Existence and approximation of solutions of a system of differential equations of Volterra type*

Božo Vrdoljak ${ }^{\dagger}$ and Alma Omerspahić ${ }^{\ddagger}$

Abstract

The present paper deals with the nonlinear systems of differential equations of Volterra type regarding the existence, behaviour, approximation and stability of their definite solutions, all solutions in a corresponding region or parametric classes of solutions on an unbounded interval. The approximate solutions with precise error estimates are determined. The theory of qualitative analysis of differential equations and the topological retraction method are used.

Key words: Volterra system, existence and behaviour of solutions, approximation of solutions

AMS subject classifications: 34C05, 34D05
Received June 1, 2004
Accepted November 2, 2004

1. Introduction

We shall consider the systems of differential equations of Volterra type in the form

$$
\begin{equation*}
\dot{x}_{i}=f_{i}(x, t) x_{i}, \quad i=1, \cdots, n, \tag{1}
\end{equation*}
$$

or in the special forms

$$
\begin{align*}
\dot{x}_{i} & =\left[p_{i}(t)+h_{i}(x, t)\right] x_{i}, \quad i=1, \cdots, n, \tag{2}\\
\dot{x}_{i} & =\left[q_{i}+g_{i}(x)\right] x_{i}, \quad i=1, \cdots, n, \tag{3}
\end{align*}
$$

where $x(t)=\left(x_{1}(t), \cdots, x_{n}(t)\right)^{\tau}, f_{i}, h_{i} \in C(\Omega, \mathbb{R}), g_{i} \in C(D, \mathbb{R}), p_{i} \in C(I, \mathbb{R})$, $q_{i} \in \mathbb{R}, i=1, \cdots, n, D \subset \mathbb{R}^{n}$ is an open set, $\Omega=D \times I, I=\langle a, \infty\rangle, a \in \mathbb{R}$. Functions f_{i}, h_{i}, g_{i} satisfy the Lipschitz's condition with respect to the variable x on D.

[^0]In his paper ([8]), Volterra considers an ecosystem model

$$
\begin{align*}
\frac{d x_{1}}{d t} & =\left(\rho-\eta x_{1}-\theta x_{2}\right) x_{1} \\
\frac{d x_{2}}{d t} & =\left(-\mu+\nu x_{1}\right) x_{2}, \quad \rho, \eta, \theta, \mu, \nu \in \mathbb{R}^{+} \tag{4}
\end{align*}
$$

Many authors considered the systems of differential equations of Volterra type, for example, K. Sigmund, Y. Takeuchi, N. Adachi, A. Tineo ([5], [6], [7]). The systems of type (3) are considered very often. This model is used in physics, biophysics, chemistry, biochemistry and economy.

Let

$$
\Gamma=\{(x, t) \in \Omega: x=\varphi(t), t \in I\}
$$

be a curve in Ω, for some $\varphi(t)=\left(\varphi_{1}(t), \cdots, \varphi_{n}(t)\right), \varphi_{i} \in C^{1}(I, \mathbb{R})$. We shall consider the behaviour of integral curves $(x(t), t), t \in I$, of systems (1), (2) and (3), with respect to the sets $\omega, \sigma \subset \Omega$, which are the appropriate neighbourhoods of curve Γ, in the forms

$$
\begin{gather*}
\omega=\{(x, t) \in \Omega:\|x-\varphi(t)\|<r(t)\} \tag{5}\\
\sigma=\left\{(x, t) \in \Omega:\left|x_{i}-\varphi_{i}(t)\right|<r_{i}(t), i=1, \cdots n\right\} \tag{6}
\end{gather*}
$$

$\left(\|\cdot\|\right.$ is a Euclidian norm on $\left.\mathbb{R}^{n}\right)$, where $r, r_{i} \in C^{1}\left(I, \mathbb{R}^{+}\right), i=1, \cdots, n, \mathbb{R}^{+}=$ $\langle 0, \infty\rangle$.

The boundary surfaces of ω and σ are, respectively,

$$
\begin{align*}
W & =\left\{(x, t) \in C l \omega \cap \Omega: B(x, t):=\sum_{i=1}^{n}\left(x_{i}-\varphi_{i}(t)\right)^{2}-r^{2}(t)=0\right\}, \tag{7}\\
W_{i}^{k} & =\left\{(x, t) \in C l \sigma \cap \Omega: B_{i}^{k}(x, t):=(-1)^{k}\left(x_{i}-\varphi_{i}(t)\right)-r_{i}(t)=0\right\}, \tag{8}\\
k & =1,2, \quad i=1, \cdots, n .
\end{align*}
$$

Let us denote the tangent vector field to an integral curve $(x(t), t), t \in I$, of (1), (2) and (3) by T. For example, for system (1) we have

$$
\begin{equation*}
T(x, t)=\left(f_{1}(x, t) x_{1}, \cdots, f_{i}(x, t) x_{i}, \cdots, f_{n}(x, t) x_{n}, 1\right) \tag{9}
\end{equation*}
$$

The vectors ∇B and ∇B_{i}^{k} are the external normals on surfaces W and W_{i}^{k}, respectively,

$$
\begin{align*}
& \frac{1}{2} \nabla B(x, t)=\binom{x_{1}-\varphi_{1}(t), \cdots, x_{i}-\varphi_{i}(t), \cdots, x_{n}-\varphi_{n}(t)}{-\sum_{i=1}^{n}\left(x_{i}-\varphi_{i}(t)\right) \varphi_{i}^{\prime}(t)-r(t) r^{\prime}(t)} \tag{10}\\
& \nabla B_{i}^{k}(x, t)=(-1)^{k}\left(\delta_{1 i}, \cdots, \delta_{i i}, \cdots, \delta_{n i},-\varphi_{i}^{\prime}(t)-(-1)^{k} r_{i}^{\prime}(t)\right) \tag{11}
\end{align*}
$$

where $\delta_{m i}$ is the Kronecker delta symbol.
Considering the sign of the scalar products

$$
P(x, t)=\left(\frac{1}{2} \nabla B(x, t), T(x, t)\right) \quad \text { on } W
$$

and

$$
P_{i}^{k}(x, t)=\left(\nabla B_{i}^{k}(x, t), T(x, t)\right) \quad \text { on } W_{i}^{k}, k=1,2, i=1, \ldots, n,
$$

we shall establish the behaviour of integral curves of (1), (2) and (3) with respect to the sets ω and σ, respectively.

