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Abstract. The present paper deals with the nonlinear systems of
differential equations of Volterra type regarding the existence, behaviour,
approximation and stability of their definite solutions, all solutions in a
corresponding region or parametric classes of solutions on an unbounded
interval. The approximate solutions with precise error estimates are
determined. The theory of qualitative analysis of differential equations
and the topological retraction method are used.
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1. Introduction

We shall consider the systems of differential equations of Volterra type in the form

.
xi = fi (x, t)xi, i = 1, · · · , n, (1)

or in the special forms

.
xi = [pi (t) + hi (x, t)]xi, i = 1, · · · , n, (2)
.
xi = [qi + gi (x)]xi, i = 1, · · · , n, (3)

where x (t) = (x1 (t) , · · · , xn (t))
τ
, fi, hi ∈ C (Ω,R) , gi ∈ C (D,R) , pi ∈ C (I,R) ,

qi ∈ R, i = 1, · · · , n, D ⊂ R
n is an open set, Ω = D × I, I = 〈a,∞〉 , a ∈ R.

Functions fi, hi, gi satisfy the Lipschitz’s condition with respect to the variable x
on D.
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In his paper ([8]), Volterra considers an ecosystem model

dx1

dt
= (ρ− ηx1 − θx2)x1,

dx2

dt
= (−µ+ νx1)x2, ρ, η, θ, µ, ν ∈ R

+.

(4)

Many authors considered the systems of differential equations of Volterra type,
for example, K. Sigmund, Y. Takeuchi, N. Adachi, A. Tineo ([5], [6], [7]). The sys-
tems of type (3) are considered very often. This model is used in physics, biophysics,
chemistry, biochemistry and economy.

Let
Γ = {(x, t) ∈ Ω : x = ϕ (t) , t ∈ I}

be a curve in Ω, for some ϕ (t) = (ϕ1 (t) , · · · , ϕn (t)) , ϕi ∈ C1 (I,R). We shall
consider the behaviour of integral curves (x (t) , t) , t ∈ I, of systems (1) , (2) and
(3) , with respect to the sets ω, σ ⊂ Ω, which are the appropriate neighbourhoods
of curve Γ, in the forms

ω = {(x, t) ∈ Ω : ‖x− ϕ (t)‖ < r (t)} , (5)

σ = {(x, t) ∈ Ω : |xi − ϕi (t)| < ri (t) , i = 1, · · ·n} (6)

(‖·‖ is a Euclidian norm on R
n), where r, ri ∈ C1 (I,R+) , i = 1, · · · , n, R

+ =
〈0,∞〉 .

The boundary surfaces of ω and σ are, respectively,

W =

{
(x, t) ∈ Clω ∩ Ω : B (x, t) :=

n∑
i=1

(xi − ϕi (t))
2 − r2 (t) = 0

}
, (7)

W k
i =

{
(x, t) ∈ Clσ ∩ Ω : Bk

i (x, t) := (−1)k (xi − ϕi (t))− ri (t) = 0
}
, (8)

k = 1, 2, i = 1, · · · , n.

Let us denote the tangent vector field to an integral curve (x (t) , t) , t ∈ I, of
(1) , (2) and (3) by T. For example, for system (1) we have

T (x, t) = (f1 (x, t) x1, · · · , fi (x, t)xi, · · · , fn (x, t)xn, 1) . (9)

The vectors ∇B and ∇Bk
i are the external normals on surfaces W and W k

i , respec-
tively,

1
2
∇B (x, t) =


x1 − ϕ1 (t) , · · · , xi − ϕi (t) , · · · , xn − ϕn (t) ,

−
n∑

i=1

(xi − ϕi (t))ϕ′
i (t)− r (t) r′ (t)


 , (10)

∇Bk
i (x, t) = (−1)k

(
δ1i, · · · , δii, · · · , δni,−ϕ′

i (t)− (−1)k r′i (t)
)
, (11)
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where δmi is the Kronecker delta symbol.
Considering the sign of the scalar products

P (x, t) =
(
1
2
∇B (x, t) , T (x, t)

)
on W

and
P k

i (x, t) =
(∇Bk

i (x, t) , T (x, t)
)

on W k
i , k = 1, 2, i = 1, . . . , n,

we shall establish the behaviour of integral curves of (1) , (2) and (3) with respect
to the sets ω and σ, respectively.

