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I and I∗ convergent function sequences
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†

Abstract. In this paper, we introduce the concepts of I−pointwise
convergence, I−uniform convergence, I∗−pointwise convergence and
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1. Introduction

Steinhaus [20] introduced the idea of statistical convergence [see also Fast [10]]. If
K is a subset of positive integers N, then Kn denotes the set {k ∈ K : k ≤ n} and
|Kn| denotes the cardinality ofKn. The natural density ofK [18] is given by δ(K) :=
limn

1
n |Kn| , if it exists. The number sequence x = (xk) is statistically convergent

to L provided that for every ε > 0 the set K := K(ε) := {k ∈ N : |xk − L| ≥ ε}
has natural density zero; in that case we write st − limx = L [10, 12] . Hence x is
statistically convergent to L if

(
C1χK(ε)

)
n
→ 0 (as n → ∞, for every ε > 0), where

C1 is the Cesáro mean of order one and χK is the characteristic function of the setK.
Properties of statistically convergent sequences have been studied in [2, 12, 16, 19].

Statistical convergence can be generalized by using a nonnegative regular sum-
mability matrix A in place of C1.

Following Freedman and Sember [11], we say that a set K ⊆ N has A−density if
δA (K) := limn (AχK)n = limn

∑
k∈K ank exists, where A = (ank) is a nonnegative

regular matrix.
The number sequence x = (xk) is A−statistically convergent to L provided that

for every ε > 0 the set K (ε) has A−density zero [3, 11, 16] .
Connor gave an extension of the notion of statistical convergence where the

asymptotic density is replaced by a finitely additive set function. Let µ be a finitely
additive set function taking values in [0, 1] defined on a field Γ of subsets of N such
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that if |A| < ∞, then µ (A) = 0; if A ⊂ B and µ (B) = 0, then µ (A) = 0; and
µ (N) = 1 [4, 6] .

The number of sequence x = (xk) is µ−statistically convergent to L provided
that µ {k ∈ N : |xk − L| ≥ ε} = 0 for every ε > 0 [4, 6] .

Let X �= ∅. A class S ⊆ 2X of subsets of X is said to be an ideal in X
provided that S is additive and hereditary, i.e. if S satisfies these conditions:
(i) ∅ ∈ S, (ii) A,B ∈ S ⇒ A ∪ B ∈ S, (iii) A ∈ S, B ⊆ A ⇒ B ∈ S [15].
An ideal is called non-trivial if X /∈ S. A non-trivial ideal S in X is called admis-
sible if {x} ∈ S for each x ∈ X [14].

The non-empty family of sets � ⊆ 2X is a filter on X if and only if (i) ∅ /∈ �, (ii)
for each A,B ∈ � we have A∩B ∈ � , (iii) for each A ∈ � and each B ⊃ A we have
B ∈ �. I ⊂ 2X is a non-trivial ideal if and only if � := � (I) := {X −A : A ∈ I}
is a filter on X [17] .

Let � be a filter. � has property (A) if for any given countable subset {Aj} of
�, there exists an A ∈ � such that |A \Aj | < ∞ for each j [5].

Kostyrko, Mačaj and Šalát [14, 15] introduced two types of “ideal convergence”.
Let I be a non-trivial ideal in N. A sequence x = (xk) of real numbers is said

to be I−convergent to L if for every ε > 0 the set A(ε) := {k ∈ N : |xk − L| ≥ ε}
belongs to I [14]. In this case we write I− lim x = L.

Let I be an admissible ideal in N. A sequence x = (xk) of real numbers is
said to be I∗−convergent to L if there is a set H ∈ I, such that for M = N\H =
{m1 < m2 < ...} we have lim

k
xmk

= L. In this case we write I∗− limx = L [14] .

For every admissible ideal I the following relation between them holds: Let I
be an admissible ideal in N. If I∗−limit x = L, then I−limit x = L [14].

Note that for some ideals the converse of this result holds (see [14,Example 3.1]).
Kostyrko, Mačaj and Šalát have given the necessary and sufficent condition for
equivalence of I and I∗−convergences. This condition is similar to the additive
property for null sets in [4, 11] .

An admissible ideal I in N is said to satisfy the condition (AP) if for every
countable system {A1, A2, ...} of mutually disjoint sets belonging to I there exist
sets Bj ⊆ N, (j = 1, 2, ...) such that the symmetric differences Aj∆Bj(j = 1, 2, ...)

are finite and B =
∞∪

j=1
Bj belong to I [14] .