The results of this paper are based on the following Lemmas 1 and 2 (see [11]) and Lemma 3 (see [3]). In the following $\left(n_{1}, \cdots, n_{n}\right)$, denote a permutation of indices $(1, \cdots, n)$.

Lemma 1. If, for system (1), the scalar product

$$
P(x, t)=\left(\frac{1}{2} \nabla B(x, t), T(x, t)\right)<0 \quad \text { on } W
$$

then system (1) has an n-parameter class of solutions belonging to the set ω (graphs of solutions belong to ω) for all $t \in I$.

According to this Lemma, for any point $P_{0}=\left(x^{0}, t_{0}\right) \in \omega$, the integral curve passing through P_{0} belongs to ω for all $t \geq t_{0}$.

Lemma 2. If, for system (1), the scalar product

$$
P(x, t)=\left(\frac{1}{2} \nabla B(x, t), T(x, t)\right)>0 \quad \text { on } W,
$$

then system (1) has at least one solution on I whose graph belongs to the set ω for all $t \in I$.

Lemma 3. If, for the system (1), the scalar products

$$
\begin{equation*}
P_{i}^{k}=\left(\nabla B_{i}^{k}, T\right)<0 \quad \text { on } W_{i}^{k}, k=1,2, i=n_{1}, \cdots, n_{p}, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{i}^{k}=\left(\nabla B_{i}^{k}, T\right)>0 \quad \text { on } W_{i}^{k}, k=1,2, i=n_{p+1}, \cdots, n_{n} \tag{13}
\end{equation*}
$$

where $p \in\{0,1, \cdots, n\}$, then system (1) has a p-parameter class of solutions which belongs to the set σ (graphs of solutions belong to σ) for all $t \in I$.

The case $p=0$ means that system (1) has at least one solution belonging to the set σ for all $t \in I$.

2. The n-parameter classes of solutions

First, let us consider the behaviour of integral curves of systems (1), (2) and (3) with respect to the set ω.

Theorem 1. If

$$
\begin{equation*}
\sum_{i=1}^{n} f_{i}(x, t) x_{i}^{2}<r(t) r^{\prime}(t) \quad \text { or } \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
f_{i}(x, t)<\frac{r^{\prime}(t)}{r(t)}, i=1, \cdots, n, \quad \text { on } W, \tag{15}
\end{equation*}
$$

then system (1) has an n-parameter class of solutions $x(t)$ satisfying the condition

$$
\begin{equation*}
\|x(t)\|<r(t), \quad t \in I \tag{16}
\end{equation*}
$$

i.e. every solution $x(t)$ of system (1) which satisfies the condition

$$
\begin{equation*}
\left\|x\left(t_{0}\right)\right\|<r\left(t_{0}\right), \quad t_{0} \in I \tag{17}
\end{equation*}
$$

satisfies (16) for every $t \geq t_{0}$.
Proof. Here we have that the curve Γ is a t-axis $(\varphi=0)$. For the scalar product $P(x, t)$ on W we have

$$
P(x, t)=\sum_{i=1}^{n} f_{i}(x, t) x_{i}^{2}-r(t) r^{\prime}(t)
$$

According to (14), obviously $P(x, t)<0$ on W, and according to (15), we have

$$
P(x, t)<\frac{r^{\prime}(t)}{r(t)} \sum_{i=1}^{n} x_{i}^{2}-r(t) r^{\prime}(t)=\frac{r^{\prime}(t)}{r(t)} r^{2}(t)-r(t) r^{\prime}(t)=0 \quad \text { on } W .
$$

According to Lemma 1, the above estimates confirm the statement of the Theorem.
Using Theorem 1 we can give special results. For example, the following
Corollary 1. If

$$
f_{i}(x, t)<0, i=1, \cdots, n, \quad \text { on } W
$$

then system (1) has an n-parameter class of solutions $x(t)$ satisfying condition (16), where function r satisfies conditions (15) and

$$
\begin{equation*}
r^{\prime}(t) \leq 0 \quad \text { on } I \tag{18}
\end{equation*}
$$

Obviously, in the general case for function r we can take an arbitrary positive constant.

Theorem 2. Let Γ be any integral curve of system (1), $M \in C(\Omega, \mathbb{R})$ and

$$
\begin{equation*}
f_{i}(x, t) \leqslant M(x, t), \quad i=1, \cdots, n, \quad \text { on } W \tag{19}
\end{equation*}
$$

$I f$, on W,

$$
\begin{equation*}
\left|f_{i}(x, t)-f_{i}(y, t)\right| \leqslant L_{i}\|x-y\|, \quad i=1, \cdots, n, \quad x, y \in D \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} L_{i}\left|\varphi_{i}(t)\right|<-M(x, t)+\frac{r^{\prime}(t)}{r(t)} \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left(f_{i}(x, t)-f_{i}(\varphi, t)\right) \varphi_{i}(t)\right|<-M(x, t) r(t)+r^{\prime}(t) \tag{22}
\end{equation*}
$$

then system (1) has an n-parameter class of solutions $x(t)$ satisfying the condition

$$
\begin{equation*}
\|x(t)-\varphi(t)\|<r(t), \quad t \in I \tag{23}
\end{equation*}
$$

i.e. every solution $x(t)$ of system (1) which satisfies the condition

$$
\begin{equation*}
\left\|x\left(t_{0}\right)-\varphi\left(t_{0}\right)\right\|<r\left(t_{0}\right), \quad t_{0} \in I \tag{24}
\end{equation*}
$$

satisfies (23) for every $t \geq t_{0}$.
Proof. For the scalar product $P(x, t)$ on W we have

$$
\begin{align*}
P(x, t)= & \sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right] x_{i}-\sum_{i=1}^{n}\left[x_{i}-\varphi_{i}(t)\right] \varphi_{i}^{\prime}(t)-r(t) r^{\prime}(t) \\
= & \sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right]^{2}+\sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right] \varphi_{i}(t) \\
& -\sum_{i=1}^{n}\left[x_{i}-\varphi_{i}(t)\right] \varphi_{i}^{\prime}(t)-r(t) r^{\prime}(t) \\
= & \sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right]^{2} \\
+ & \sum_{i=1}^{n}\left[f_{i}(x, t) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right]\left[x_{i}-\varphi_{i}(t)\right]-r(t) r^{\prime}(t) \\
= & \sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right]^{2} \\
& +\sum_{i=1}^{n}\left\{\left[f_{i}(x, t)-f_{i}(\varphi, t)+f_{i}(\varphi, t)\right] \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right\}\left[x_{i}-\varphi_{i}(t)\right] \\
& -r(t) r^{\prime}(t) \\
= & \sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right]^{2}+\sum_{i=1}^{n}\left[f_{i}(x, t)-f_{i}(\varphi, t)\right]\left[x_{i}-\varphi_{i}(t)\right] \varphi_{i}(t) \\
& -r(t) r^{\prime}(t) \tag{25}
\end{align*}
$$