The results of this paper are based on the following Lemmas 1 and 2 (see [11])
and Lemma 3 (see [3]). In the following (n1, · · · , nn) , denote a permutation of
indices (1, · · · , n) .

Lemma 1. If, for system (1) , the scalar product

P (x, t) =
(
1
2
∇B (x, t) , T (x, t)

)
< 0 on W,

then system (1) has an n−parameter class of solutions belonging to the set ω (graphs
of solutions belong to ω) for all t ∈ I.

According to this Lemma, for any point P0 =
(
x0, t0

) ∈ ω, the integral curve
passing through P0 belongs to ω for all t ≥ t0.

Lemma 2. If, for system (1) , the scalar product

P (x, t) =
(
1
2
∇B (x, t) , T (x, t)

)
> 0 on W,

then system (1) has at least one solution on I whose graph belongs to the set ω for
all t ∈ I.

Lemma 3. If, for the system (1) , the scalar products

P k
i =

(∇Bk
i , T

)
< 0 on W k

i , k = 1, 2, i = n1, · · · , np, (12)

and
P k

i =
(∇Bk

i , T
)
> 0 on W k

i , k = 1, 2, i = np+1, · · · , nn, (13)

where p ∈ {0, 1, · · · , n}, then system (1) has a p−parameter class of solutions which
belongs to the set σ (graphs of solutions belong to σ) for all t ∈ I.

The case p = 0 means that system (1) has at least one solution belonging to the
set σ for all t ∈ I.

2. The n-parameter classes of solutions

First, let us consider the behaviour of integral curves of systems (1) , (2) and (3)
with respect to the set ω.

Theorem 1. If
n∑

i=1

fi (x, t)x2
i < r (t) r′ (t) or (14)
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fi (x, t) <
r′ (t)
r (t)

, i = 1, · · · , n, on W, (15)

then system (1) has an n−parameter class of solutions x (t) satisfying the condition

‖x (t)‖ < r (t) , t ∈ I, (16)

i.e. every solution x (t) of system (1) which satisfies the condition

‖x (t0)‖ < r (t0) , t0 ∈ I, (17)

satisfies (16) for every t ≥ t0.
Proof. Here we have that the curve Γ is a t-axis (ϕ = 0). For the scalar product

P (x, t) on W we have

P (x, t) =
n∑

i=1

fi (x, t) x2
i − r (t) r′ (t) .

According to (14) , obviously P (x, t) < 0 on W , and according to (15), we have

P (x, t) <
r′ (t)
r (t)

n∑
i=1

x2
i − r (t) r′ (t) =

r′ (t)
r (t)

r2 (t)− r (t) r′ (t) = 0 on W.

According to Lemma1, the above estimates confirm the statement of the Theorem.
✷

Using Theorem 1 we can give special results. For example, the following
Corollary 1. If

fi (x, t) < 0, i = 1, · · · , n, on W,

then system (1) has an n−parameter class of solutions x (t) satisfying condition
(16) , where function r satisfies conditions (15)and

r′ (t) ≤ 0 on I. (18)

Obviously, in the general case for function r we can take an arbitrary positive
constant.

Theorem 2. Let Γ be any integral curve of system (1), M ∈ C (Ω,R) and

fi (x, t) � M (x, t) , i = 1, · · · , n, on W. (19)

If, on W,

|fi (x, t)− fi (y, t)| � Li ‖x− y‖ , i = 1, · · · , n, x, y ∈ D (20)

and
n∑

i=1

Li |ϕi (t)| < −M (x, t) +
r′ (t)
r (t)

(21)
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or
n∑

i=1

|(fi (x, t)− fi (ϕ, t))ϕi (t)| < −M (x, t) r (t) + r′ (t) , (22)

then system (1) has an n-parameter class of solutions x (t) satisfying the condition

‖x (t)− ϕ (t)‖ < r (t) , t ∈ I, (23)

i.e. every solution x (t) of system (1) which satisfies the condition

‖x (t0)− ϕ (t0)‖ < r (t0) , t0 ∈ I, (24)

satisfies (23) for every t ≥ t0.

