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Diophantine quadruples in the ring Z[
√

2]

Zrinka Franušić∗

Abstract. The set of integers of the quadratic field Q(
√

d) has the
property D(z) if the product of its any two distinct elements increased
by z is a perfect square in Q(

√
d). In case d = 2, we prove that there

exist infinitely many integer quadruples with the property D(z) if and
only if z can be represented as a difference of two squares of integers in
Q(

√
2).
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1. Introduction

Let z be an integer in the quadratic field Q(
√

d). A Diophantine quadruple with
the property D(z), or shortly a D(z)-quadruple, is a set of four non-zero integers
D = {z1, z2, z3, z4} ⊂ Q(

√
2) with the property that the product of any two distinct

elements of this set increased by z is a perfect square in Q(
√
2). If a set D satisfies

the above condition, then D is called a set with the property D(z), even if not all
elements of D are non-zero integers.

Several authors considered the problem of existence of Diophantine quadruples.
The first one who considered this problem in rationals was the Greek mathematician
Diophantus of Alexandria in the third century. He noted that the set {1, 33, 68, 105}
has the property D(256). Many centuries later, Fermat found out that {1, 3, 8, 120}
is a D(1)-quadruple. This problem is almost completely solved in the ring of inte-
gers. In [2], [8] and [9], it was proved that if n ∈ Z and n ≡ 2(mod 4), then there
does not exist a Diophantine quadruple with the property D(n). The converse of
this statement was proved by Dujella in [3]. To be more precise, Dujella showed
that if n �≡ 2(mod 4) and n �∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists a
D(n)-quadruple. If n ∈ S we still do not know the answer to the question of the
existence of D(n)-quadruples. A recent result of Dujella and Fuchs shows that there
does not exist a D(−1)-quintuple (see [7]).

It is interesting that the existence of a D(n)-quadruple in Z can be described
in terms of representability of number n as a difference of two squares. Indeed,
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it can be easily seen that n ∈ Z can be represented as a difference of squares of
two integers if and only if n �≡ 2(mod 4). So, we can conclude that there exists a
D(n)-quadruple in Z if and only if n can be represented as a difference of squares
of two integers, up to finitely many possible exceptions listed in the set S.

In the ring of Gaussian integers Z[i], a similar result can be obtained. Namely,
it was proved by Dujella in [5] that if b is odd or a ≡ b ≡ 2(mod 4), then there
does not exist a D(a + bi)-quadruple and if a+ bi is not of such form and a+ bi �∈
{±2,±1,±2i,±4i}, then there exists a D(a + bi)-quadruple. Further, a Gaussian
integer z can be represented as a difference of squares of two Gaussian integers if
and only if z is of the following forms 2m + 1 + 2ni, 4m + 4ni, 4m + (4n + 2)i,
4m + 2 + 4ni (see [11], p. 449). Therefore, z = a + bi is not a difference of two
squares if and only if b is odd or a ≡ b ≡ 2(mod 4).

Thus one can state the Conjecture: Let z be an integer in the quadratic field
Q(

√
d), where d is not a perfect square. There exists a D(z)-quadruple if and only

if z can be represented as a difference of squares of two integers, up to finitely
many possible exceptions. The first step in the verification of this Conjecture is to
investigate differences of two squares in quadratic fields. The partial solution of
that problem was given in [6]. It was shown that the representability of an integer
as a difference of squares can be described in terms of solvability of certain Pellian
equations. In our paper we will prove the above conjecture in case d = 2. In this
case the ring of integers is Z[

√
2] = {a+ b

√
2 : a, b ∈ Z}.

Here is our main result:
Theorem 1. Let z ∈ Z[

√
2]. There exist infinitely many D(z)-quadruples if and

only if z can be represented as a difference of squares of two elements in Z[
√
2].

Let us mention that recently Abu Muriefah and Al-Rashed in [1] gave some
partial results about the existence of Diophantine quadruples in the ring Z[

√−2].