Now, we have on W, by (21)

$$
\begin{aligned}
P(x, t) & \leqslant M(x, t) r^{2}(t)+\sum_{i=1}^{n} L_{i}\left|\varphi_{i}(t)\right| r^{2}(t)-r(t) r^{\prime}(t) \\
& <M(x, t) r^{2}(t)+\left(-M(x, t)+\frac{r^{\prime}(t)}{r(t)}\right) r^{2}(t)-r(t) r^{\prime}(t)=0
\end{aligned}
$$

and by (22)

$$
\begin{aligned}
P(x, t) & \leqslant M(x, t) r^{2}(t)+\sum_{i=1}^{n}\left|\left[f_{i}(x, t)-f_{i}(\varphi, t)\right] \varphi_{i}(t)\right| r(t)-r(t) r^{\prime}(t) \\
& <M(x, t) r^{2}(t)+\left(-M(x, t) r(t)+r^{\prime}(t)\right) r(t)-r(t) r^{\prime}(t)=0
\end{aligned}
$$

The above estimates for $P(x, t)$ on W, according to Lemma 1, imply the statement of the Theorem.

Theorem 3. Let Γ be any smooth curve in Ω and let $m, M \in C(\Omega, \mathbb{R}), \xi \in$ $C\left(\Omega, \mathbb{R}_{0}^{+}\right), \mathbb{R}_{0}^{+}=[0, \infty\rangle$, such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|f_{i}(x, t) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right| \leqslant \xi(x, t) \quad \text { on } W \tag{26}
\end{equation*}
$$

(i) If

$$
\begin{align*}
f_{i}(x, t) & \leqslant M(x, t), \quad i=1, \cdots, n, \quad \text { and } \tag{27}\\
\xi(x, t) & <-M(x, t) r(t)+r^{\prime}(t) \quad \text { on } W, \tag{28}
\end{align*}
$$

then system (1) has an n-parameter class of solutions $x(t)$ satisfying condition (23).
(ii) If

$$
\begin{align*}
m(x, t) & \leqslant f_{i}(x, t), \quad i=1, \cdots, n, \quad \text { and } \tag{29}\\
\xi(x, t) & <m(x, t) r(t)-r^{\prime}(t) \quad \text { on } W \tag{30}
\end{align*}
$$

then system (1) has at least one solution $x(t)$ which satisfies condition (23).
Proof. In view of (25), for the scalar product $P(x, t)$ on W we have:

$$
P=\sum_{i=1}^{n} f_{i}\left(x_{i}-\varphi_{i}\right)^{2}+\sum_{i=1}^{n}\left(f_{i} \varphi_{i}-\varphi_{i}^{\prime}\right)\left(x_{i}-\varphi_{i}\right)-r r^{\prime} \quad \text { and }
$$

(i) $P \leqslant M r^{2}+\xi r-r r^{\prime}<0$,
(ii) $P \geqslant m r^{2}-\xi r-r r^{\prime}>0$.

According to Lemmas 1 and 2, in cases (i) and (ii), respectively, the above estimates for $P(x, t)$ on W imply the statements of the Theorem.

Theorem 4. Let $(\varphi(t), t), t \in I, \varphi \neq 0$, be a curve of stationary points of system (1) $\left(f_{i}(\varphi(t), t)=0, t \in I, i=1, \cdots, n\right)$, let (20) hold and let $m, M \in$ $C(I, \mathbb{R})$.
(i) If

$$
\begin{gathered}
f_{i}(x, t) \leqslant M(t), \quad i=1, \cdots, n, \quad(x, t) \in W \quad \text { and } \\
r(t) \sum_{i=1}^{n} L_{i}\left|\varphi_{i}(t)\right|+\sum_{i=1}^{n}\left|\varphi_{i}^{\prime}(t)\right|<-M(t) r(t)+r^{\prime}(t), \quad t \in I,
\end{gathered}
$$

then system (1) has an n-parameter class of solutions $x(t)$ satisfying condition (23).
(ii) If

$$
\begin{gathered}
m(t) \leq f_{i}(x, t), \quad i=1, \cdots, n, \quad(x, t) \in W \quad \text { and } \\
r(t) \sum_{i=1}^{n} L_{i}\left|\varphi_{i}(t)\right|+\sum_{i=1}^{n}\left|\varphi_{i}^{\prime}(t)\right|<m(t) r(t)-r^{\prime}(t), \quad t \in I,
\end{gathered}
$$

then system (1) has at least one solution $x(t)$ which satisfies condition (23).
Proof. From (25) we have on W

$$
\begin{aligned}
P(x, t)= & \sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right]^{2} \\
& +\sum_{i=1}^{n}\left\{\left[f_{i}(x, t)-f_{i}(\varphi, t)\right] \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right\}\left[x_{i}-\varphi_{i}(t)\right]-r(t) r^{\prime}(t) \\
= & \sum_{i=1}^{n} f_{i}(x, t)\left[x_{i}-\varphi_{i}(t)\right]^{2}+\sum_{i=1}^{n}\left[f_{i}(x, t)-f_{i}(\varphi, t)\right]\left[x_{i}-\varphi_{i}(t)\right] \varphi_{i}(t) \\
& -\sum_{i=1}^{n} \varphi_{i}^{\prime}(t)\left[x_{i}-\varphi_{i}(t)\right]-r(t) r^{\prime}(t)
\end{aligned}
$$

The conditions of the Theorem imply the estimates in case (i) and (ii), respectively:

$$
\begin{aligned}
& P(x, t) \leqslant M(t) r^{2}(t)+\sum_{i=1}^{n} L_{i}\left|\varphi_{i}(t)\right| r^{2}(t)+\sum_{i=1}^{n}\left|\varphi_{i}^{\prime}(t)\right| r(t)-r(t) r^{\prime}(t)<0 \\
& P(x, t) \geqslant m(t) r^{2}(t)-\sum_{i=1}^{n} L_{i}\left|\varphi_{i}(t)\right| r^{2}(t)-\sum_{i=1}^{n}\left|\varphi_{i}^{\prime}(t)\right| r(t)-r(t) r^{\prime}(t)>0
\end{aligned}
$$

The above estimates for $P(x, t)$ on W, according to Lemma 1 in case (i) and according to Lemma 2 in case (ii), imply the statements of the Theorem.