Proof. For the scalar product P (x, t) on W we have

P (x, t) =
n∑

i=1

fi (x, t) [xi − ϕi (t)]xi −
n∑

i=1

[xi − ϕi (t)]ϕ′
i (t)− r (t) r′ (t)

=
n∑

i=1

fi (x, t) [xi − ϕi (t)]
2 +

n∑
i=1

fi (x, t) [xi − ϕi (t)]ϕi (t)

−
n∑

i=1

[xi − ϕi (t)]ϕ′
i (t)− r (t) r′ (t)

=
n∑

i=1

fi (x, t) [xi − ϕi (t)]
2

+
n∑

i=1

[fi (x, t)ϕi (t)− ϕ′
i (t)] [xi − ϕi (t)]− r (t) r′ (t)

=
n∑

i=1

fi (x, t) [xi − ϕi (t)]
2

+
n∑

i=1

{[fi (x, t)− fi (ϕ, t) + fi (ϕ, t)]ϕi (t)− ϕ′
i (t)} [xi − ϕi (t)]

−r (t) r′ (t)

=
n∑

i=1

fi (x, t) [xi − ϕi (t)]
2 +

n∑
i=1

[fi (x, t)− fi (ϕ, t)] [xi − ϕi (t)]ϕi (t)

−r (t) r′ (t) . (25)

Now, we have on W , by (21)

P (x, t) � M (x, t) r2 (t) +
n∑

i=1

Li |ϕi (t)| r2 (t)− r (t) r′ (t)

< M (x, t) r2 (t) +
(
−M (x, t) +

r′ (t)
r (t)

)
r2 (t)− r (t) r′ (t) = 0,
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and by (22)

P (x, t) � M (x, t) r2 (t) +
n∑

i=1

|[fi (x, t)− fi (ϕ, t)]ϕi (t)| r (t)− r (t) r′ (t)

< M (x, t) r2 (t) + (−M (x, t) r (t) + r′ (t)) r (t)− r (t) r′ (t) = 0.

The above estimates for P (x, t) on W, according to Lemma1, imply the statement
of the Theorem. ✷

Theorem 3. Let Γ be any smooth curve in Ω and let m,M ∈ C (Ω,R) , ξ ∈
C
(
Ω,R+

0

)
, R

+
0 = [0,∞〉, such that

n∑
i=1

|fi (x, t)ϕi (t)− ϕ′
i (t)| � ξ (x, t) on W. (26)

(i) If

fi (x, t) � M (x, t) , i = 1, · · · , n, and (27)
ξ (x, t) < −M (x, t) r (t) + r′ (t) on W, (28)

then system (1) has an n−parameter class of solutions x (t) satisfying condi-
tion (23) .

(ii) If

m (x, t) � fi (x, t) , i = 1, · · · , n, and (29)
ξ (x, t) < m (x, t) r (t)− r′ (t) on W, (30)

then system (1) has at least one solution x (t) which satisfies condition (23).

Proof. In view of (25), for the scalar product P (x, t) on W we have:

P =
n∑

i=1

fi (xi − ϕi)
2 +

n∑
i=1

(fiϕi − ϕ′
i) (xi − ϕi)− rr′ and

(i) P � Mr2 + ξr − rr′ < 0,

(ii) P � mr2 − ξr − rr′ > 0.
According to Lemmas 1 and 2, in cases (i) and (ii) , respectively, the above estimates
for P (x, t) on W imply the statements of the Theorem. ✷

Theorem 4. Let (ϕ (t) , t), t ∈ I, ϕ �= 0, be a curve of stationary points
of system (1) (fi (ϕ (t) , t) = 0, t ∈ I, i = 1, · · · , n), let (20) hold and let m,M ∈
C (I,R) .

