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1. Introduction and preliminaries

Complementarity problem introduced and studied by Cottle and Dantzig [4], Lemke
[7] in the early 1960’s has enjoyed a vigorous growth for the last thirty years. Com-
plementarity problem is closely related to the theory of variational inequality, which
plays an important and fundamental role in control and optimization, economics
and transportation equilibrium, contact problems in elasticity and fluid flow through
porous media, management sciences and operational research. Recently with the de-
velopment of the theory of variational inequalities, many great developments have
been made in the theory and applications of complementarity problems (see, for
example, [3, 5, 6, 8, 9] and the references therein).

The purpose of this paper is to introduce and study the existence and approxima-
tion problem of random solutions for a class of random complementarity problems
in the setting of Hilbert spaces. For the sake of convenience, we first recall some
definitions, notations and conclusions.

Throughout this paper, we assume that X is a real separable Hilbert space,
(Ω, µ) is a measurable space, 〈·, ·〉 and || · || are the inner product and the norm in
X , respectively, β(X) is the σ−algebra of all Borel subsets of X .

∗Supported by The Research Foundation Grant of Yibin University (2003Z12).
†Department of Mathematics, Yibin University, Yibin, Sichuan 644 007, China and De-

partment of Mathematics, Sichuan University, Chengdu, Sichuan 610 064, China, e-mail:
sszhang 1yahoo.com.cn

‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, e-mail: majleepolyu.edu.hk

§Department of Mathematics, Yibin University, Yibin, Sichuan 644 007, China



96 S. S.Chang, H.W. J. Lee, and D.P.Wu

A mapping f : Ω → X is said to be measurable, if for each B ∈ β(X) the set
{ω ∈ Ω : f(ω) ∈ B} ∈ µ. A mapping T : Ω ×X → X is said to be random, if for
each given x ∈ X the mapping ω �→ T (ω, x) is measurable. A measurable function
f : Ω → X is called a random fixed point of the random operator T : Ω × X , if
T (ω, f(ω)) = f(ω), for all ω ∈ Ω.

A random operator T : Ω × X → X is said to be continuous, if for any given
ω ∈ Ω, T (ω, ·) : X → X is continuous.

Lemma 1 [11]. Let E be a separable metric space and Y a metric space. Let
T : Ω × E → Y be measurable in ω ∈ Ω and continuous in x ∈ E. If g : Ω → E is
a measurable function, then T (·, g(·)) : Ω → Y is measurable.

Definition 1. Let T : Ω ×X → X be a random mapping.

(1) T is said to be monotone, if for any x, y ∈ X we have

〈T (ω, x)− T (ω, y), x− y〉 ≥ 0, ∀ ω ∈ Ω;

(2) T is said to be strongly monotone, if there exists a measurable function α :
Ω → (0,∞) such that for any x, y ∈ X, we have

〈T (ω, x) − T (ω, y), x− y〉 ≥ α(ω)||x − y||2, ∀ ω ∈ Ω;

(3) T is said to be Lipschitzian continuous, if there exists a measurable function
γ : Ω → (0,∞) such that for any x, y ∈ X, we have

||T (ω, x)− T (ω, y)|| ≤ γ(ω)||x− y||, ∀ ω ∈ Ω;

(4) T is said to be demi-continuous, if the mapping

λ �→ T (ω, λx+ (1− λ)y) : [0, 1] → X

satisfies the following conditions: for any given sequence {λn} ⊂ [0, 1] with
λn → λ0 we have

T (ω, λnx+ (1 − λn)y) → T (ω, λ0x+ (1− λ0)y) (weakly) ∀ ω ∈ Ω, x, y ∈ X.

Definition 2. Let K be a closed convex set, T : Ω × X → X a random
mapping. The so-called random complementarity problem with respect to T is to
find a measurable mapping x∗ : Ω → K such that

T (ω, x∗(ω)) ∈ K∗, 〈T (ω, x∗(ω)), x∗(ω))〉 = 0 ∀ω ∈ Ω, (1.1)

where
K∗ = {f ∈ X : 〈f, x〉 ≥ 0, ∀x ∈ K}.