Now let us consider system (2).
Theorem 5. Let $m, M \in C(\Omega, R)$ and

$$
\begin{equation*}
\varphi_{i}(t)=C_{i} \exp \left[\int p_{i}(t) d t\right], \quad i=1, \cdots, n, \quad C_{i} \in \mathbb{R} \tag{31}
\end{equation*}
$$

(i) If

$$
\begin{aligned}
& p_{i}(t)+h_{i}(x, t) \leqslant M(x, t), \quad i=1, \cdots, n \quad \text { and } \\
& \sum_{i=1}^{n}\left|h_{i}(x, t) \varphi_{i}(t)\right| \leqslant-M(x, t) r(t)+r^{\prime}(t) \quad \text { on } W
\end{aligned}
$$

then system (2) has an n-parameter class of solutions $x(t)$ satisfying condition (23).
(ii) If

$$
m(x, t) \leqslant p_{i}(t)+h_{i}(x, t), \quad i=1,2, \cdots, n \quad \text { and }
$$

$$
\sum_{i=1}^{n}\left|h_{i}(x, t) \varphi_{i}(t)\right| \leqslant m(x, t) r(t)+r^{\prime}(t) \quad \text { on } W
$$

then system (2) has at least one solution $x(t)$ which satisfies condition (23).
Proof. Firstly, we can note that $p_{i}(t) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)=0, i=1, \cdots, n, t \in I$. Now, according to (25) and conditions of this theorem, we have on W :

$$
\begin{aligned}
P & =\sum_{i=1}^{n}\left(p_{i}+h_{i}\right)\left(x_{i}-\varphi_{i}\right)^{2}+\sum_{i=1}^{n}\left[\left(p_{i}+h_{i}\right) \varphi_{i}-\varphi_{i}^{\prime}\right]\left(x_{i}-\varphi_{i}\right)-r r^{\prime} \\
& =\sum_{i=1}^{n}\left(p_{i}+h_{i}\right)\left(x_{i}-\varphi_{i}\right)^{2}+\sum_{i=1}^{n} h_{i} \varphi_{i}\left(x_{i}-\varphi_{i}\right)-r r^{\prime} \quad \text { and }
\end{aligned}
$$

(i)

$$
\begin{align*}
P & \leq r^{2} \sum_{i=1}^{n}\left(p_{i}+h_{i}\right)+r \sum_{i=1}^{n}\left|h_{i} \varphi_{i}\right|-r r^{\prime} \\
& \leq M r^{2}+r \sum_{i=1}^{n}\left|h_{i} \varphi_{i}\right|-r r^{\prime}<0 \tag{32}
\end{align*}
$$

(ii)

$$
\begin{equation*}
P \geq m r^{2}-r \sum_{i=1}^{n}\left|h_{i} \varphi_{i}\right|-r r^{\prime}>0 \tag{33}
\end{equation*}
$$

According to Lemma 1, estimate (32) implies that system (2) has the n-parameter class of solutions $x(t)$ belonging to the corresponding set ω for all $t \in I$, and estimate (33) implies that system (2) has at least one solution $x(t)$ which satisfies that condition. This confirms the statements of the Theorem.

Now let us consider system (3) in neighbourhood of $\left(x^{0}, t\right), t \in I$, where $x^{0}=$ $\left(x_{1}^{0}, \cdots, x_{n}^{0}\right) \in \mathbb{R}^{n}$ and

$$
\begin{equation*}
q_{i}+g_{i}\left(x^{0}\right)=0, i=1, \cdots, n \tag{34}
\end{equation*}
$$

Theorem 6. Let (34) and

$$
\begin{align*}
\left|g_{i}(x)-g_{i}(y)\right| & \leqslant L_{i}\|x-y\|, \quad i=1, \cdots, n, \quad x, y \in D \tag{35}\\
q_{i}+g_{i}(x) & \leq Q \in \mathbb{R}, i=1, \cdots, n, \quad \text { on } D .
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{i=1}^{n} L_{i}\left|x_{i}^{0}\right|<-Q+\frac{r^{\prime}(t)}{r(t)}, \quad t \in I \tag{36}
\end{equation*}
$$

then system (3) has an n-parameter class of solutions $x(t)$ satisfying the condition

$$
\begin{equation*}
\left\|x(t)-x^{0}\right\|<r(t), \quad t \in I \tag{37}
\end{equation*}
$$

Proof. For the scalar product $P(x, t)$ on W, using (25) with $f_{i}(x, t)=q_{i}+g_{i}(x)$, $\varphi_{i}=x_{i}^{0}, i=1, \cdots, n$, we have

$$
\begin{aligned}
P(x, t) & =\sum_{i=1}^{n}\left(q_{i}+g_{i}(x)\right)\left(x_{i}-x_{i}^{0}\right)^{2}+\sum_{i=1}^{n}\left(q_{i}+g_{i}(x)\right) x_{i}^{0}\left(x_{i}-x_{i}^{0}\right)-r(t) r^{\prime}(t) \\
& =\sum_{i=1}^{n}\left(q_{i}+g_{i}(x)\right)\left(x_{i}-x_{i}^{0}\right)^{2}+\sum_{i=1}^{n}\left(g_{i}(x)-g_{i}\left(x^{0}\right)\right) x_{i}^{0}\left(x_{i}-x_{i}^{0}\right)-r(t) r^{\prime}(t) \\
& \leqslant Q r^{2}(t)+\sum_{i=1}^{n} L_{i}\left|x_{i}^{0}\right| r^{2}(t)-r(t) r^{\prime}(t)<0 .
\end{aligned}
$$

Hence, according to Lemma 1, the statement of the Theorem is valid.
Corollary 2. If in Theorem 6 condition (36) is replaced by

$$
\sum_{i=1}^{n} L_{i}\left|x_{i}^{0}\right|+Q<0
$$

the statement of Theorem 6 holds with the function

$$
\begin{gathered}
r(t)=\alpha e^{-\beta t}, \quad \alpha, \beta \in \mathbb{R}^{+} \quad \text { and } \\
0<\beta \leq s=-\left(\sum_{i=1}^{n} L_{i}\left|x_{i}^{0}\right|+Q\right) .
\end{gathered}
$$

For $\beta=s$ condition (37) should be replaced by

$$
\left\|x(t)-x^{0}\right\| \leq r(t), \quad t \in I
$$

In case $x^{0}=0$ for system (3) we can use Theorem 1 and Corollary 1. Moreover, we can note that Theorem 6 and Corollary 2 are valid without assumption (35).