(i) If
fi (x, t) � M (t) , i = 1, · · · , n, (x, t) ∈ W and

r (t)
n∑

i=1

Li |ϕi (t)|+
n∑

i=1

|ϕ′
i (t)| < −M (t) r (t) + r′ (t) , t ∈ I,

then system (1) has an n-parameter class of solutions x (t) satisfying condition
(23) .
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(ii) If
m (t) ≤ fi (x, t) , i = 1, · · · , n, (x, t) ∈ W and

r (t)
n∑

i=1

Li |ϕi (t)|+
n∑

i=1

|ϕ′
i (t)| < m (t) r (t)− r′ (t) , t ∈ I,

then system (1) has at least one solution x (t) which satisfies condition (23).

Proof. From (25) we have on W

P (x, t) =
n∑

i=1

fi (x, t) [xi − ϕi (t)]
2

+
n∑

i=1

{[fi (x, t)− fi (ϕ, t)]ϕi (t)− ϕ′
i (t)} [xi − ϕi (t)]− r (t) r′ (t)

=
n∑

i=1

fi (x, t) [xi − ϕi (t)]
2 +

n∑
i=1

[fi (x, t)− fi (ϕ, t)] [xi − ϕi (t)]ϕi (t)

−
n∑

i=1

ϕ′
i (t) [xi − ϕi (t)]− r (t) r′ (t) .

The conditions of the Theorem imply the estimates in case (i) and (ii), respectively:

P (x, t) � M (t) r2 (t) +
n∑

i=1

Li |ϕi (t)| r2 (t) +
n∑

i=1

|ϕ′
i (t)| r (t)− r (t) r′ (t) < 0,

P (x, t) � m (t) r2 (t)−
n∑

i=1

Li |ϕi (t)| r2 (t)−
n∑

i=1

|ϕ′
i (t)| r (t)− r (t) r′ (t) > 0.

The above estimates for P (x, t) on W, according to Lemma 1 in case (i) and ac-
cording to Lemma2 in case (ii), imply the statements of the Theorem. ✷

Now let us consider system (2) .
Theorem 5. Let m,M ∈ C (Ω, R) and

ϕi (t) = Ci exp
[∫

pi (t) dt
]
, i = 1, · · · , n, Ci ∈ R. (31)

(i) If

pi (t) + hi (x, t) � M (x, t) , i = 1, · · · , n and
n∑

i=1

|hi (x, t)ϕi (t)| � −M (x, t) r (t) + r′ (t) on W,

then system (2) has an n−parameter class of solutions x (t) satisfying condi-
tion (23) .

(ii) If
m (x, t) � pi (t) + hi (x, t) , i = 1, 2, · · · , n and
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n∑
i=1

|hi (x, t)ϕi (t)| � m (x, t) r (t) + r′ (t) on W,

then system (2) has at least one solution x (t) which satisfies condition (23) .

Proof. Firstly, we can note that pi (t)ϕi (t) − ϕ′
i (t) = 0, i = 1, · · · , n, t ∈ I.

Now, according to (25) and conditions of this theorem, we have on W :

P =
n∑

i=1

(pi + hi) (xi − ϕi)
2 +

n∑
i=1

[(pi + hi)ϕi − ϕ′
i] (xi − ϕi)− rr′

=
n∑

i=1

(pi + hi) (xi − ϕi)
2 +

n∑
i=1

hiϕi (xi − ϕi)− rr′ and

(i)

P ≤ r2
n∑

i=1

(pi + hi) + r

n∑
i=1

|hiϕi| − rr′

≤ Mr2 + r

n∑
i=1

|hiϕi| − rr′ < 0, (32)

(ii)

P ≥ mr2 − r

n∑
i=1

|hiϕi| − rr′ > 0. (33)