It is known that I−limit x = L ⇔ I∗−limit x = L if and only if I has the
additive property [14] . Some results on I−convergence may be found in [7, 8, 14, 15] .

Note that if we define IδA = {K ⊆ N : δA (K) = 0} , IδC1
= {K ⊆ N : δ (K) = 0}

and Iµ = {K ⊆ Γ: µ (K) = 0} , then we get the definition of A−statistical conver-
gence, statistical convergence and µ−statistical convergence, respectively.

In this paper we give the I analogues of results given by Duman and Orhan [9] .
Throughout the paper I will be an admissible ideal, D ⊆ R and (fn) a sequence

of real functions on D.

2. I and I∗ convergent function sequences

Definition 1. (fn) converges I∗−pointwise to f ⇔ ∀ ε > 0 and ∀ x ∈ D, ∃ Kx /∈ I
and ∃n0 = n0(ε,x) ∈ Kx � ∀n ≥ n0 and n ∈ Kx , |fn (x)− f (x)| < ε.



I and I∗
convergent function sequences 73

In this case we will write fn → f (I∗ − convergent) on D.
Definition 2. We say that (fn) converges I∗−uniform to f ⇐⇒ ∀ ε > 0 and ∀

x ∈ D, ∃ K /∈ I and ∃n0 = n0(ε) ∈ K � ∀n ≥ n0 and n ∈ K , |fn (x)− f (x)| < ε.
In this case we will write fn ⇒ f (I∗ − convergent) on D.
Definition 3. (fn) converges I−pointwise to f ⇐⇒ ∀ ε > 0 and ∀ x ∈ D,
{n : |fn (x)− f (x)| ≥ ε} ∈ I.
In this case we will write fn → f (I − convergent) on D.
Definition 4. The sequence (fn) of bounded functions on D converges I-

uniformly to f ⇐⇒ ∀ ε > 0 and ∀ x ∈ D , {n : ‖fn − f‖ ≥ ε} ∈ I, where the form
‖.‖B(D) is the usual supremum norm on B (D) , the space of bounded functions on
D.

In this case we will write fn ⇒ f (I − convergent) on D.
As in the ordinary case the property of Definition 1 implies that of Definition 3;

and, of course for bounded functions, the property of Definition 2 implies that
of Definition 4. If I satisfy the condition (AP), then Definitions 1 and 3 are
equivalent, and Definition 2 and 4 are equivalent.

The following result is a I analogue of the result that is well-known in analysis.
Theorem 1. Let for all n, fn be continuous on D. If fn ⇒ f (I∗ − convergent)

on D, then f is continuous on D.
Proof. Assume fn ⇒ f (I∗ − convergent) on D. Then for every ε > 0, there

exists a set K /∈ I and ∃n0 = n0(ε) ∈ K such that |fn (x)− f (x)| < ε
3 for each

x ∈ D and for all n ≥ no and n ∈ K. Let x0 ∈ D. Since fn0 is continuous at
x0 ∈ D, there is a δ > 0 such that |x− x0| < δ implies |fn0 (x) − fn0 (x0)| < ε

3 for
each x ∈ D. Now for all x ∈ D for which |x− x0| < δ, we have

|f (x)− f (x0)| ≤ |f (x)− fn0 (x)|+ |fn0 (x)− fn0 (x0)|+ |fn0 (x0)− f (x0)| < ε.

Since x0 ∈ D is arbitrary, f is continuous on D. ✷

Now from Theorem 5 we get the following.
Corollary 1. Let all functions fn be continuous on a compact subset D of R,

and let I satisfy the condition (AP).
If fn ⇒ f (I − convergent) on D, then f is continuous on D.
The next example shows that neither of the converses of Theorem 5 and Corol-

lary 6 are true.
Example 1. Let K /∈ I and define fn : [0, 1) → R by

fn (x) =
{ 1

2 , n /∈ K
xn

1+xn , n ∈ K.

Then we have fn → f = 0 (I∗ − convergent) on [0, 1). Hence we get fn → f =
0 (I − convergent) on [0, 1) . Though all fn and f are continuous on [0, 1), it follows
from Definition 4 that the I − convergent of (fn) is not uniform for

cn := sup
x∈[0,1)

|fn (x)− f (x)| = 1
2

and I − lim cn =
1
2
�= 0.

