppose
A = {n1,ng,...} where ny < ny < ... and A : N — N satisfies A (k) = ny, for all k.
Now lim,, f{;, () exists for each 7 and {A (k) : ke N} =A¢T. O

Theorem 6. Let T satisfy the condition (AP) and let (fx) be a sequence of
functions defined on closed interval [a,b] C R. Then (fi) is T—convergent conser-
vative on [a,b] if and only if (f) converges T—uniformly convergent on [a,b] to a
continuous function.

Proof. Necessity. Assume that (f;) is Z—convergent conservative on [a,d].
Choose the sequence (vx) = (t,t,...) for each t € [a,b]. Since Z — limv, = ¢,
T —lim fy, (vx) exists, hence 7 —lim f, (vg) = f (¢) for all t € [a, b] . We claim that f
is continuous on [a, b] . To prove this we suppose that f is not continuous at a point
to € [a,b]. Then there exists a sequence (uy) in [a,b] such that limuy = to, but
lim f (ug) exists and lim f (ug) # f(to). Since fr, — f(Z — convergent) on [a, ]
and 7 satisfy the condition (AP), we obtain fr — f (Z* — convergent) on [a,b].
Hence, for each j, {fx (u;) — f (u;)} — 0(Z* — convergent). Hence there exists
A: N — Nsuch that {A (k) : k € N} ¢ 7 and

i [ fagey (ug) = f (uz)] =0

for each j. Now, by the “diagonal process” [1,p.192] we can choose an increasing in-
dex sequence (ny) in such a way that {ny : k € N} ¢ 7 and lim [f,,, (ur) — f (ug)] =
0. Now define a sequence x = (;) by

to, i =ng and i is odd
ti=1< ug,i=ng and i is even
0 , otherwise.

Hence t; — to (Z* — convergent), which implies Z — lim¢;, = to. But if i =
ng and 4 is odd, then lim f,, (to) = f(to), and if ¢ = ni and ¢ is even, then
lim fp, (ug) = Um[fn, (ur) — f (ur)] + lim f (ur) # f(to). Hence {f; (¢;)} is not
T*— convergent since the sequence {f; (¢;)} converges to two different limit points
and has two disjoint subsequences whose index set does not belong to Z . So, the
sequence { f; (¢t;)} is not Z—convergent, which contradicts the hypothesis. Thus f
must be continuous on [a, b]. It remains to prove that (fx) converges Z—convergent
uniformly on [a,b] to f. Assume that (fx) is not Z—uniformly convergent on [a, b]
to f, then (fx) is not Z*—uniformly convergent on [a,b] to f. Hence, for an ar-
bitrary index sequence (ng) with {ng : k € N} ¢ 7, there exists a number g9 > 0
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and numbers t; € [a,b] such that |fp, (tx) — f (tx)| > 2e0 (k € N). The bounded
sequence x = (t;) contains a convergent subsequence (tx,), Z — limtg, = «, say.
By the continuity of f, lim f (tx,) = f(«). So there is an index iy such that
|f(tk;) — f ()| <eo (i >1,). For the same i’s, we have

fnk,i (tki) —f (a) fnkl (tk?i) - f (tki) - ‘f(tk?z) —f (a)| 2 €o. (3)
Now, defining

>

a , j=mng, and j is odd
uj = 1§ ty, , j =mng, and j is even
0 , otherwise,

we get u; — o (Z* — convergent) . Hence 7T —limu; = a. But if j = ny, and j is odd,
then lim f (t,) = f (o), and if j = ng, and j is even, then, by (3), lim f (tx,) # f (a).
Hence {f; (t;)} is not T*—convergent since the sequence {f; (¢;)} converges to two
different limit points and has two disjoint subsequences whose index set does not
belong to Z So, the sequence {f; (¢;)} is not Z—convergent, which contradicts the
hypothesis. Thus (fx) must be Z—uniformly convergent to f on [a,b].