According to Lemma1, estimate (32) implies that system (2) has the n−parameter
class of solutions x (t) belonging to the corresponding set ω for all t ∈ I, and esti-
mate (33) implies that system (2) has at least one solution x (t) which satisfies that
condition. This confirms the statements of the Theorem. ✷

Now let us consider system (3) in neighbourhood of
(
x0, t

)
, t ∈ I, where x0 =(

x0
1, · · · , x0

n

) ∈ R
n and

qi + gi

(
x0
)
= 0, i = 1, · · · , n. (34)

Theorem 6. Let (34) and

|gi (x)− gi (y)| � Li ‖x− y‖ , i = 1, · · · , n, x, y ∈ D (35)
qi + gi (x) ≤ Q ∈ R, i = 1, · · · , n, on D.

If
n∑

i=1

Li

∣∣x0
i

∣∣ < −Q+
r′ (t)
r (t)

, t ∈ I, (36)

then system (3) has an n-parameter class of solutions x (t) satisfying the condition∥∥x (t)− x0
∥∥ < r (t) , t ∈ I. (37)
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Proof. For the scalar product P (x, t) onW, using (25) with fi (x, t) = qi+gi (x),
ϕi = x0

i , i = 1, · · · , n, we have

P (x, t) =
n∑

i=1

(qi + gi (x))
(
xi − x0

i

)2
+

n∑
i=1

(qi + gi (x))x0
i

(
xi − x0

i

)− r (t) r′ (t)

=
n∑

i=1

(qi + gi (x))
(
xi − x0

i

)2
+

n∑
i=1

(
gi (x)− gi

(
x0
))

x0
i

(
xi − x0

i

)− r (t) r′ (t)

� Qr2 (t) +
n∑

i=1

Li

∣∣x0
i

∣∣ r2 (t)− r (t) r′ (t) < 0.

Hence, according to Lemma1, the statement of the Theorem is valid. ✷

Corollary 2. If in Theorem6 condition (36) is replaced by

n∑
i=1

Li

∣∣x0
i

∣∣+Q < 0,

the statement of Theorem6 holds with the function

r (t) = αe−βt, α, β ∈ R
+ and

0 < β ≤ s = −
(

n∑
i=1

Li

∣∣x0
i

∣∣+Q

)
.

For β = s condition (37) should be replaced by∥∥x (t)− x0
∥∥ ≤ r (t) , t ∈ I.

In case x0 = 0 for system (3) we can use Theorem 1 and Corollary 1. Moreover,
we can note that Theorem 6 and Corollary 2 are valid without assumption (35) .

3. The p-parameter classes of solutions

Here we consider the behaviour of integral curves of systems (1) , (2) and (3) with
respect to the set σ.

Theorem 7. If, on W k
i , k = 1, 2,

fi (x, t) <
r′i (t)
ri (t)

, i = n1, · · · , np, (38)

fi (x, t) >
r′i (t)
ri (t)

, i = np+1, · · · , nn, (39)

then system (1) has a p-parameter class of solutions x (t) satisfying condition

|xi (t)| < ri (t) , i = 1, · · · , n, t ∈ I. (40)
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Proof. Here is ϕ = 0. For the scalar products P k
i (x, t) on W k

i , k = 1, 2,
i = 1, · · · , n, we have

P k
i (x, t) = (−1)k fi (x, t)xi − r′i (t)

= fi (x, t) ri (t)− r′i (t)

and

P k
i (x, t) < 0 for i = n1, · · · , np,

P k
i (x, t) > 0 for i = np+1, · · · , nn.

According to Lemma3, the above estimates imply the statement of the Theorem. ✷

Using Theorem 7 we can give special results. For example,
Corollary 3. If, on W k

i , k = 1, 2,

fi (x, t) < 0, i = n1, · · · , np,

fi (x, t) > 0, i = np+1, · · · , nn,

then system (1) has a p-parameter class of solutions x (t) which satisfy condition

|xi (t)| < r (t) , i = 1, · · · , n, t ∈ I,

where function r satisfies conditions (18) and, on W k
i , k = 1, 2,

fi (x, t)− r′ (t)
r (t)

< 0, i = n1, · · · , np.