Now we will give the following result that is an analogue of Dini’s theorem.
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Theorem 2. Let I satisfy the condition (AP). Let D be a compact subset of R

and (fn) a sequence of continuous functions on D. Assume that f is continuous and
fn → f (I − convergent) on D. Also, let (fn) be monotonic decreasing on D; i.e.
fn (x) ≥ fn+1 (x) (n = 1, 2, ...) for every x ∈ D. Then fn ⇒ f (I − convergent) on
D.

Proof. Write gn (x) = fn (x)− f (x). By hypothesis, each gn is continuous and
gn → 0 (I − convergent) on D, also (gn) is a monotonic decreasing sequence on
D. Now, since gn → 0 (I − convergent) on D and I satisfy the condition (AP),
gn → 0 (I∗ − convergent) on D. Hence for every ε > 0 and each x ∈ D there
exists Kx /∈ I and a number n (x) = n (x, ε) ∈ Kx such that 0 ≤ gn (x) < ε

2 for
all n ≥ n (x) and n ∈ Kx. Since gn (x) is continuous at x ∈ D, for every ε > 0
there is an open set J (x) which contains x such that

∣∣gn(x) (t)− gn(x) (x)
∣∣ < ε

2 for
all t ∈ J (x). Hence given ε > 0, by monotonicity we have

0 ≤ gn (t) ≤ gn(x) (t) = gn(x) (t)− gn(x) (x) + gn(x) (x)

≤ ∣∣gn(x) (t)− gn(x) (x)
∣∣ + gn(x) (x)

for every t ∈ J (x) and for all n ≥ n (x) and n ∈ Kx. Since D ⊂ ⋃
x∈D

J (x) and

D is a compact set, by the Heine-Borel theorem D has a finite open covering such
that D ⊂ J (x1) ∪ J (x2) ∪ ... ∪ J (xm). Now, let K := Kx1 ∩Kx2 ∩ ... ∩Kxm and
N := max {n (x1) , n (x2) , ..., n (xm)}. Observe that K /∈ I. Then 0 ≤ gn (t) < ε
for every t ∈ D and for all n ≥ N and n ∈ K. So gn ⇒ 0 (I∗ − convergent) on D.
Consequently gn ⇒ 0 (I − convergent) on D, which completes the proof. ✷

Now we will give the Cauchy criterion for I−uniform convergence but we first
need a definition and a lemma:

Definition 5. (fn) is I−Cauchy if for every ε > 0 and every x ∈ D there is
an n (ε) ∈ N such that

{
n :

∣∣fn (x)− fn(ε) (x)
∣∣ ≥ ε

} ∈ I

Lemma 1. Let (fn) be a sequence of a real function on D. (fn) is I−convergent
if and only if (fn) is I−Cauchy.

Proof. First we establish that a I−convergent sequence is I−Cauchy. Suppose
that (fn) is I−convergent to f. Since

{
n : |fn (x)− f (x)| < ε

2

}
/∈ I .We can select

an n (ε) ∈ N such that
∣∣fn(ε) (x)− f (x)

∣∣ < ε
2 . The triangle inequality now yields

that
{
n :

∣∣fn (x)− fn(ε) (x)
∣∣ < ε

}
/∈ I. Since ε was arbitrary, (fn) is I−Cauchy.

Now suppose that (fn) is I−Cauchy. Select n (1) such that
{
n :

∣∣fn (x)− fn(1) (x)
∣∣ < 1

}
/∈ I

and let A1 =
{
n :

∣∣fn (x)− fn(1) (x)
∣∣ < 1

}
. Suppose that

n (1) < n (2) < n (3) < ... < n (p)

have been selected in such a fashion that if 1 ≤ r ≤ s ≤ p and

As =
{
n :

∣∣fn (x)− fn(s) (x)
∣∣ < 1/2s−1

}
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then Ar /∈ I and n (s) ∈ Ar. Select N such that{
n : |fn (x)− fN (x)| < 1/2P+1

}
/∈ I.

Since
⋂N

1 Aj

⋂ {
n : |fn (x)− fN (x)| < 1/2P+1

}
/∈ I, there exists an

n (p+ 1) ∈
N⋂
1

Aj

⋂{
n : |fn (x)− fN (x)| < 1/2P+1

}

such that n (p) < n (p+ 1) and

Ap+1 =
{
n :

∣∣fn (x) − fn(p+1) (x)
∣∣ < 1/2p

} ⊇ {
n : |fn (x) − fN (x)| < 1/2P+1

}
.

