Jensen's inequality for nonconvex functions*

Sanjo Zlobec ${ }^{\dagger}$

Abstract

Jensen's inequality is formulated for convexifiable (generally nonconvex) functions.

Key words: Jensen's inequality, convexifiable function, arithmetic mean theorem

AMS subject classifications: 26B25, 52A40
Received June 23, 2004
Accepted November 2, 2004

1. Introduction

Jensen's inequality is 100 years old, e.g., $[1,2,3]$. It says that the value of a convex function at a point, which is a convex combination of finitely many points, is less than or equal to the convex combination of values of the function these points. Using symbols: If : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex then

$$
\begin{equation*}
f\left(\sum_{i=1}^{p} \lambda_{i} \mathbf{x}^{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(\mathbf{x}^{i}\right) \tag{1}
\end{equation*}
$$

for every set of p points $\mathbf{x}^{i}, i=1, \ldots, p$, in the Euclidean space \mathbb{R}^{n} and for all real scalars $\lambda_{i} \geq 0, i=1, \ldots, p$, such that $\sum_{i=1}^{p} \lambda_{i}=1$.

In this note the inequality (1) is extended from convex to convexifiable functions, e.g., $[4,5]$. These include all twice continuously differentiable functions, all once continuously differentiable functions with Lipschitz derivative and all analytic functions. As a special case we obtain a new form of the arithmetic mean theorem.

2. Convexifiable functions

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function in n variables defined on a convex set C of \mathbb{R}^{n}, then the function is said to be convex on C if

$$
\begin{equation*}
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \tag{2}
\end{equation*}
$$

[^0]for every $\mathbf{x}, \mathbf{y} \in C$ and scalar $0 \leq \lambda \leq 1$. Note that this is (1) for $p=2$. Let us recall several recent results.

Definition 1 [[5]]. Given a continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined on a convex set C, consider the function $\varphi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ defined by $\varphi(\mathbf{x}, \alpha)=f(\mathbf{x})-\frac{1}{2} \alpha \mathbf{x}^{T} \mathbf{x}$, where \mathbf{x}^{T} is the transposed of \mathbf{x}. If $\varphi(\mathbf{x}, \alpha)$ is a convex function on C for some $\alpha=\alpha^{\star}$, then $\varphi(\mathbf{x}, \alpha)$ is a convexification of f and α^{\star} is its convexifier on C. Function f is convexifiable if it has a convexification.

Observation 1. If α^{\star} is a convexifier of f, then so is every $\alpha \leq \alpha^{\star}$.
In order to characterize a convexifiable function, the mid-point acceleration function

$$
\Psi(\mathbf{x}, \mathbf{y})=\frac{4}{\|\mathbf{x}-\mathbf{y}\|^{2}}\left(f(\mathbf{x})+f(\mathbf{y})-2 f\left(\frac{\mathbf{x}+\mathbf{y}}{2}\right)\right), \quad \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}
$$

was introduced in [5]. There it was shown that a continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, defined on a nontrivial convex set C (i.e., a convex set with at least two distinct points) in \mathbb{R}^{n} is convexifiable on C if, and only if, its mid-point acceleration function Ψ is bounded from below on C.

For two important classes of functions a convexifier α can be given explicitly. If f is twice continuously differentiable then its second derivative at \mathbf{x} is represented by the Hessian matrix $H(\mathbf{x})=\left(\partial^{2} f(\mathbf{x}) / \partial \mathbf{x}_{i} \partial \mathbf{x}_{j}\right)$. This is a symmetric matrix with real eigenvalues. Denote its smallest eigenvalue by $\lambda(\mathbf{x})$ and its "globally" smallest eigenvalue over a compact convex set C by

$$
\lambda^{\star}=\min _{\mathbf{x} \in C} \lambda(\mathbf{x}) .
$$

Lemma $1[[4,5]]$. Given a twice continuously differentiable function $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R} on a nontrivial compact convex set C in \mathbb{R}^{n}. Then $\alpha=\lambda^{\star}$ is a convexifier.