For function r we can take, for example, some positive constant.
Theorem 8. If, on W k

i , k = 1, 2,

|fi (x, t) xi − ϕ′
i (t)| < r′i (t) or (41)

|fi (x, t)ϕi (t)− ϕ′
i (t)| < −fi (x, t) ri (t) + r′i (t) (42)

for i = n1, · · · , np, and

|fi (x, t) xi − ϕ′
i (t)| < −r′i (t) or (43)

|fi (x, t)ϕi (t)− ϕ′
i (t)| < fi (x, t) ri (t)− r′i (t) (44)

for i = np+1, · · · , nn, then system (1) has a p-parameter class of solutions x (t)
satisfying the condition

|xi (t)− ϕi (t)| < ri (t) , i = 1, · · · , n, t ∈ I. (45)

Proof. Here for P k
i (x, t) on W k

i , k = 1, 2, i = 1, · · · , n, we have

P k
i (x, t) = (−1)k fi (x, t) xi − (−1)k ϕ′

i (t)− r′i (t)

= (−1)k [fi (x, t) xi − ϕ′
i (t)]− r′i (t) (46)
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or

P k
i (x, t) = (−1)k [xi − ϕi (t)] fi (x, t) + (−1)k [fi (x, t)ϕi (t)− ϕ′

i (t)]− r′i (t)

= fi (x, t) ri (t) + (−1)k [fi (x, t)ϕi (t)− ϕ′
i (t)]− r′i (t) . (47)

Now (41) with (46) or (42) with (47) imply, respectively,

P k
i � |fi xi − ϕ′

i| − r′i < 0,
P k

i � fi ri + |fi ϕi − ϕ′
i| − r′i < 0

on W k
i , k = 1, 2, for i = n1, · · · , np. The conditions (43) with (46) or (44) with (47)

imply, respectively,

P k
i � − |fi xi − ϕ′

i| − r′i > 0,
P k

i � fi ri − |fi ϕi − ϕ′
i| − r′i > 0

on W k
i , k = 1, 2 , for i = np+1, · · · , nn. These estimates, according to the Lemma3,

confirm the statement of this Theorem. ✷

Theorem 9. Let Γ be any integral curve of system (1) , let (20) hold and let

ρ (t) =
√

r2
1 (t) + · · ·+ r2

n (t) . (48)

If, on W k
i , k = 1, 2,

Li |ϕi (t)| ρ (t) < −fi (x, t) ri (t) + r′i (t)

for i = n1, · · · , np, and

Li |ϕi (t)| ρ (t) < fi (x, t) ri (t)− r′i (t)

for i = np+1, · · · , nn, then system (1) has a p-parameter class of solutions x (t)
satisfying condition (45) .

Proof. In view of (47) for P k
i (x, t) on W k

i , k = 1, 2, we have

P k
i (x, t) = fi (x, t) ri (t) + (−1)k [(fi (x, t)− fi (ϕ, t) + fi (ϕ, t))ϕi (t)− ϕ′

i (t)]− r′i (t)

= fi (x, t) ri (t) + (−1)k [fi (x, t)− fi (ϕ, t)]ϕi (t)− r′i (t) .

Now, it is enough to note that, on W k
i , k = 1, 2,

P k
i (x, t) � fi (x, t) ri (t) + |fi (x, t)− fi (ϕ, t)| |ϕi (t)| − r′i (t)

� fi (x, t) ri (t) + Li ‖x− ϕ‖ |ϕi (t)| − r′i (t)
= fi (x, t) ri (t) + Liρ (t) |ϕi (t)| − r′i (t) < 0

for i = n1, · · · , np, and

P k
i (x, t) � fi (x, t) ri (t)− Liρ (t) |ϕi (t)| − r′i (t) > 0

for i = np+1, · · · , nn. ✷
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Theorem 10. Let Γ be a curve of stationary points of system (1) different from
the t− axis, i.e. fi (ϕ (t) , t) = 0, i = 1, · · · , n, t ∈ I, ϕ �= 0, and let (20) and (48)
be valid. If, on W k

i , k = 1, 2,

Li |ϕi (t)| ρ (t) + |ϕ′
i (t)| < −fi (x, t) ri (t) + r′i (t) , i = n1, · · · , np,