Observe that Ap+1 /∈ I and n (p+ 1) ∈ As for all s ≤ p+ 1.
Note that since

∣∣fn(p) (x) − fn(p+1) (x)
∣∣ < 2−p,

(
fn(p) (x)

)
is Cauchy, and hence

there exists an f (x) such that limp fn(p) (x) = f (x). We claim that (fn) is
I−convergent to f (x). Let ε > 0 be given and select p ∈ N such that

∣∣fn(p) (x)− f (x)
∣∣ < ε

2
and ε > 2−p.

Note that if |fn (x) − f (x)| ≥ ε, then
∣∣fn(p) (x)− fn (x)

∣∣ ≥ ε
2 > 21−p, and hence n

is not an element of Ap. It follows that {n : |fn (x)− f (x)| ≥ ε} ∈ I and that (fn)
is I−convergent to f (x) . ✷

Theorem 3. Let I satisfy the condition (AP) and let (fn) be a sequence of
bounded functions on D. Then (fn) is I−uniformly convergent on D if and only if
for every ε > 0 there is an n (ε) ∈ N such that{

n :
∥∥fn − fn(ε)

∥∥
B(D)

< ε
}

/∈ I (1)

Note: The sequence (fn) satisfying property (1) is said to be I−uniformly
Cauchy on D.

Proof. Assume that (fn) converges I−uniformly to a function f defined on
D. Let ε > 0. Then we have

{
n : ‖fn − f‖B(D) < ε

}
/∈ I. We can select an

n (ε) ∈ N such that
{
n :

∥∥fn(ε) − f
∥∥

B(D)
< ε

}
/∈ I. The triangle inequality yields

that
{
n :

∥∥fn − fn(ε)

∥∥
B(D)

< ε
}

/∈ I. Since ε is arbitrary, (fn) is I−uniformly
Cauchy on D.

Conversely, assume that (fn) is I−uniformly Cauchy on D. Let x ∈ D be fixed.
By (1), for every ε > 0 there is an n (ε) ∈ N such that

{
n :

∣∣fn (x)− fn(ε) (x)
∣∣ < ε

}
/∈

I. Hence {fn (x)} is I−Cauchy, so by Lemma 10 we have that {fn (x)} converges
I−convergent to f (x). Then fn → f (I − convergent) on D. Now we shall show
that this convergence must be uniform. Note that since I satisfy the condition
(AP), by (1) there is a K /∈ I such that

∥∥fn − fn(ε)

∥∥
B(D)

< ε
2 for all n ≥ n (ε) and

n ∈ K. So for every ε > 0 there is a K /∈ I and n (ε) ∈ N such that

|fn (x)− fm (x)| < ε (2)
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for all n,m ≥ n (ε) and n,m ∈ K and for each x ∈ D. Fixing n and applying the
limit operator on m ∈ K in (2), we conclude that for every ε > 0 there is a K /∈ I
and an n (ε) ∈ N such that |fn (x)− f (x)| < ε for all n ≥ n0 and for each x ∈ D.
Hence fn ⇒ f (I∗ − convergent) on D, consequently fn ⇒ f (I − convergent) on
D. ✷

3. Applications

Using I−uniform convergence, we can also get some applications. We merely state
the following theorems and omit the proofs.

Theorem 4. Let I satisfy the condition (AP). If a function sequence (fn)
converges I−uniformly on [a, b] to a function f and fn is integrable on [a, b], then
f is integrable on [a, b]. Moreover,

I − lim
∫ b

a

fn (x) dx =
∫ b

a

I − lim fn (x) dx =
∫ b

a

f (x) dx

Theorem 5. Let I satisfy the condition (AP). Suppose that (fn) is a func-
tion sequence such that each (fn) has a continuous derivative on [a, b]. If fn →
f (I − convergent) on [a, b] and f

′
n ⇒ g (I − convergent) on [a, b], then fn ⇒

f (I − convergent) on [a, b], where f is differentiable, and f
′
= g.

4. Function sequences that preserve I− convergence

This section is motivated by a paper of Kolk [13]. Recall that function sequence
(fn) is called convergence-preserving (or conservative) on D ⊆ R if the transformed
sequence {fn (x)} converges for each convergent sequence x = (xn) from D [13] .
In this section, analogously, we describe the function sequences which preserve the
I−convergence of sequences. Our arguments also give a sequential characterization
of the continuty of I−limit functions of I−uniformly convergent function sequences.
This result is complementary to Theorem 5.