3. The p-parameter classes of solutions

Here we consider the behaviour of integral curves of systems (1), (2) and (3) with respect to the set σ.

Theorem 7. If, on $W_{i}^{k}, k=1,2$,

$$
\begin{array}{ll}
f_{i}(x, t)<\frac{r_{i}^{\prime}(t)}{r_{i}(t)}, & i=n_{1}, \cdots, n_{p} \\
f_{i}(x, t)>\frac{r_{i}^{\prime}(t)}{r_{i}(t)}, & i=n_{p+1}, \cdots, n_{n} \tag{39}
\end{array}
$$

then system (1) has a p-parameter class of solutions $x(t)$ satisfying condition

$$
\begin{equation*}
\left|x_{i}(t)\right|<r_{i}(t), \quad i=1, \cdots, n, \quad t \in I \tag{40}
\end{equation*}
$$

Proof. Here is $\varphi=0$. For the scalar products $P_{i}^{k}(x, t)$ on $W_{i}^{k}, k=1,2$, $i=1, \cdots, n$, we have

$$
\begin{aligned}
P_{i}^{k}(x, t) & =(-1)^{k} f_{i}(x, t) x_{i}-r_{i}^{\prime}(t) \\
& =f_{i}(x, t) r_{i}(t)-r_{i}^{\prime}(t)
\end{aligned}
$$

and

$$
\begin{array}{ll}
P_{i}^{k}(x, t)<0 & \text { for } i=n_{1}, \cdots, n_{p} \\
P_{i}^{k}(x, t)>0 & \text { for } i=n_{p+1}, \cdots, n_{n}
\end{array}
$$

According to Lemma 3, the above estimates imply the statement of the Theorem.
Using Theorem 7 we can give special results. For example,
Corollary 3. If, on $W_{i}^{k}, k=1,2$,

$$
\begin{array}{ll}
f_{i}(x, t)<0, & i=n_{1}, \cdots, n_{p} \\
f_{i}(x, t)>0, & i=n_{p+1}, \cdots, n_{n}
\end{array}
$$

then system (1) has a p-parameter class of solutions $x(t)$ which satisfy condition

$$
\left|x_{i}(t)\right|<r(t), \quad i=1, \cdots, n, \quad t \in I
$$

where function r satisfies conditions (18) and, on $W_{i}^{k}, k=1,2$,

$$
f_{i}(x, t)-\frac{r^{\prime}(t)}{r(t)}<0, \quad i=n_{1}, \cdots, n_{p}
$$

For function r we can take, for example, some positive constant.
Theorem 8. If, on $W_{i}^{k}, k=1,2$,

$$
\begin{align*}
\left|f_{i}(x, t) x_{i}-\varphi_{i}^{\prime}(t)\right| & <r_{i}^{\prime}(t) \quad \text { or } \tag{41}\\
\left|f_{i}(x, t) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right| & <-f_{i}(x, t) r_{i}(t)+r_{i}^{\prime}(t) \tag{42}
\end{align*}
$$

for $i=n_{1}, \cdots, n_{p}$, and

$$
\begin{align*}
\left|f_{i}(x, t) x_{i}-\varphi_{i}^{\prime}(t)\right| & <-r_{i}^{\prime}(t) \quad \text { or } \tag{43}\\
\left|f_{i}(x, t) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right| & <f_{i}(x, t) r_{i}(t)-r_{i}^{\prime}(t) \tag{44}
\end{align*}
$$

for $i=n_{p+1}, \cdots, n_{n}$, then system (1) has a p-parameter class of solutions $x(t)$ satisfying the condition

$$
\begin{equation*}
\left|x_{i}(t)-\varphi_{i}(t)\right|<r_{i}(t), \quad i=1, \cdots, n, \quad t \in I \tag{45}
\end{equation*}
$$

Proof. Here for $P_{i}^{k}(x, t)$ on $W_{i}^{k}, k=1,2, i=1, \cdots, n$, we have

$$
\begin{align*}
P_{i}^{k}(x, t) & =(-1)^{k} f_{i}(x, t) x_{i}-(-1)^{k} \varphi_{i}^{\prime}(t)-r_{i}^{\prime}(t) \\
& =(-1)^{k}\left[f_{i}(x, t) x_{i}-\varphi_{i}^{\prime}(t)\right]-r_{i}^{\prime}(t) \tag{46}
\end{align*}
$$

or

$$
\begin{align*}
P_{i}^{k}(x, t) & =(-1)^{k}\left[x_{i}-\varphi_{i}(t)\right] f_{i}(x, t)+(-1)^{k}\left[f_{i}(x, t) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right]-r_{i}^{\prime}(t) \\
& =f_{i}(x, t) r_{i}(t)+(-1)^{k}\left[f_{i}(x, t) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right]-r_{i}^{\prime}(t) \tag{47}
\end{align*}
$$

Now (41) with (46) or (42) with (47) imply, respectively,

$$
\begin{aligned}
& P_{i}^{k} \leqslant\left|f_{i} x_{i}-\varphi_{i}^{\prime}\right|-r_{i}^{\prime}<0 \\
& P_{i}^{k} \leqslant f_{i} r_{i}+\left|f_{i} \varphi_{i}-\varphi_{i}^{\prime}\right|-r_{i}^{\prime}<0
\end{aligned}
$$

on $W_{i}^{k}, k=1,2$, for $i=n_{1}, \cdots, n_{p}$. The conditions (43) with (46) or (44) with (47) imply, respectively,

$$
\begin{aligned}
& P_{i}^{k} \geqslant-\left|f_{i} x_{i}-\varphi_{i}^{\prime}\right|-r_{i}^{\prime}>0, \\
& P_{i}^{k} \geqslant f_{i} r_{i}-\left|f_{i} \varphi_{i}-\varphi_{i}^{\prime}\right|-r_{i}^{\prime}>0
\end{aligned}
$$

on $W_{i}^{k}, k=1,2$, for $i=n_{p+1}, \cdots, n_{n}$. These estimates, according to the Lemma 3, confirm the statement of this Theorem.