We say that a continuously differentiable function f has Lipschitz derivative if $|[\nabla f(\mathbf{x})-\nabla f(\mathbf{y})](\mathbf{x}-\mathbf{y})| \leq L\|\mathbf{x}-\mathbf{y}\|$ for every $\mathbf{x}, \mathbf{y} \in C$ and some constant L. Here $\nabla f(\mathbf{u})$ is the (Fréchet) derivative of f at \mathbf{u} and $\|\mathbf{u}\|=\left(\mathbf{u}^{T} \mathbf{u}\right)^{1 / 2}$ is the Euclidean norm. We represent the derivative at \mathbf{x} as a row n-tuple gradient $\nabla f(\mathbf{x})=$ $\left(\partial f(\mathbf{x}) / \partial \mathbf{x}_{i}\right)$.

Lemma 2 [[5]]. Given a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Lipschitz derivative and a constant L on a nontrivial compact convex set C in \mathbb{R}^{n}. Then $\alpha=-L$ is a convexifier.

One can show that every convexifiable scalar function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz, i.e, $|f(s)-f(t)| \leq K|s-t|$ for every s and t and some constant K. This means that a scalar non-Lipschitz function is not convexifiable. However, almost all smooth functions of practical interest are convexifiable; e.g., [5].

3. Jensen's inequality for convexifiable functions

In this section we formulate (1) for convexifiable functions.
Theorem 1 [Jensen's inequality for convexifiable functions]. Consider a convexifiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ on a bounded nontrivial convex set C of \mathbb{R}^{n} and its convexifier α. Then

$$
\begin{equation*}
f\left(\sum_{i=1}^{p} \lambda_{i} \mathbf{x}^{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(\mathbf{x}^{i}\right)-\frac{\alpha}{2}\left(\sum_{\substack{i, j=1 \\ i<j}}^{p} \lambda_{i} \lambda_{j}\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|^{2}\right) \tag{3}
\end{equation*}
$$

for every set of p points $\mathbf{x}^{i}, i=1, \ldots, p$, in C and all real scalars $\lambda_{i} \geq 0, i=$ $1, \ldots, p$, with $\sum_{i=1}^{p} \lambda_{i}=1$.

Proof. Since f is convexifiable, $\varphi(\mathbf{x}, \alpha)=f(\mathbf{x})-\frac{1}{2} \alpha \mathbf{x}^{T} \mathbf{x}$ is a convex function for every convexifier α. Hence Jensen's inequality works for $\varphi(\mathbf{x}, \alpha)$. After substitution one obtains

$$
f\left(\sum_{i=1}^{p} \lambda_{i} \mathbf{x}^{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(\mathbf{x}^{i}\right)-\frac{\alpha}{2}\left(\sum_{i, j=1}^{p} \lambda_{i} \lambda_{j}\left(\mathbf{x}^{i}\right)^{T}\left(\mathbf{x}^{i}-\mathbf{x}^{j}\right)\right) .
$$

After more rearranging the more pleasing form (3) follows.
Using the fact that for a convex function f one can choose the convexifier $\alpha=0$, one recovers (1). For a twice continuously differentiable function one can specify $\alpha=\lambda^{\star}$ (by Lemma 1) and for a continuously differentiable function with Lipschitz derivative and its constant L, one can specify $\alpha=-L$ (by Lemma 2). Hence we have, respectively, the following special cases:

Corollary 1 [Jensen's inequality for twice continuously differentiable functions]. Given a twice continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ on a nontrivial compact convex set C in \mathbb{R}^{n}. Then

$$
\begin{equation*}
f\left(\sum_{i=1}^{p} \lambda_{i} \mathbf{x}^{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(\mathbf{x}^{i}\right)-\frac{\lambda^{\star}}{2}\left(\sum_{\substack{i, j=1 \\ i<j}}^{p} \lambda_{i} \lambda_{j}\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|^{2}\right) \tag{4}
\end{equation*}
$$

for every set of p points $\mathbf{x}^{i}, i=1, \ldots, p$, in C and all real scalars $\lambda_{i} \geq 0, i=$ $1, \ldots, p$, with $\sum_{i=1}^{p} \lambda_{i}=1$.

