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Jensen’s inequality for nonconvex functions®
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Abstract. Jensen’s inequality is formulated for convexifiable (gen-
erally nonconvex) functions.
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1. Introduction

Jensen’s inequality is 100 years old, e.g., [1, 2, 3] . It says that the value of a convex
function at a point, which is a convex combination of finitely many points, is less
than or equal to the convex combination of values of the function at these points.
Using symbols: If : R™ — R is convex then

P P

f(z )\ixi> <N (1)
i=1 i=1
for every set of p points x*,i = 1,...,p, in the Euclidean space R" and for all real

scalars \; > 0,4 =1,...,p, such that > 5_ A\; = 1.

In this note the inequality (1) is extended from convex to convexifiable func-
tions, e.g., [4, 5]. These include all twice continuously differentiable functions, all
once continuously differentiable functions with Lipschitz derivative and all analytic
functions. As a special case we obtain a new form of the arithmetic mean theorem.

2. Convexifiable functions

If f:R™ — R is a continuous function in n variables defined on a convex set C' of
R™, then the function is said to be convex on C' if

FOx+ (1 =Ny) <A(x) +1=N)f(y) (2)
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for every x,y € C and scalar 0 < A < 1. Note that this is (1) for p = 2. Let us
recall several recent results.
Definition 1 [[5]]. Given a continuous f : R™ — R defined on a convex set C,

consider the function ¢ : R — R defined by o(x,0) = f(x) — saxTx , where

xT' is the transposed of x. If o(x,a) is a convex function on C for some a = a*,
then p(x, @) is a convexification of f and o is its convexifier on C. Function f is
convexifiable if it has a convezification.

Observation 1. If o* is a convexifier of f, then so is every a < a*.

In order to characterize a convexifiable function, the mid-point acceleration func-

tion

X+y
2

U(x,y) = (f(X)+f(Y)—2f< )) x,y €Cx#y

Ix =yl

was introduced in [5]. There it was shown that a continuous f : R™ — R, defined
on a nontrivial convex set C' (i.e., a convex set with at least two distinct points)
in R™ is convexifiable on C' if, and only if, its mid-point acceleration function ¥ is
bounded from below on C.

For two important classes of functions a convexifier o can be given explicitly. If
f is twice continuously differentiable then its second derivative at x is represented
by the Hessian matrix H(x) = (0?f(x)/0x;0x;). This is a symmetric matrix with
real eigenvalues. Denote its smallest eigenvalue by A\(x) and its “globally” smallest
eigenvalue over a compact convex set C by

A* = min A(x).
xeC

Lemma 1 [[4, 5]]. Given a twice continuously differentiable function f : R™ —
R on a nontrivial compact convex set C' in R™. Then a = \* is a convezifier.

We say that a continuously differentiable function f has Lipschitz derivative if
| Vf(x) = Vf(y)](x—y) I< Ll|x — y| for every x,y € C and some constant
L. Here Vf(u) is the (Fréchet) derivative of f at u and |Jul| = (u”u)'/? is the
Euclidean norm. We represent the derivative at x as a row n-tuple gradient V f(x) =
(af(x)/axi) .

Lemma 2 [[5]]. Given a continuously differentiable function f:R™ — R with
Lipschitz derivative and a constant L on a nontrivial compact convex set C in R™.
Then o« = —L is a convexifier.

One can show that every convexifiable scalar function f : R — R is Lipschitz, i.e,
|f(s) = f(t)] < K|s —t] for every s and ¢ and some constant K . This means that
a scalar non-Lipschitz function is not convexifiable. However, almost all smooth
functions of practical interest are convexifiable; e.g., [5].

3. Jensen’s inequality for convexifiable functions

In this section we formulate (1) for convexifiable functions.

Theorem 1 [Jensen’s inequality for convexifiable functions]. Consider
a convezifiable function f : R™ — R on a bounded nontrivial convexr set C' of R™
and its convexifier a. Then
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FOS ) = s = 5 30wl 1) )
i=1

i=1 i,j=1
1<j
for every set of p points x',i = 1,...,p, in C and all real scalars \; > 0, i =

1,...,p, with >2 ;N =1.
Proof. Since f is convexifiable, p(x, @) = f(x)— %oszx is a convex function for
every convexifier ae. Hence Jensen’s inequality works for ¢(x, ). After substitution

one obtains

f(Z)\ixi) < Z)\if(xi) - %( DA () (x - Xj)>.

ij=1

After more rearranging the more pleasing form (3) follows. O

Using the fact that for a convex function f one can choose the convexifier a = 0,
one recovers (1). For a twice continuously differentiable function one can specify
a = A* (by Lemma 1) and for a continuously differentiable function with Lipschitz
derivative and its constant L, one can specify « = —L (by Lemma 2). Hence we
have, respectively, the following special cases:

Corollary 1 [Jensen’s inequality for twice continuously differentiable
functions]. Given a twice continuously differentiable function f : R — R on a
nontrivial compact convex set C' in R™. Then

FoAx) <D ONF(x') = %( D AaNlx - x”) (4)

ij=1
1<J

for every set of p points x*,i = 1,...,p, in C and all real scalars \; > 0, i =
1,...,p, with > 8 N =1.