Li |ϕi (t)| ρ (t) + |ϕ′
i (t)| < fi (x, t) ri (t)− r′i (t) , i = np+1, · · · , nn,

then system (1) has a p-parameter class of solutions x (t) satisfying condition (45) .
Proof. In view of (47) we have, on W k

i , k = 1, 2,

P k
i (x, t) = fi (x, t) ri (t) + (−1)k [(fi (x, t)− fi (ϕ, t))ϕi (t)− ϕ′

i (t)]− r′i (t) ,
P k

i (x, t) � fi (x, t) ri (t) + Li ‖x− ϕ‖ |ϕi (t)|+ |ϕ′
i (t)| − r′i (t)

= fi (x, t) ri (t) + Li |ϕi (t)| ρ (t) + |ϕ′
i (t)| − r′i (t) < 0, i = n1, · · · , np,

P k
i (x, t) � fi (x, t) ri (t)− Li |ϕi (t)| ρ (t)− |ϕ′

i (t)| − r′i (t) > 0, i = np+1, · · · , nn.

These estimates confirm the statement of this Theorem. ✷

Let us now consider the behaviour of integral curves of system (2) with respect
to the set σ, where ϕ is defined by (31) .

Theorem 11. If, on W k
i , k = 1, 2,

|hi (x, t)ϕi (t)| < − (pi (t) + hi (x, t)) ri (t) + r′i (t)

for i = n1, · · · , np, and

|hi (x, t)ϕi (t)| < (pi (t) + hi (x, t)) ri (t)− r′i (t)

for i = np+1, · · · , nn, then system (2) has a p-parameter class of solutions x (t)
satisfying condition (45) , where ϕ is defined by (31) .

Proof. According to (47), we have, on W k
i , k = 1, 2,

P k
i = (pi + hi) ri + (−1)k [(pi + hi)ϕi − ϕ′

i]− r′i
= (pi + hi) ri + (−1)k hiϕi − r′i.

Now, it is enough to note that, on W k
i , k = 1, 2,

P k
i � (pi + hi) ri + |hiϕi| − r′i < 0

for i = n1, · · · , np , and

P k
i � (pi + hi) ri − |hiϕi| − r′i > 0

for i = np+1, · · · , nn. ✷

Now let us consider the behaviour of integral curves of system (3) in neighbour-
hood of

(
x0, t

)
, t ∈ I, where x0 ∈ R

n.
Theorem 12. Let (34) and (35) be valid and let function ρ (t) be defined by

(48) . If, on W k
i , k = 1, 2,

Li

∣∣x0
i

∣∣ ρ (t) < − (qi + gi (x)) ri (t) + r′i (t) (49)
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for i = n1, · · · , np, and

Li

∣∣x0
i

∣∣ ρ (t) < (qi + gi (x)) ri (t)− r′i (t) (50)

for i = np+1, · · · , nn, then system (3) has a p-parameter class of solutions x (t)
satisfying the condition∣∣xi (t)− x0

i

∣∣ < ri (t) , i = 1, · · · , n, t ∈ I.

Proof. Using (47) we have, on W k
i , k = 1, 2,

P k
i (x, t) = (qi + gi (x)) ri (t) + (−1)k (qi + gi (x))x0

i − r′i (t)

= (qi + gi (x)) ri (t) + (−1)k [qi + gi

(
x0
)
+ gi (x)− gi

(
x0
)]

x0
i − r′i (t)

= (qi + gi (x)) ri (t) + (−1)k [gi (x)− gi

(
x0
)]

x0
i − r′i (t) (51)

and
P k

i (x, t) � (qi + gi (x)) ri (t) + Li

∣∣x0
i

∣∣ ρ (t)− r′i (t) < 0

for i = n1, · · · , np, and

P k
i (x, t) � (qi + gi (x)) ri (t)− Li

∣∣x0
i

∣∣ ρ (t)− r′i (t) > 0

for i = np+1, · · · , nn. These estimates confirm this Theorem. ✷

We can note that in case x0 = 0 Theorem 12 holds without assumption (35) .