First we introduce the following definition.
Definition 6. Let D ⊆ R and (fn) be a sequence of real functions on D. Then

(fn) is called a function sequence preserving I-convergence (or I-convergent conser-
vative) on D if the transformed sequence {fn (x)} converges I for each I−convergent
sequence x = (xn) from D. If (fn) is I−convergent conservative and preserves the
limits of all I−convergent sequences from D, then (fn) is called I−convergent reg-
ular on D.

Hence, if (fn) is conservative on D, then (fn) is I−convergent conservative on
D. But the following example shows that the converse of this result is not true.

Example 2. Let K /∈ I. Define fn : [0, 1] → R by

fn (x) =
{
0 , n ∈ K
1 , n /∈ K
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Suppose that (xn) from [0, 1] is an arbitrary sequence such that I − limx = L.
Then, for every ε > 0, {n : |fn (xn)− 0| ≥ ε} ∈ I. Hence I−lim fn (xn) = 0, so (fn)
is I−convergent conservative on [0, 1] . But observe that (fn) is not conservative on
[0, 1] .

Now we give the first result of this section. But we need the following lemma:
Lemma 2. Let I satisfy the condition (AP). If (f r

n (x)) is a countable collec-
tion of sequences that are I∗−convergent, then there exists λ : N → N such that
limn f r

λ(k) (x) exists for each r and {λ (k) : k ∈ N} /∈ I.
Proof. Let �be the filter generated by convergence in I∗−convergence. Since

each (f r
n (x)) is I∗−convergent, there is an Ar ∈ � such that (f r

n (x)) ∈ cAr . Since
� has property (A), there is an A ∈ � such that |A \Ar | < ∞ for each r. Suppose
A = {n1, n2, ...} where n1 < n2 < ... and λ : N → N satisfies λ (k) = nk for all k.
Now limn f r

λ(k) (x) exists for each r and {λ (k) : k ∈ N} = A /∈ I . ✷

Theorem 6. Let I satisfy the condition (AP) and let (fk) be a sequence of
functions defined on closed interval [a, b] ⊂ R. Then (fk) is I−convergent conser-
vative on [a, b] if and only if (fk) converges I−uniformly convergent on [a, b] to a
continuous function.

Proof. Necessity. Assume that (fk) is I−convergent conservative on [a, b] .
Choose the sequence (vk) = (t, t, ...) for each t ∈ [a, b] . Since I − lim vk = t,
I − lim fk (vk) exists, hence I − lim fk (vk) = f (t) for all t ∈ [a, b] . We claim that f
is continuous on [a, b] . To prove this we suppose that f is not continuous at a point
t0 ∈ [a, b] . Then there exists a sequence (uk) in [a, b] such that limuk = t0, but
lim f (uk) exists and lim f (uk) �= f (t0) . Since fk → f (I − convergent) on [a, b]
and I satisfy the condition (AP), we obtain fk → f (I∗ − convergent) on [a, b].
Hence, for each j, {fk (uj)− f (uj)} → 0 (I∗ − convergent) . Hence there exists
λ : N → N such that {λ (k) : k ∈ N} /∈ I and

lim
[
fλ(k) (uj)− f (uj)

]
= 0

for each j. Now, by the “diagonal process” [1, p.192] we can choose an increasing in-
dex sequence (nk) in such a way that {nk : k ∈ N} /∈ I and lim [fnk

(uk)− f (uk)] =
0. Now define a sequence x = (ti) by

ti =




t0 , i = nk and i is odd
uk , i = nk and i is even
0 , otherwise.

Hence ti → t0 (I∗ − convergent) , which implies I − lim ti = t0. But if i =
nk and i is odd, then lim fnk