Theorem 9. Let Γ be any integral curve of system (1), let (20) hold and let

$$
\begin{equation*}
\rho(t)=\sqrt{r_{1}^{2}(t)+\cdots+r_{n}^{2}(t)} \tag{48}
\end{equation*}
$$

If, on $W_{i}^{k}, k=1,2$,

$$
L_{i}\left|\varphi_{i}(t)\right| \rho(t)<-f_{i}(x, t) r_{i}(t)+r_{i}^{\prime}(t)
$$

for $i=n_{1}, \cdots, n_{p}$, and

$$
L_{i}\left|\varphi_{i}(t)\right| \rho(t)<f_{i}(x, t) r_{i}(t)-r_{i}^{\prime}(t)
$$

for $i=n_{p+1}, \cdots, n_{n}$, then system (1) has a p-parameter class of solutions $x(t)$ satisfying condition (45).

Proof. In view of (47) for $P_{i}^{k}(x, t)$ on $W_{i}^{k}, k=1,2$, we have

$$
\begin{aligned}
P_{i}^{k}(x, t) & =f_{i}(x, t) r_{i}(t)+(-1)^{k}\left[\left(f_{i}(x, t)-f_{i}(\varphi, t)+f_{i}(\varphi, t)\right) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right]-r_{i}^{\prime}(t) \\
& =f_{i}(x, t) r_{i}(t)+(-1)^{k}\left[f_{i}(x, t)-f_{i}(\varphi, t)\right] \varphi_{i}(t)-r_{i}^{\prime}(t)
\end{aligned}
$$

Now, it is enough to note that, on $W_{i}^{k}, k=1,2$,

$$
\begin{aligned}
P_{i}^{k}(x, t) & \leqslant f_{i}(x, t) r_{i}(t)+\left|f_{i}(x, t)-f_{i}(\varphi, t)\right|\left|\varphi_{i}(t)\right|-r_{i}^{\prime}(t) \\
& \leqslant f_{i}(x, t) r_{i}(t)+L_{i}\|x-\varphi\|\left|\varphi_{i}(t)\right|-r_{i}^{\prime}(t) \\
& =f_{i}(x, t) r_{i}(t)+L_{i} \rho(t)\left|\varphi_{i}(t)\right|-r_{i}^{\prime}(t)<0
\end{aligned}
$$

for $i=n_{1}, \cdots, n_{p}$, and

$$
P_{i}^{k}(x, t) \geqslant f_{i}(x, t) r_{i}(t)-L_{i} \rho(t)\left|\varphi_{i}(t)\right|-r_{i}^{\prime}(t)>0
$$

for $i=n_{p+1}, \cdots, n_{n}$.

Theorem 10. Let Γ be a curve of stationary points of system (1) different from the $t-$ axis, i.e. $f_{i}(\varphi(t), t)=0, i=1, \cdots, n, t \in I, \varphi \neq 0$, and let (20) and (48) be valid. If, on $W_{i}^{k}, k=1,2$,

$$
\begin{aligned}
& L_{i}\left|\varphi_{i}(t)\right| \rho(t)+\left|\varphi_{i}^{\prime}(t)\right|<-f_{i}(x, t) r_{i}(t)+r_{i}^{\prime}(t), \quad i=n_{1}, \cdots, n_{p} \\
& L_{i}\left|\varphi_{i}(t)\right| \rho(t)+\left|\varphi_{i}^{\prime}(t)\right|<f_{i}(x, t) r_{i}(t)-r_{i}^{\prime}(t), \quad i=n_{p+1}, \cdots, n_{n}
\end{aligned}
$$

then system (1) has a p-parameter class of solutions $x(t)$ satisfying condition (45).
Proof. In view of (47) we have, on $W_{i}^{k}, k=1,2$,

$$
\begin{aligned}
P_{i}^{k}(x, t) & =f_{i}(x, t) r_{i}(t)+(-1)^{k}\left[\left(f_{i}(x, t)-f_{i}(\varphi, t)\right) \varphi_{i}(t)-\varphi_{i}^{\prime}(t)\right]-r_{i}^{\prime}(t) \\
P_{i}^{k}(x, t) & \leqslant f_{i}(x, t) r_{i}(t)+L_{i} \| x-\varphi| |\left|\varphi_{i}(t)\right|+\left|\varphi_{i}^{\prime}(t)\right|-r_{i}^{\prime}(t) \\
& =f_{i}(x, t) r_{i}(t)+L_{i}\left|\varphi_{i}(t)\right| \rho(t)+\left|\varphi_{i}^{\prime}(t)\right|-r_{i}^{\prime}(t)<0, \quad i=n_{1}, \cdots, n_{p} \\
P_{i}^{k}(x, t) & \geqslant f_{i}(x, t) r_{i}(t)-L_{i}\left|\varphi_{i}(t)\right| \rho(t)-\left|\varphi_{i}^{\prime}(t)\right|-r_{i}^{\prime}(t)>0, \quad i=n_{p+1}, \cdots, n_{n} .
\end{aligned}
$$

These estimates confirm the statement of this Theorem.
Let us now consider the behaviour of integral curves of system (2) with respect to the set σ, where φ is defined by (31).

Theorem 11. If, on $W_{i}^{k}, k=1,2$,

$$
\left|h_{i}(x, t) \varphi_{i}(t)\right|<-\left(p_{i}(t)+h_{i}(x, t)\right) r_{i}(t)+r_{i}^{\prime}(t)
$$

for $i=n_{1}, \cdots, n_{p}$, and

$$
\left|h_{i}(x, t) \varphi_{i}(t)\right|<\left(p_{i}(t)+h_{i}(x, t)\right) r_{i}(t)-r_{i}^{\prime}(t)
$$

for $i=n_{p+1}, \cdots, n_{n}$, then system (2) has a p-parameter class of solutions $x(t)$ satisfying condition (45), where φ is defined by (31).