Sufficiency. Assume that f, = f (Z — convergent) on [a,b] and f is continuous.
Let © = (z,) be a T—convergent sequence in [a,b] with Z—limz,, = x¢. Since
7 satisfy the condition (AP), x, — xo(Z* — convergent), so there is an index
sequence {nx} such that limx,, = x¢ and {ny : kK € N} ¢ Z. By the continuity of f
at o, im f (xy,, ) = f (20). Hence f(x,) — f(x0) (Z* — convergent) . Let € > 0 be
given. Then there exists Ky ¢ Z and a number n; € K such that |f (z,) — f (z0)] <
S for all n > n; and n € K. By assumption 7 satisfy the condition (AP). Hence
the Z—uniform convergence is equivalent to the Z* —uniform convergence, so there
exists a Ky ¢ 7 and a number ny € K3 such that [f, (t) — f(t)] < § for every
t € [a,b] for all n > ng and n € K. Let N := max{nj,no} and K := K; N K.
Observe that K ¢ Z. Hence taking ¢t = x,, we have

[fn (@n) = f (o) < |fo (2n) = f (2n)| + [f (xn) = f (20)] <€

for all n > N and n € K. This shows that f, (x,) — f (zo) (Z* — convergent)
which necessarily implies that Z — lim f,, (z,,) = f (zo), whence the proof follows.
O

Theorem 6 contains the following necessary and sufficient condition for the
continuity of Z—convergence limit functions of function sequences that converge
Z—convergent uniformly on a closed interval.

Theorem 7. Let T satisfy the condition (AP) and let (fix) be a sequence of
functions that converges T—convergent uniformly on a closed interval [a,b] to a
function f. The function f is continuous on [a,b] if and only if (fi) is T—convergent
conservative on [a,b].

Now, we study the Z—convergence regularity of function sequences. If (fx) is
T—convergent regular on [a,b], then obviously Z — lim fj, (t) =t for all ¢ € [a,b].
So, taking f (t) =t in Theorem 6, we immediately get the following.

Theorem 8. Let T satisfy the condition (AP) and let (fx) be a sequence
of functions on [a,b]. Then (fi) is T—convergent regular on [a,b] if and only if
T—convergent uniformly on [a,b] to the function f defined by f (t) = t.



Z AND I* CONVERGENT FUNCTION SEQUENCES 79

References
[1] R. G.BARTLE, Elements of Real Analysis, John Wiley & Sons, Inc., New York,
1964.
2] J. CONNOR, The statistical and strong p— Cesdro convergence of sequences,
[ g p 9 q
Analysis 8(1988), 47-63.
[3] J. CONNOR, On strong matriz summability with respect to a modulus and sta-
tistical convergence, Canad. Math. Bull. 32(1989), 194-198.
[4] J. CONNOR, Two valued measures and summability, Analysis 10(1990), 373-
385.
[5] J. CONNOR, R-Type summability methods, Cauchy criteria, P-sets and statis-
tical convergence, Proc. Amer. Math. Soc. 115(1992), 319-327.
[6] J. CoNNOR J. KLINE, On statistical limit points and the consistency of statis-
tical convergence, J. Math. Anal. Appl. 197(1996), 389-392.
[7] K. DEMIRCI, Z-limit superior and limit inferior, Mathematical Communica-
tions 6(2001), 165-172.
[8] K.DEMIRCI S. YARDIMCI, o—core and I— core of bounded sequences, J.
Math.Anal. Appl. 290(2004), 414-422.
[9] O.DumaN C. ORHAN, p—statistically convergent function sequences, Czech.
Math. Journal, 54(129) (2004), 143-422.
[10] H. FAST, Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
[11] A.R.FREEDMAN J.J. SEMBER, Densities and summability, Pacific J. Math.
95(1981), 293-305.
[12] J. A.FRIDY, On statistical convergence, Analysis 5(1985), 301-313.
[13] E. KoLk, Convergence-preserving function sequences and uniform convergence,
J. Math. Anal. Appl. 238(1999), 599-603.
[14] P. KOSTYRKO, M.MACAJ, T.SALAT, Statistical convergence and I-
convergence, Real Anal. Exchange, to appear
[15] P. KOSTYRKO, M. MACAJ, T.SALAT, Z-convergence, Real Anal. Exchange,
to appear
[16] H.I. MILLER, A measure theoretical subsequence characterization of statistical
convergence, Trans. Amer. Math. Soc. 347(1995), 1811-1819.
[17] J.NAGATA, Modern General Topology, North Holland, Amsterdam-London,
1974.
[18] I. N1vEN, H.S.ZUCKERMAN, An Introduction to the Theory of Numbers,

fourth ed., Wiley, New York, 1980.



80 F. GEZER AND S. KARAKUS

[19] T. SALAT, On statistically convergent sequences of real numbers, Math. Slovaca
30(1980), 139-150.

[20] H. STEINHAUS, Sur la convergence ordinaire et la convergence asymptotique,
Collog. Math. 2(1951), 73-74.