2. Preliminaries

Our first aim is to determine which forms of numbers in Z[
√
2] can be represented as

a difference of squares of two integers. This problem was considered more generally
in [6]. Theorem1 in [6] implies that z ∈ Z[

√
2] can be represented as a difference of

two squares if and only if z has one of the following forms:

z = 2m+1+2n
√
2, z = 4m+4n

√
2, z = 4m+2+4n

√
2, z = 4m+2+(4n+2)

√
2,

where m, n ∈ Z.
Following lemmas will be useful for proving that there exists a D(z)-quadruple

for each number z of the above form.
Lemma 1 [Theorem 1, [4]]. The sets

{m, (3k + 1)2m+ 2k, (3k + 2)2m + 2k + 2, 9(2k + 1)2m+ 8k + 4},
{m, mk2 − 2k − 2, m(k + 1)2 − 2k, m(2k + 1)2 − 8k − 4}

have the property D(2m(2k + 1) + 1).
Lemma 2. Let {z1, z2, z3, z4} ⊂ Z[

√
2] be a set with the property D(z) and

w ∈ Z[
√
2]. Then {z1w, z2w, z3w, z4w} has the property D(zw2).
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The number w from Lemma2 is often chosen as a solution of Pellian equations
x2 − 2y2 = −1, x2 − 2y2 = 1, x2 − 2y2 = 2 or x2 − 2y2 = −2. We have to point
out that the quadratic field Q(

√
2) is a very special one in this respect, because

all three Pellian equations x2 − 2y2 = −1, x2 − 2y2 = 2 and x2 − 2y2 = −2 are
solvable (in integers). Namely, for any positive square-free integer d �= 2, at most
one of the following three equations is solvable: x2 − dy2 = −1, x2 − dy2 = 2 and
x2 − dy2 = −2, see [10, §28]. Hence, our proof cannot be immediately generalized
to the arbitrary quadratic field Q(

√
d).

3. The existence of D(z)-quadruples in Z[
√

2]

Proposition 1. Let z ∈ Z[
√
2] be of the form 2m + 1 + 2n

√
2, m, n ∈ Z. Then

there exist infinitely many D(z)-quadruples.
Proof. The proof splits into four parts.
1) Let z = 4m + 3 + 4n

√
2, where m, n ∈ Z. We will show that there exist

k, l ∈ Z[
√
2] such that

4m+ 3 + 4n
√
2 = 2(2k + 1)l + 1 (1)

If l = α + β
√
2 and k = γ + δ

√
2, then equation (1) can be written as

4αγ + 8βδ = 4m − 2α+ 2,
4βγ + 4αδ = 4n− 2β.

(2)

Equations (2) can be understood as a linear system in two unknowns γ and δ.
Obviously, the solutions of (2) are given by

γ = ((2m − α + 1)α − 2(2n − β)β)/(2(α2 − 2β2)), (3)
δ = ((2n − β)α − (2m − α + 1)β)/(2(α2 − 2β2)) (4)

Now, let α + β
√
2 be a solution of Pell equation x2 − 2y2 = 1. This assumption

implies that α must be odd, β must be even and the denominator in (3) and (4)
is 2. Hence, it is easy to verify that numbers γ and δ, given by (3) and (4), are
integers.

According to Lemma 1 and (1), we obtain that the set

{l, (3k + 1)2l + 2k, (3k + 2)2l + 2k + 2, 9(2k + 1)2l + 8k + 4} (5)

represents a Diophantine quadruple with property D(4m + 3 + 4n
√
2). Obviously,

there are infinitely many such quadruples, because there are infinitely many solu-
tions of the Pell equation.

One may ask what if there exists a z = 4m+3+4n
√
2 such that set (5) does not

represent a D(z)-quadruple, i.e. when at least two elements of (5) are equal or some
of the elements are zero. This problem can be solved by using the following idea.
For fixed l, there are only finitely many parameters k such that some elements of
(5) are equal or zero. So, let us denote by S the set of all integers z = 2(2k+1)l+1,
where l is fixed, such that the set (5) does not represent a Diophantine quadruple,
i.e. such that some elements of (5) are equal or zero. Let z0 ∈ S and let w = s+t

√
2
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be some solution of the Pell equation x2 − 2y2 = 1. It can be easily verified that
number z0w

2 is of the same form as number z0, i.e. of the form 4m + 3 + 4n
√
2.

Indeed,

z0w
2 = (4m0 + 3 + 4n0

√
2)(s + t

√
2)2 = 4a+ 3(s2 + 2t2) + (4b+ 2st(4n0 + 3))

√
2,

where a = m0(s2 + 2t2) + 4n0st and b = n0(s2 + 2t2). Because s is necessarily odd
and t is even, it follows that s2+2t2 ≡ 1(mod 4) and that number z0w

2 is of the form
4m + 3 + 4n

√
2. Since there are infinitely many solutions of the Pell equation, we

have z0w
2 �∈ S for infinitely many w’s. The D(z0w

2)-quadruple, for corresponding
k, is given by (5). The D(z0)-quadruple can be obtained by multiplying the elements
of (1) by s − t

√
d, according to Lemma 2.