Lemma 2. Let X be a separable Hilbert space, K ⊂ X a nonempty closed
convex cone and T : Ω × X → X a demi-continuous monotone random mapping,
then the following conclusions are equivalent:
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(1) x : Ω → K is a random solution of random complementarity problem (1.1);

(2) x : Ω → K is a random solution of the following random variational inequality:

〈T (ω, x(ω)), y − x(ω)) ≥ 0, ∀ y ∈ K, ω ∈ Ω; (1.2)

(3) x : Ω → K is a random solution of the following random variational inequality:

〈T (ω, y), y − x(ω)) ≥ 0, ∀ y ∈ K, ω ∈ Ω; (1.3)

Proof. (1) ⇒ (2). Let x : Ω → K be a random solution of random complemen-
tarity problem (1.1), hence we have

T (ω, x(ω)) ∈ K∗, 〈T (ω, x(ω)), x(ω)〉 = 0, ω ∈ Ω.

therefore we have

〈T (ω, x(ω)), y − x(ω)〉 = 〈T (ω, x(ω)), y〉 − 〈T (ω, x(ω)), x(ω)〉
= 〈T (ω, x(ω)), y〉. ∀y ∈ K, ω ∈ Ω.

Since T (ω, x(ω)) ∈ K∗ , we have

〈T (ω, x(ω)), y〉 ≥ 0, ∀y ∈ K, ω ∈ Ω.

Hence we have

〈T (ω, x(ω)), y − x(ω)〉 ≥ 0, ∀ y ∈ K, ω ∈ Ω.

(2) ⇒ (3). Let x : Ω → K be a random solution of (1.2), we have

〈T (ω, x(ω)), y − x(ω)〉 ≥ 0, ∀ y ∈ K, ω ∈ Ω.

Since T : Ω×X → X is monotone, we have

0 ≤ 〈T (ω, y)− T (ω, x(ω)), y − x(ω)〉
= 〈T (ω, y), y − x(ω)〉 − 〈T (ω, x(ω)), y − x(ω)〉.

And so we have

〈T (ω, y), y − x(ω)〉 ≥ 〈T (ω, x(ω)), y − x(ω)〉 ≥ 0, ∀y ∈ K, ω ∈ Ω.

(3) ⇒(1). Let x : Ω → K be a random solution of (1.3), we have

〈T (ω, y), y − x(ω)〉 ≥ 0, ∀ y ∈ K, ω ∈ Ω. (1.4)

For any given u ∈ K and λ ∈ (0, 1], letting y = x(ω) + λ(u − x(ω)) ∈ K and
substituting it into (1.4), we have

〈T (ω, x(ω) + λ(u − x(ω))), λ(u − x(ω))〉 ≥ 0, ω ∈ Ω. (1.5)
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First divide two sides of (1.5) by λ and then letting λ → 0, by virtue of the demi-
continuity of T , we have

〈T (ω, x(ω)), u− x(ω))〉 ≥ 0 ∀u ∈ K, ω ∈ Ω. (1.6)

Taking u = 2x(ω) in (1.6), we have

〈T (ω, x(ω)), x(ω))〉 ≥ 0 ∀ω ∈ Ω. (1.7)

Again taking u = 0 in (1.6), we have

〈T (ω, x(ω)),−x(ω))〉 ≥ 0 ∀ω ∈ Ω. (1.8)

Therefore we have
〈T (ω, x(ω)), x(ω))〉 = 0 ∀ω ∈ Ω.

Next we prove that T (ω, x(ω)) ∈ K∗, ∀ω ∈ Ω. Suppose the contrary, there
exists some ω0 ∈ Ω such that T (ω0, x(ω0)) /∈ K∗. Therefore there exists some
y0 ∈ K such that 〈T (ω0, x(ω0)), y0〉 < 0. Since y0 ∈ K , from (1.6) we have

0 ≤ 〈T (ω0, x(ω0)), y0 − x(ω0)〉
= 〈T (ω0, x(ω0)), y0)〉 − 〈T (ω0, x(ω0)), x(ω0)〉
= 〈T (ω0, x(ω0)), y0)〉 < 0,

a contradiction. This implies that T (ω, x(ω)) ∈ K∗ ∀ω ∈ Ω.
This completes the proof of Lemma 2. ✷

2. Main results

We are now inthe position to give the main result of this paper.
Theorem 1. Let X be a real separable Hilbert space, K a nonempty closed

convex cone in X, T : Ω×X → X a strongly monotone and Lipschitzian continuous
random mapping and the corresponding strongly monotone measurable function and
let the corresponding Lipschitzian measurable function of T be α : Ω → (0,∞) and
γ : Ω → (0,∞), respectively. If the following condition is satisfied:

0 < γ2(ω) < 2α(ω) ≤ γ2(ω) + 1, ∀ω ∈ Ω, (2.1)

then

(1) the random complementarity problem (1.1) has a unique random solution x∗ :
Ω → K ;

(2) for any given x0 ∈ K the following random iterative sequence:

xn+1(ω) = S(ω, xn(ω)), ∀n ≥ 0, ω ∈ Ω (2.2)

converges strongly to the unique random fixed point x∗(ω) and has the follow-
ing error estimation:

||xn(ω) − x∗(ω)|| ≤ θn(ω)
1− θ(ω)

||x1(ω) − x∗(ω)||
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where the mapping S : Ω×K → K is defined by the following (2.6) and

θ(ω) =
√

1 + γ2(ω) − 2α(ω) < 1, ∀ω ∈ Ω. (2.3)

Proof. Since K ⊂ X is a closed convex cone, by the well-known minimizing
vector theorem in Hilbert space (see, for example, Rudin [10]), for each y ∈ K and
each ω ∈ Ω, there exists a unique x(ω) ∈ K such that

||x(ω) − y + T (ω, y)|| ≤ ||v − y + T (ω, y)||, ∀v ∈ K.

i.e.,
x(ω) = PK(y − T (ω, y)), (2.4)

where PK is the projection operator from X onto K and so it is a nonexpansive
mapping. By the well-known projection theorem in Hilbert space (see Chang [2, p.
9, Proposition 1.3.2]), we have

〈y − T (ω, y)− x(ω), x(ω) − v〉 ≥ 0, ∀v ∈ K. (2.5)

Define a mapping S : Ω ×K → K by:

S(ω, y) = PK(y − T (ω, y)). (2.6)

Next we prove that S : Ω × K → K is a random Banach contraction mapping.
Indeed, for any y1, y2 ∈ K, we have

||S(ω, y1) − S(ω, y2)||2 = ||PK(y1 − T (ω, y1)) − PK(y2 − T (ω, y2))||2
≤ ||y1 − T (ω, y1) − (y2 − T (ω, y2))||2
= ||y1 − y2||2 + ||T (ω, y1) − T (ω, y2)||2
− 2〈y1 − y2, T (ω, y1) − T (ω, y2)〉, ω ∈ Ω.

(2.7)

By the assumption, T is α−strongly monotone and γ−Lipschitzian, where α and
γ : Ω → (0,∞) are measurable functions satisfying condition (2.1). Hence from
(2.7) we have

||S(ω, y1) − S(ω, y2)||2 ≤ θ2(ω)||y1 − y2||2, ∀ω ∈ Ω,

i.e.,
||S(ω, y1)− S(ω, y2)|| ≤ θ(ω)||y1 − y2||, ∀ω ∈ Ω, (2.8)

where θ(ω) =
√

1 + γ2(ω) − 2α(ω) : Ω → (0, 1) is a measurable function. This
implies that S : Ω ×K → K is a random Banach contractive mapping. Therefore
by the well-known random Banach contractive mapping theorem (see, for example,
A. T. Bharucha-Reid [1] or Chang [3]), S has a random fixed point x∗(ω) : Ω → K.
Therefore we have

x∗(ω) = S(ω, x∗(ω)) = PK(x∗(ω)− T (ω, x∗(ω))) ∀ω ∈ Ω. (2.9)

Substituting (2.9) into (2.5) we have

〈x∗(ω) − T (ω, x∗(ω)) − x∗(ω), x∗(ω) − v〉 ≥ 0, ∀v ∈ K, ω ∈ Ω.



100 S. S.Chang, H.W. J. Lee, and D.P.Wu

i.e.,
〈T (ω, x∗(ω)), v − x∗(ω)〉 ≥ 0, ∀v ∈ K, ω ∈ Ω.

This implies that x∗ : Ω → K is a random solution of random variational inequality
(1.2). By Lemma 2, we know that x∗(ω) is a random solution of random comple-
mentarity problem (1.1).

On the other hand, for any given x0 ∈ K let {xn(ω)} be the iterative sequence
defined by (2.2). From Lemma 1, it is easy to see that {xn(ω)} is a random sequence
from Ω to K. By the well-known method, we can prove that {xn(ω)} converges
strongly to x∗(ω) and has the following error estimation:

||xn(ω) − x∗(ω)|| ≤ θn(ω)
1− θ(ω)

||x1(ω)− x∗(ω)|| ∀ω ∈ Ω.

This completes the proof of the theorem. ✷
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