Observation 2. If f in Corollary 1 is strictly convex, then the lowest eigenvalue of the Hessian is $\lambda^{\star} \geq 0$ (often $\lambda^{\star}>0$) and (4) may provide a better bound than (1). Since every analytic function $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice continuously differentiable, Corollary 1 holds, in particular, for analytic functions with $\lambda^{\star}=\min _{t \in C} f^{\prime \prime}(t)$.

Corollary 2 [Jensen's inequality for once continuously differentiable functions with Lipschitz derivative]. Given a continuously differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Lipschitz derivative and a constant L on a nontrivial compact convex set C in \mathbb{R}^{n}. Then

$$
\begin{equation*}
f\left(\sum_{i=1}^{p} \lambda_{i} \mathbf{x}^{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(\mathbf{x}^{i}\right)+\frac{L}{2}\left(\sum_{\substack{i, j=1 \\ i<j}}^{p} \lambda_{i} \lambda_{j}\left\|\mathbf{x}^{i}-\mathbf{x}^{j}\right\|^{2}\right) \tag{5}
\end{equation*}
$$

for every set of p points $\mathbf{x}^{i}, i=1, \ldots, p$, in C and all real scalars $\lambda_{i} \geq 0, i=$ $1, \ldots, p$, with $\sum_{i=1}^{p} \lambda_{i}=1$.

Special Case: For a scalar function $f: \mathbb{R} \rightarrow \mathbb{R}$ and two scalar points a and b Jensen's inequality is

$$
f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b), \quad \text { for every } 0 \leq \lambda \leq 1
$$

while for a convexifiable f, it is

$$
f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b)-\frac{\alpha}{2} \lambda(1-\lambda)(a-b)^{2}
$$

for every convexifier α and for every $0 \leq \lambda \leq 1$. We will use this special case to illustrate the basic difference between the two inequalities.

Illustration 1. Consider $f(t)=\sin t$ on $0 \leq t \leq 2 \pi$. Take $a=0$ and $b=2 \pi$. Then (1) and its extension yield, respectively

$$
\begin{equation*}
\sin (2 \pi(1-\lambda)) \leq 0, \quad 0 \leq \lambda \leq 1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin (2 \pi(1-\lambda)) \leq 2 \pi^{2} \lambda(1-\lambda), \quad 0 \leq \lambda \leq 1 \tag{7}
\end{equation*}
$$

Inequality (6) is not satisfied on the region where $f(t)$ is not convex, i.e., $1 / 2 \leq$ $\lambda \leq 1$. On the other hand the new upper bound in (7) holds (see Figure 1).

Figure 1. Jensen's inequality for a convexifiable function

A situation where the new bound is sharper than the one provided by Jensen's inequality for a convex function is illustrated in the following example.

Illustration 2. Consider $f(t)=t^{4}$ between $a=1$ and $b=2$. Then (1) and its extension yield $(2-\lambda)^{4} \leq 16-15 \lambda$ and $(2-\lambda)^{4} \leq 16-9 \lambda-6 \lambda^{2}, 0 \leq \lambda \leq$ 1, respectively. The upper bounds are compared against the original function in Figure 2.

Figure 2. Improvement for a strictly convex function
Jensen's inequality is closely related to the arithmetic mean theorem for real numbers. The following theorem says that the value of a convex function at the arithmetic mean of p numbers is less than or equal to the arithmetic mean of the values of the function at these numbers.