2) In the same manner as in case 1, we will try to represent the number z =
4m + 3 + (4n + 2)

√
2 in the form 2(2k + 1)l + 1. Precisely, for given m, n ∈ Z we

will prove that there exist k, l ∈ Z[
√
2] such that

4m+ 3 + (4n+ 2)
√
2 = 2(2k + 1)l + 1. (6)

In this case, let l = α + β
√
2 be a solution of x2 − 2y2 = −1. That means that α

and β are odd numbers. Under the notation k = γ + δ
√
2, equation (6) becomes a

linear system in two unknowns γ and δ

4αγ + 8βδ = 4m − 2α+ 2,
4βγ + 4αδ = 4n+ 2− 2β.

(7)

Evidently, the solutions of (7)

γ = −((2m − α + 1)α − 2(2n− β + 1)β)/2,
δ = −((2n − β + 1)α − (2m − α + 1)β)/2.

are integers. So, set (5) is a Diophantine quadruple with the property D(4m+ 3+
(4n + 2)

√
2), according to Lemma1 and (6). Obviously, for different solutions of

the equation x2 − 2y2 = −1 we obtain different quadruples, so, there are infinitely
many such quadruples. Eventual problems, when the set (5) does not represent a
Diophantine quadruple, can be solved as in case 1.

3) As in previous cases 1 and 2, for given m, n ∈ Z we can determine k, l ∈ Z[
√
2]

such that
4m+ 1 + (4n+ 2)

√
2 = 2(2k + 1)l + 1. (8)

Under the notation of cases 1 and 2, equation (8) can be understood as a linear
system in unknowns γ and δ, whose solutions are given by

γ = ((2m − α)α − 2(2n − β + 1)β)/(2(α2 − 2β2)), (9)
δ = ((2n − β + 1)α − (2m − α)β)/(2(α2 − 2β2)). (10)

For l we take solutions of equations x2 − 2y2 = ±2 and we have to show that γ and
δ given by (9) and (10) are integers. In fact, we have to verify that the numerators
are divisible by 4. Indeed, if m is odd, then for l = α + β

√
2 we take a solution of
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the equation x2 − 2y2 = 2. This implies that α ≡ 2(mod 4) and that β is odd. So,
2m−α ≡ 0(mod 4) and (2n− β+1)α ≡ 0(mod 4). Similarly, if m is even, then for
l = α + β

√
2 we chose a solution of another equation x2 − 2y2 = −2, what means

that α ≡ 0(mod 4) and b is odd. Again, this implies that γ, δ ∈ Z.

Further conclusions can be drawn in the same way as it was done in cases 1
and 2.

4) In this last case, we show the existence of a Diophantine quadruple with
property D(4m+1+4n

√
2). First, we express a given integer of the form 4m+1+

4n
√
2 as (4a+3+ (4b+ 2)

√
2)w2, where a, b ∈ Z and w ∈ Z[

√
2]. Indeed, it can be

easily seen that the equation

4m+ 1 + 4n
√
2 = (4a+ 3 + (4b+ 2)

√
2)w2

holds for w = 1 +
√
2 (the fundamental solution of the equation x2 − 2y2 = −1)

and for integers a = 3m − 4n and b = 3n − 2m − 1. Now, we are finished with the
proof, because in the case 2 we proved that there exists infinitely many D(4a+3+
(4b+ 2)

√
2)-quadruples and these quadruples multiplied by w are exactly D(4m+

1 + 4n
√
2)-quadruples, by Lemma2. ✷

Proposition 2. If z ∈ Z[
√
2] is of the form 4m + 2 + 4n

√
2, then there exist

infinitely many D(z)-quadruples.
Proof. According to Proposition 1, for given m, n ∈ Z, there exists a Diophan-

tine quadruple {c1, c2, c3, c4} with property D(2m + 1 + 2n
√
2). Lemma2 implies

that the set {c1

√
2, c2

√
2, c3

√
2, c4

√
2} represents a Diophantine quadruple with

property D(4m + 2 + 4n
√
2). Obviously, there exist infinitely many such quadru-

ples, according to Proposition 1. ✷

Proposition 3. If an integer z ∈ Z[
√
2] is of the form 4m+ 4n

√
2, then there

exist infinitely many D(z)-quadruples.
Proof. We will prove the statement of this Proposition in four steps.
1) According to Proposition 1, there exist infinitely many Diophantine quadru-

ples {c1, c2, c3, c4} with property D(2m+1+2n
√
2). Further, by Lemma 2, the set

{2c1, 2c2, 2c3, 2c4} is a D(8m+ 4 + 8n
√
2)-quadruple.