4. Examples

Let us consider two known examples.
Example 1. The Lotka-Volterra model ([1])

.
x1 = x1 − x1x2,
.
x2 = −x2 + x1x2.

(52)

Corollary 4. Let functions r1, r2 ∈ C1 (I,R+) satisfy the conditions

r1 (t) < 1 +
r′2 (t)
r2 (t)

, r2 (t) < 1− r′1 (t)
r1 (t)

, t ∈ I.

System (52) has a one-parameter class of solutions (x1 (t) , x2 (t)) satisfying the
condition

|x1 (t)| < r1 (t) , |x2 (t)| < r2 (t) , t ∈ I.

This Corollary follows from Theorem 7. Conditions (38) and (39) are valid for
i = 2 and i = 1, respectively. Here we have on W k

i (i, k = 1, 2):

P k
2 (x1, x2, t) = (x1 − 1) r2 (t)− r′2 (t) ≤ (r1 (t)− 1) r2 (t)− r′2 (t) < 0,

P k
1 (x1, x2, t) = (1− x2) r1 (t)− r′1 (t) ≥ (1− r2 (t)) r1 (t)− r′1 (t) > 0.
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For functions ri we can take, for example,

r1 (t) = r2 (t) = αe−βt, α, β ∈ R
+, α+ β ≤ 1, t > 0.

Example 2. The Volterra model (4) , applying appropriate substitution ([4]),
can be written in the form

.
x1 = (1− x1 − ax2)x1,
.
x2 = (−b+ ax1)x2, a, b ∈ R

+.
(53)

Corollary 5. Let α, β ∈ R
+.

(i) System (53) has a one-parameter class of solutions x (t) which satisfy the
condition

|x1 (t)| < αe−βt, |x2 (t)| < αe−βt for t > 0,

where
1 + β ≥ α (1 + a) , b ≥ αa+ β.

(ii) System (53) has a one-parameter class of solutions x (t) which satisfy the
condition

|x1 (t)− 1| < αe−βt, |x2 (t)| < αe−βt for t > 0,

where
β ≥ (1 + a) (1 + α) , b ≥ a (1 + α) + β.

The statements of this Corollary follow from Theorem 12. Conditions (49) and
(50) hold for i = 2 and i = 1, respectively, in both cases (i) and (ii). In this example
we consider x0 = (0, 0) in case (i) and x0 = (1, 0) in case (ii) . According to (51),
here we have on W k

i (i, k = 1, 2):
(i)

P k
2 (x1, x2, t) = (−b+ ax1)αe−βt + βαe−βt < (−b+ aα+ β)αe−βt ≤ 0,

P k
1 (x1, x2, t) = (1− x1 − ax2)αe−βt + βαe−βt > (1− α− aα+ β)αe−βt ≥ 0;

(ii)

P k
2 (x1, x2, t) = (−b+ ax1)αe−βt + βαe−βt < (−b+ a (1 + α) + β)αe−βt ≤ 0,

P k
1 (x1, x2, t) = (1− x1 − ax2)αe−βt + (−1)k (1− x1 − ax2) + βαe−βt

≥ (−αe−βt − aαe−βt
)
αe−βt − αe−βt − aαe−βt + βαe−βt

> (−α− aα− 1− a+ β)αe−βt ≥ 0.

Remark. We can note that the obtained results also contain answers to ques-
tions on approximation and stability or instability of solutions x (t) whose existence
is established. The errors of the approximation and the functions of stability or
instability (including autostability and stability along the coordinates) are defined
by functions r (t) and ri (t), i = 1, · · · , n (see [9], [10], [11]).
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