Observation 2. If f in Corollary 1 is strictly convez, then the lowest eigenvalue
of the Hessian is \* > 0 (often \* > 0) and (4) may provide a better bound than
(1). Since every analytic function f : R — R is twice continuously differentiable,
Corollary 1 holds, in particular, for analytic functions with \* = mingec f” ().

Corollary 2 [Jensen’s inequality for once continuously differentiable
functions with Lipschitz derivative]. Given a continuously differentiable func-
tion f : R™ — R with Lipschitz derivative and a constant L on a nontrivial compact
convex set C in R™. Then

PO = 3onre) + 5 (3 vl = 1) )

i=1 i=1 7,j=1
i<j
for every set of p points x*,i = 1,...,p, in C and all real scalars \; > 0, i =

1,...,p, with >F X\ =1.

Special Case: For a scalar function f : R — R and two scalar points a and b
Jensen’s inequality is

f(Aa+ (1 —=X)b) < Af(a)+ (1 —=N)f(b), forevery0<A<1
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while for a convexifiable f, it is
FOa+ (1= Nb) < Af(a)+ (1 =\ f(b) — %/\(1 ~M\)(a—b)?

for every convexifier o and for every 0 < A < 1. We will use this special case to
illustrate the basic difference between the two inequalities.

Ilustration 1. Consider f(t) =sint on 0 <t < 27. Take a =0 and b = 27.
Then (1) and its extension yield, respectively

sin(27(1 —\)) <0, 0<A<1 (6)

and
sin(27(1 — \)) < 22\ (1 — ), 0<A<1. (7)

Inequality (6) is not satisfied on the region where f(t) is not convez, i.e., 1/2 <
A < 1. On the other hand the new upper bound in (7) holds (see Figurel).

new upper bound of f

Jensen's upper bound of f

0 0.1 0.2 03 04 05 0B 07 s 08 1

Figure 1. Jensen’s inequality for a convezifiable function

A situation where the new bound is sharper than the one provided by Jensen’s
inequality for a convex function is illustrated in the following example.

Illustration 2. Consider f(t) = t* between a = 1 and b = 2. Then (1) and
its extension yield (2 — \)* < 16 — 15X and (2 — \)* < 16 — 9\ —6X2, 0 < X <
1, respectively. The upper bounds are compared against the original function in
Figure 2.
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Jensen's upper bound
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Figure2. Improvement for a strictly conver function

Jensen’s inequality is closely related to the arithmetic mean theorem for real
numbers. The following theorem says that the value of a convex function at the
arithmetic mean of p numbers is less than or equal to the arithmetic mean of the
values of the function at these numbers.

Theorem 2 [Classic arithmetic mean theorem for convex functions,
e.g., [3]]. Consider a convex scalar function f : R — R on a nontrivial compact

interval [a,b]. Then
f(Exn) <23 0
i=1

p i=1

for every set of p points t; € [a,b],i=1,...,p.

Specifying x* = t;, \; = 1/p, i = 1,...,p, in (3) one obtains, after rearrange-
ment, the following extension:

Theorem 3 [Arithmetic mean theorem for convexifiable functions].
Consider a convezifiable scalar function f : R — R on a nontrivial compact interval
[a,b] and its convezifier . Then

P p p

(E5) < i5m-5(i5e-Cx) w

i=1 p i=1 p i=1

for every set of p points t; € [a,b],i=1,...,p.

Observation 3. In (9) one can set a = 0 if f is convex, & = \* = minge(q 5 f" (t)
if f is twice continuously differentiable or « = —L if f is Lipschitz continuously
differentiable with a constant L. The first special case recovers the classic result.
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Observation 4. The term corresponding to the convezifier is positive, provided
that at least one t; is mon-zero. Indeed, denote A = (t;) e RP, E = (1,... ,1)T ¢
RP. Then this term is [(1/p)(A, A) — (1/p)*(A,E)?]. Since (A,E)? < ||A|?|E|? =
(A, A)-p and p < p?, the term is positive. Since for a twice continuously differen-
tiable strictly convex f, we know that \* = minse, ) f"(t) > 0, it follows that (9)
typically provides in this case a better estimate than (8).

Special Case: For a scalar function f : R — R and only two points ¢; and to,
(3) (and after some rearrangement (9)) yields

P(M5) < U+ ) - § - -
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