Proof. According to (47), we have, on $W_{i}^{k}, k=1,2$,

$$
\begin{aligned}
P_{i}^{k} & =\left(p_{i}+h_{i}\right) r_{i}+(-1)^{k}\left[\left(p_{i}+h_{i}\right) \varphi_{i}-\varphi_{i}^{\prime}\right]-r_{i}^{\prime} \\
& =\left(p_{i}+h_{i}\right) r_{i}+(-1)^{k} h_{i} \varphi_{i}-r_{i}^{\prime}
\end{aligned}
$$

Now, it is enough to note that, on $W_{i}^{k}, k=1,2$,

$$
P_{i}^{k} \leqslant\left(p_{i}+h_{i}\right) r_{i}+\left|h_{i} \varphi_{i}\right|-r_{i}^{\prime}<0
$$

for $i=n_{1}, \cdots, n_{p}$, and

$$
P_{i}^{k} \geqslant\left(p_{i}+h_{i}\right) r_{i}-\left|h_{i} \varphi_{i}\right|-r_{i}^{\prime}>0
$$

for $i=n_{p+1}, \cdots, n_{n}$.
Now let us consider the behaviour of integral curves of system (3) in neighbourhood of $\left(x^{0}, t\right), t \in I$, where $x^{0} \in \mathbb{R}^{n}$.

Theorem 12. Let (34) and (35) be valid and let function $\rho(t)$ be defined by (48). If, on $W_{i}^{k}, k=1,2$,

$$
\begin{equation*}
L_{i}\left|x_{i}^{0}\right| \rho(t)<-\left(q_{i}+g_{i}(x)\right) r_{i}(t)+r_{i}^{\prime}(t) \tag{49}
\end{equation*}
$$

for $i=n_{1}, \cdots, n_{p}$, and

$$
\begin{equation*}
L_{i}\left|x_{i}^{0}\right| \rho(t)<\left(q_{i}+g_{i}(x)\right) r_{i}(t)-r_{i}^{\prime}(t) \tag{50}
\end{equation*}
$$

for $i=n_{p+1}, \cdots, n_{n}$, then system (3) has a p-parameter class of solutions $x(t)$ satisfying the condition

$$
\left|x_{i}(t)-x_{i}^{0}\right|<r_{i}(t), \quad i=1, \cdots, n, \quad t \in I
$$

Proof. Using (47) we have, on $W_{i}^{k}, k=1,2$,

$$
\begin{align*}
P_{i}^{k}(x, t) & =\left(q_{i}+g_{i}(x)\right) r_{i}(t)+(-1)^{k}\left(q_{i}+g_{i}(x)\right) x_{i}^{0}-r_{i}^{\prime}(t) \\
& =\left(q_{i}+g_{i}(x)\right) r_{i}(t)+(-1)^{k}\left[q_{i}+g_{i}\left(x^{0}\right)+g_{i}(x)-g_{i}\left(x^{0}\right)\right] x_{i}^{0}-r_{i}^{\prime}(t) \\
& =\left(q_{i}+g_{i}(x)\right) r_{i}(t)+(-1)^{k}\left[g_{i}(x)-g_{i}\left(x^{0}\right)\right] x_{i}^{0}-r_{i}^{\prime}(t) \tag{51}
\end{align*}
$$

and

$$
P_{i}^{k}(x, t) \leqslant\left(q_{i}+g_{i}(x)\right) r_{i}(t)+L_{i}\left|x_{i}^{0}\right| \rho(t)-r_{i}^{\prime}(t)<0
$$

for $i=n_{1}, \cdots, n_{p}$, and

$$
P_{i}^{k}(x, t) \geqslant\left(q_{i}+g_{i}(x)\right) r_{i}(t)-L_{i}\left|x_{i}^{0}\right| \rho(t)-r_{i}^{\prime}(t)>0
$$

for $i=n_{p+1}, \cdots, n_{n}$. These estimates confirm this Theorem.
We can note that in case $x^{0}=0$ Theorem 12 holds without assumption (35) .

4. Examples

Let us consider two known examples.
Example 1. The Lotka-Volterra model ([1])

$$
\begin{align*}
& \dot{x_{1}}=x_{1}-x_{1} x_{2}, \tag{52}\\
& \dot{x_{2}}=-x_{2}+x_{1} x_{2} .
\end{align*}
$$

Corollary 4. Let functions $r_{1}, r_{2} \in C^{1}\left(I, \mathbb{R}^{+}\right)$satisfy the conditions

$$
r_{1}(t)<1+\frac{r_{2}^{\prime}(t)}{r_{2}(t)}, \quad r_{2}(t)<1-\frac{r_{1}^{\prime}(t)}{r_{1}(t)}, \quad t \in I
$$

System (52) has a one-parameter class of solutions $\left(x_{1}(t), x_{2}(t)\right)$ satisfying the condition

$$
\left|x_{1}(t)\right|<r_{1}(t), \quad\left|x_{2}(t)\right|<r_{2}(t), \quad t \in I .
$$

This Corollary follows from Theorem 7. Conditions (38) and (39) are valid for $i=2$ and $i=1$, respectively. Here we have on $W_{i}^{k}(i, k=1,2)$:

$$
\begin{aligned}
& P_{2}^{k}\left(x_{1}, x_{2}, t\right)=\left(x_{1}-1\right) r_{2}(t)-r_{2}^{\prime}(t) \leq\left(r_{1}(t)-1\right) r_{2}(t)-r_{2}^{\prime}(t)<0, \\
& P_{1}^{k}\left(x_{1}, x_{2}, t\right)=\left(1-x_{2}\right) r_{1}(t)-r_{1}^{\prime}(t) \geq\left(1-r_{2}(t)\right) r_{1}(t)-r_{1}^{\prime}(t)>0 .
\end{aligned}
$$

For functions r_{i} we can take, for example,

$$
r_{1}(t)=r_{2}(t)=\alpha e^{-\beta t}, \quad \alpha, \beta \in \mathbb{R}^{+}, \alpha+\beta \leq 1, \quad t>0
$$

Example 2. The Volterra model (4), applying appropriate substitution ([4]), can be written in the form

$$
\begin{align*}
& \dot{x_{1}}=\left(1-x_{1}-a x_{2}\right) x_{1}, \\
& \dot{x_{2}}=\left(-b+a x_{1}\right) x_{2}, \quad a, b \in \mathbb{R}^{+} . \tag{53}
\end{align*}
$$