(t0) = f (t0) , and if i = nk and i is even, then
lim fnk

(uk) = lim [fnk
(uk)− f (uk)] + lim f (uk) �= f (t0). Hence {fi (ti)} is not

I∗− convergent since the sequence {fi (ti)} converges to two different limit points
and has two disjoint subsequences whose index set does not belong to I . So, the
sequence {fi (ti)} is not I−convergent, which contradicts the hypothesis. Thus f
must be continuous on [a, b]. It remains to prove that (fk) converges I−convergent
uniformly on [a, b] to f . Assume that (fk) is not I−uniformly convergent on [a, b]
to f , then (fk) is not I∗−uniformly convergent on [a, b] to f. Hence, for an ar-
bitrary index sequence (nk) with {nk : k ∈ N} /∈ I, there exists a number ε0 > 0
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and numbers tk ∈ [a, b] such that |fnk
(tk)− f (tk)| ≥ 2ε0 (k ∈ N). The bounded

sequence x = (tk) contains a convergent subsequence (tki), I − lim tki = α, say.
By the continuity of f , lim f (tki) = f (α) . So there is an index i0 such that
|f(tki)− f (α)| < ε0 (i ≥ io). For the same i’s, we have∣∣∣fnki

(tki)− f (α)
∣∣∣ ≥

∣∣∣fnki
(tki)− f (tki)

∣∣∣ − |f(tki)− f (α)| ≥ ε0. (3)

Now, defining

uj =




α , j = nki and j is odd
tki , j = nki and j is even
0 , otherwise,

we get uj → α (I∗ − convergent) . Hence I−limuj = α. But if j = nki and j is odd,
then lim f (tki) = f (α), and if j = nki and j is even, then, by (3), lim f (tki) �= f (α).
Hence {fi (ti)} is not I∗−convergent since the sequence {fi (ti)} converges to two
different limit points and has two disjoint subsequences whose index set does not
belong to I So, the sequence {fi (ti)} is not I−convergent, which contradicts the
hypothesis. Thus (fk) must be I−uniformly convergent to f on [a, b] .

Sufficiency. Assume that fn ⇒ f (I − convergent) on [a, b] and f is continuous.
Let x = (xn) be a I−convergent sequence in [a, b] with I− limxn = x0. Since
I satisfy the condition (AP), xn → x0 (I∗ − convergent) , so there is an index
sequence {nk} such that limxnk

= x0 and {nk : k ∈ N} /∈ I. By the continuity of f
at x0, lim f (xnk

) = f (x0). Hence f (xn) → f (x0) (I∗ − convergent) . Let ε > 0 be
given. Then there existsK1 /∈ I and a number n1 ∈ K1 such that |f (xn)− f (x0)| <
ε
2 for all n ≥ n1 and n ∈ K1. By assumption I satisfy the condition (AP). Hence
the I−uniform convergence is equivalent to the I∗−uniform convergence, so there
exists a K2 /∈ I and a number n2 ∈ K2 such that |fn (t)− f (t)| < ε

2 for every
t ∈ [a, b] for all n ≥ n2 and n ∈ K2. Let N := max {n1, n2} and K := K1 ∩ K2.
Observe that K /∈ I. Hence taking t = xn we have

|fn (xn)− f (x0)| ≤ |fn (xn)− f (xn)|+ |f (xn)− f (x0)| < ε

for all n ≥ N and n ∈ K. This shows that fn (xn) → f (x0) (I∗ − convergent)
which necessarily implies that I − lim fn (xn) = f (x0) , whence the proof follows.

✷

Theorem 6 contains the following necessary and sufficient condition for the
continuity of I−convergence limit functions of function sequences that converge
I−convergent uniformly on a closed interval.

Theorem 7. Let I satisfy the condition (AP) and let (fk) be a sequence of
functions that converges I−convergent uniformly on a closed interval [a, b] to a
function f. The function f is continuous on [a, b] if and only if (fk) is I−convergent
conservative on [a, b] .

Now, we study the I−convergence regularity of function sequences. If (fk) is
I−convergent regular on [a, b] , then obviously I − lim fk (t) = t for all t ∈ [a, b] .
So, taking f (t) = t in Theorem 6, we immediately get the following.

Theorem 8. Let I satisfy the condition (AP) and let (fk) be a sequence
of functions on [a, b]. Then (fk) is I−convergent regular on [a, b] if and only if
I−convergent uniformly on [a, b] to the function f defined by f (t) = t.
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[15] P.Kostyrko, M.Mačaj, T. Šalát, I-convergence, Real Anal. Exchange,
to appear

[16] H. I.Miller, A measure theoretical subsequence characterization of statistical
convergence, Trans. Amer. Math. Soc. 347(1995), 1811-1819.

[17] J.Nagata, Modern General Topology, North Holland, Amsterdam-London,
1974.

[18] I. Niven, H. S. Zuckerman, An Introduction to the Theory of Numbers,
fourth ed., Wiley, New York, 1980.



80 F.Gezer and S.Karakuş
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