2) Let m, n ∈ Z and l = α + β be a solution of Pell equation x2 − 2y2 = 1. We
will show that there exists k ∈ Z[

√
2] such that the following equation holds

2m+ 2n
√
2 = (2k + 1)l + 1. (11)

Equation (11) splits into

2αγ + 4βδ = 2m − α − 1,
2βγ + 2αδ = 2n − β,

(12)

where k = γ + δ
√
2. By solving system (12) in unknowns γ and δ, we obtain

γ = ((2m − α − 1)α − 2(2n− β)β)/2, (13)
δ = ((2n − β)α − (2m − α − 1)β)/2. (14)

Obviously, γ and δ are integers, because α is odd and β is even.
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By Lemma1, the set
{

l

2
, (3k + 1)2

l

2
+ 2k, (3k + 2)2

l

2
+ 2k + 2, 9(2k + 1)2

l

2
+ 8k + 4

}
(15)

has the property D((2k+1)l+1). According to Lemma 2, we can obtain the set with
the property D(4((2k + 1)l+ 1)) by multiplying the elements of (15) by 2. In fact,
the D(4((2k + 1)l + 1))-quadruple was obtained in this way, because the elements
of (15) multiplied by 2 are integers. Since different solutions of the Pell’s equation
induce different Diophantine quadruples, we conclude that there exist infinitely
many D(8m+ 8n

√
2)-quadruples.

3) Let m, n ∈ Z. Similarly as in case 2, we have that

2m+ 1 + (2n+ 1)
√
2 = (2k + 1)l + 1, (16)

for k, l ∈ Z[
√

d] such that l = α + β
√
2 is a solution of the Pellian equation x2 −

2y2 = ±2. Indeed, as before equation (16) can be understood as a linear system in
unknowns γ and δ, where k = γ + δ

√
2. Solutions are given by

γ = ±((2m − α)α − 2(2n+ 1− β)β)/4, (17)
δ = ±((2n+ 1− β)α − (2m − α)β)/4. (18)

Since, α is even and β is odd, it is clear that the numerator in (17) is divisible by
4, but the numerator in (17) is congruent to 2 modulo 4. Therefore, if m is odd we
take l = α+β

√
2 to be a solution of the equation x2 −2y2 = 2, because in this case

α ≡ 2(mod 4), and if m is even then we take l to be a solution of x2 − 2y2 = −2.
Now, as in case 2, we obtain the D(8m+4+(8n+4)

√
2)-quadruple by multiplying

the elements of set (15) by 2, because (15) represents a set with the property
D(2m+1+ (2n+1)

√
2), for corresponding k and l. Also, there are infinitely many

such quadruples because there are infinitely many solutions of the Pellian equation
x2 − 2y2 = ±2.

4) In this last case, we have to prove that there exist infinitely many D(z)-
quadruples, where z is of the form 8m + (8n + 4)

√
2. In the same manner as in

cases 2 and 3, we can show that z ∈ Z[
√
2] of the form 2m + (2n + 1)

√
2 can be

represented in the form of (2k + 1)l + 1, where l = α + β
√
2 is a solution of the

Pellian equation x2 − 2y2 = −1 and k = γ + δ
√
2 ∈ Z[

√
2]. Indeed, we solve the

equation
2m+ (2n+ 1)

√
2 = (2k + 1)l + 1. (19)

as a linear system in γ and δ and we obtain

γ = ((2m − α − 1)α − 2(2n+ 1− β)β)/2, (20)
δ = ((2n + 1− β)α − (2m − α − 1)β)/2. (21)

Since α and β are odd, γ and δ are integers.
The rest of the proof goes as in cases 2 and 3. ✷

Proposition 4. If z ∈ Z[
√
2] is of the form 4m + 2 + (4n + 2)

√
2, then there

exist infinitely many D(z)-quadruples.
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Proof. In the proof of Proposition 3, case 3, we showed that set (15) has the
property D(2m + 1 + (2n + 1)