Theorem 2 [Classic arithmetic mean theorem for convex functions, e.g., [3]]. Consider a convex scalar function $f: \mathbb{R} \rightarrow \mathbb{R}$ on a nontrivial compact interval $[a, b]$. Then

$$
\begin{equation*}
f\left(\frac{1}{p} \sum_{i=1}^{p} t_{i}\right) \leq \frac{1}{p} \sum_{i=1}^{p} f\left(t_{i}\right) \tag{8}
\end{equation*}
$$

for every set of p points $t_{i} \in[a, b], i=1, \ldots, p$.
Specifying $\mathbf{x}^{i}=t_{i}, \lambda_{i}=1 / p, i=1, \ldots, p$, in (3) one obtains, after rearrangement, the following extension:

Theorem 3 [Arithmetic mean theorem for convexifiable functions]. Consider a convexifiable scalar function $f: \mathbb{R} \rightarrow \mathbb{R}$ on a nontrivial compact interval $[a, b]$ and its convexifier α. Then

$$
\begin{equation*}
f\left(\frac{1}{p} \sum_{i=1}^{p} t_{i}\right) \leq \frac{1}{p} \sum_{i=1}^{p} f\left(t_{i}\right)-\frac{\alpha}{2}\left(\frac{1}{p} \sum_{i=1}^{p} t_{i}^{2}-\left(\frac{1}{p} \sum_{i=1}^{p} t_{i}\right)^{2}\right) \tag{9}
\end{equation*}
$$

for every set of p points $t_{i} \in[a, b], i=1, \ldots, p$.
Observation 3. In (9) one can set $\alpha=0$ if f is convex, $\alpha=\lambda^{\star}=\min _{t \in[a, b]} f^{\prime \prime}(t)$ if f is twice continuously differentiable or $\alpha=-L$ if f is Lipschitz continuously differentiable with a constant L. The first special case recovers the classic result.

Observation 4. The term corresponding to the convexifier is positive, provided that at least one t_{i} is non-zero. Indeed, denote $\mathbf{A}=\left(t_{i}\right) \in \mathbb{R}^{p}, \mathbf{E}=(1, \ldots, 1)^{T} \in$ \mathbb{R}^{p}. Then this term is $\left[(1 / p)(\mathbf{A}, \mathbf{A})-(1 / p)^{2}(\mathbf{A}, \mathbf{E})^{2}\right]$. Since $(\mathbf{A}, \mathbf{E})^{2} \leq\|\mathbf{A}\|^{2}\|\mathbf{E}\|^{2}=$ $(\mathbf{A}, \mathbf{A}) \cdot p$ and $p<p^{2}$, the term is positive. Since for a twice continuously differentiable strictly convex f, we know that $\lambda^{\star}=\min _{t \in[a, b]} f^{\prime \prime}(t) \geq 0$, it follows that (9) typically provides in this case a better estimate than (8).

Special Case: For a scalar function $f: \mathbb{R} \rightarrow \mathbb{R}$ and only two points t_{1} and t_{2}, (3) (and after some rearrangement (9)) yields

$$
f\left(\frac{t_{1}+t_{2}}{2}\right) \leq \frac{1}{2}\left(f\left(t_{1}\right)+f\left(t_{2}\right)\right)-\frac{\alpha}{8} \cdot\left(t_{1}-t_{2}\right)^{2}
$$

References

[1] J. L. W. V. Jensen, Om konvexe Funktioner og Uligheder mellem Middelvaerdier, Nyt Tidsskr. Math. 16B(1905), 49-69.
[2] J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeur moyennes, Acta Math. 30(1906), 175-193.
[3] A. W. Roberts, D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
[4] S. Zlobec, Estimating convexifiers in continuous optimization, Mathematical Communications 8(2003), 129-137.
[5] S. Zlobec, Characterization of convexifiable functions, McGill University, June 2004, to be published.

[^0]: *Research supported in part by a grant from NSERC of Canada.
 ${ }^{\dagger}$ McGill University, Department of Mathematics and Statistics, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6, e-mail:zlobec@math.mcgill.ca