Corollary 5. Let $\alpha, \beta \in \mathbb{R}^{+}$.
(i) System (53) has a one-parameter class of solutions $x(t)$ which satisfy the condition

$$
\left|x_{1}(t)\right|<\alpha e^{-\beta t}, \quad\left|x_{2}(t)\right|<\alpha e^{-\beta t} \quad \text { for } t>0
$$

where

$$
1+\beta \geq \alpha(1+a), \quad b \geq \alpha a+\beta
$$

(ii) System (53) has a one-parameter class of solutions $x(t)$ which satisfy the condition

$$
\left|x_{1}(t)-1\right|<\alpha e^{-\beta t}, \quad\left|x_{2}(t)\right|<\alpha e^{-\beta t} \quad \text { for } t>0
$$

where

$$
\beta \geq(1+a)(1+\alpha), \quad b \geq a(1+\alpha)+\beta .
$$

The statements of this Corollary follow from Theorem 12. Conditions (49) and (50) hold for $i=2$ and $i=1$, respectively, in both cases (i) and ($i i$). In this example we consider $x^{0}=(0,0)$ in case (i) and $x^{0}=(1,0)$ in case (ii). According to (51), here we have on $W_{i}^{k}(i, k=1,2)$:
(i)

$$
\begin{aligned}
& P_{2}^{k}\left(x_{1}, x_{2}, t\right)=\left(-b+a x_{1}\right) \alpha e^{-\beta t}+\beta \alpha e^{-\beta t}<(-b+a \alpha+\beta) \alpha e^{-\beta t} \leq 0 \\
& P_{1}^{k}\left(x_{1}, x_{2}, t\right)=\left(1-x_{1}-a x_{2}\right) \alpha e^{-\beta t}+\beta \alpha e^{-\beta t}>(1-\alpha-a \alpha+\beta) \alpha e^{-\beta t} \geq 0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
P_{2}^{k}\left(x_{1}, x_{2}, t\right) & =\left(-b+a x_{1}\right) \alpha e^{-\beta t}+\beta \alpha e^{-\beta t}<(-b+a(1+\alpha)+\beta) \alpha e^{-\beta t} \leq 0 \\
P_{1}^{k}\left(x_{1}, x_{2}, t\right) & =\left(1-x_{1}-a x_{2}\right) \alpha e^{-\beta t}+(-1)^{k}\left(1-x_{1}-a x_{2}\right)+\beta \alpha e^{-\beta t} \\
& \geq\left(-\alpha e^{-\beta t}-a \alpha e^{-\beta t}\right) \alpha e^{-\beta t}-\alpha e^{-\beta t}-a \alpha e^{-\beta t}+\beta \alpha e^{-\beta t} \\
& >(-\alpha-a \alpha-1-a+\beta) \alpha e^{-\beta t} \geq 0 .
\end{aligned}
$$

Remark. We can note that the obtained results also contain answers to questions on approximation and stability or instability of solutions $x(t)$ whose existence is established. The errors of the approximation and the functions of stability or instability (including autostability and stability along the coordinates) are defined by functions $r(t)$ and $r_{i}(t), i=1, \cdots, n$ (see [9], [10], [11]).

References

[1] C. Liu, G. Chen, C. Li, Intergrability and linearizability of the Lotka-Volterra systems, Journal of Differential Equations 198(2004), 301-320.
[2] A. Omerspahić, Retraction method in the qualitative analysis of the solutions of the quasilinear second order differential equation, in: Proceedings of the Applied Mathematics and Computing, Dubrovnik, 1999, (M. Rogina, V. Hari, N. Limić and Z. Tutek, Eds.), Department of Mathematics, University of Zagreb, Zagreb, 2001, 165-173.
[3] A. Omerspahić, B. Vrdoljak, On parameter classes of solutions for system of quasilinear differential equations, in: Proceedings of the Applied Mathematics and Scientific Computing, Brijuni, 2003, Kluwer/Plenum, New York, to appear.
[4] G. C. W. Sabin, D. Summers, Chaos in a periodically forced predator-prey ecosystem model, Mathematical Biosciences 113(1993), 91-113.
[5] K. Sigmund, The population dynamics of conflict and cooperation, Documenta Mathematica - Extra Volume ICM (1998), 487-506.
[6] Y. Takeuchi, N. Adachi, Existence of stable equilibrium point for dynamical systems of Volterra type, Journal of Mathematical Analysis and Applications 79(1981), 141-162.
[7] A. Tineo, On the asymptotic behavior of some population models II, Journal of Mathematical Analysis and Applications 197(1996), 249-258.
[8] V. Volterra, Variazione e fluttuazini del numero d'individui in specie animali conviventi, Mem. Accad. Nazionale Lincei 62(1926), 31-113.
[9] B. Vrdoljak, On parameter classes of solutions for system of linear differential equations, Glasnik mat. 20(40)(1985), 61-69.
[10] B. Vrdoljak, On behaviour and stability of system of linear differential equations, in: Proceedings of the $2^{\text {nd }}$ Congress of Croatian Society of Mechanics, Supetar, 1997, (P. Marović, J. Sorić and N. Vranković, Eds.), Croatian Society of Mechanics, Zagreb, 1997, 631-638.
[11] B. Vrdoljak, On behaviour of solutions of system of linear differential equations, Mathematical Communications 2(1997), 47-57.
[12] B. Vrdoljak, A. Omerspahić, Qualitative analysis of some solutions of quasilinear system of differential equations, in: Proceedings of the Applied Mathematics and Scientific Computing, Dubrovnik, 2001, (Z. Drmač, V. Hari, L. Sopta, Z. Tutek and K. Veselić, Eds.), Kluwer/Plenum, New York, 2003, 323332.

[^0]: *This research was partly supported by the Ministry of Science, Education and Sports grant 0083021 of the Republic of Croatia. The paper was presented at the Third Croatian Congress of Mathematics, Split, Croatia, June 16-18, 2004.
 ${ }^{\dagger}$ Faculty of Civil Engineering and Architecture, University of Split, Matice hrvatske 15, HR-21 000 Split, Croatia, e-mail: bozo.vrdoljak@gradst.hr
 \ddagger Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, BH-71 000 Sarajevo, Bosnia and Herzegovina, e-mail: alma.omerspahic@mef.unsa.ba