√
2), for corresponding k, l ∈ Z[

√
2], where l is a

solution of the Pellian equation x2−2y2 = ±2. By multiplying the elements of (15)
by

√
2, we obtain the set of integers with the property D(4m + 2 + (4n + 2)

√
2),

i.e. the Diophantine quadruple. Indeed, l
2

√
2 = α

2

√
2 + β is an integer, because α

is even. ✷

4. The nonexistence of D(z)-quadruples

In this section, we will prove that there is no Diophantine quadruple with the
property D(z) for z ∈ Z[

√
2] such that z is not representable as a difference of two

squares of integers, i.e. such that z is of the form m + (2n + 1)
√
2 or 4m + (4n +

2)
√
2. In fact, we can prove that if d ≡ 2(mod 4) and if z ∈ Z[

√
d] is of the form

m+(2n+1)
√

d or 4m+(4n+2)
√

d, then there is no D(z)-quadruple. This improves
the corresponding results from [1].

Proposition 5. Let d ∈ Z such that d ≡ 2(mod 4). If z ∈ Z[
√

d] is of the form
m+ (2n+ 1)

√
d or 4m+ (4n+ 2)

√
d , then there is no D(z)-quadruple.

Proof. If z is of the form m + (2n + 1)
√

d the proof is analogous to the proof
of [1, Proposition 1].

Let z be of the form 4m+ (4n+ 2)
√

d. Suppose that the set {z1, z2, z3, z4} is a
D(z)-quadruple. If zi = xi + yi

√
d, for i = 1, 2, 3, 4, then

(xi + yi

√
d)(xj + yj

√
d) + z = (ξij + ηij

√
d)2, (22)

for all 1 ≤ i < j ≤ 4 and for some ξij , ηij ∈ Z. Equation (22) splits into

xixj + yiyjd+ 4m = ξ2
ij + dη2

ij , (23)
xiyj + xjyid+ 4n+ 2 = 2ξijηij . (24)

Let us discuss values of the right-hand sides of (23) and (24) in the set of remainders
modulo 4. The following cases may appear:

i) if 2ξijηij ≡ 0(mod 4), then (ξ2
ij + dη2

ij) mod 4 ∈ {0, 1, 2}
ii) if 2ξijηij ≡ 2(mod 4), then ξ2

ij + dη2
ij ≡ 3(mod 4).

That means that if xi + yi

√
d and xj + yj

√
d are the elements of a Diophantine

quadruple with property D(4m+ (4n+ 2)
√

d), then

(xixj + yiyjd, xiyj + xjyi + 2) mod 4 ∈ {(0, 0), (1, 0), (2, 0), (3, 2)} (25)

Our intention is to show that there is no D(4m + (4n + 2)
√

d)-quadruple which
satisfies condition (25) for all 1 ≤ i < j ≤ 4.

For example, let x1 ≡ 0(mod 4) and y1 ≡ 1(mod 4). If x2+ y2

√
d is the element

of the D(4m + (4n + 2)
√

d)-quadruple, then conditions (25), for i = 1 and j = 2,
imply that

(2y2, x2 + 2) mod 4 ∈ S,

where S = {(0, 0), (1, 0), (2, 0), (3, 2)}, i.e. that
(x2, y2) mod 4 ∈ {(2, 0), (2, 1), (2, 2), (2, 3)}.
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Suppose that x2 ≡ 2(mod 4) and y2 ≡ 0(mod 4). Now, we must find the conditions
on the third element x3 + y3

√
d of the D(4m+ (4n+ 2)

√
d)-quadruple. As before,

for i = 1, 2 and j = 3, (25) gives us the following conditions

(2y3, x3 + 2) mod 4 ∈ S and (2x3, 2y3 + 2) mod 4 ∈ S.

It turns out that these conditions are fulfilled only for x3 ≡ 2(mod 4) and y3 ≡
1(mod 4). Finally, let x4 + y4

√
d be the last element of the quadruple. Then (25)

must be satisfied for i = 1, 2, 3 and j = 4. From the previous case it follows that

x4 ≡ 2(mod 4), y4 ≡ 1(mod 4) and (2x4 + 2y4, x4 + 2y4 + 2) mod 4 ∈ S.

But, these conditions are contradictory, because 2x4+2y4 ≡ 2(mod 4), x4+2y4+2 ≡
2(mod 4) and (2, 2) �∈ S.

We have checked all of the other possibilities by using the programme written
in FORTRAN. ✷
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