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Stammler’s circles, Stammler’s triangle and

Morley’s triangle of a given triangle

Ružica Kolar-Šuper∗ and Vladimir Volenec†

Abstract. By means of complex coordinates shorter proofs of the
results of L. Stammler [1], [2] will be given, plus several statements
connected with them.
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In the Gauss plane any point Z can be uniquely represented by the determined
complex number z, its complex coordinate; then we shall write Z = (z). If ABC
is any triangle, then we can choose the origin of the coordinate system and the
measure unity so that the circumscribed circle of the triangle ABC is a unit circle
with the equation zz̄ = 1 and radius R = 1. If A = (a), B = (b), C = (c), then
aā = bb̄ = cc̄ = 1, i.e.

ā =
1
a
, b̄ =

1
b
, c̄ =

1
c
. (1)

Proposition 1. Point H = (h) given by

h = a + b + c (2)

is the orthocenter of the triangle ABC.
Proof. For the number

k =
h − a

b − c
=

b + c

b − c

because of (1) we get

k̄ =
b̄ + c̄

b̄ − c̄
=

1
b + 1

c
1
b − 1

c

= −b + c

b − c
= −k,
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so k becomes a purely imaginary number, which means that the line AH is perpen-
dicular to the line BC. In the same way BH ⊥ CA and CH ⊥ AB. ✷

The lines have got linear equations on variables z and z̄. The most general
equation can be written in the form z + tz̄ = s. It is obvious that the equations of
the form z + tz̄ = s and z + tz̄ = s′ present parallel lines because there is no point
Z = (z) that goes with s �= s′ and that would satisfy both equations.

Proposition 2. Line BC has the equation

z + bcz̄ = b + c, (3)

and the line perpendicular to that line through point P = (p) has the equation

z − bcz̄ = p − bcp̄. (4)

The feet Q = (q) of the perpendicular line from point P to the line BC is given by
the equation

2q = b + c + p − bcp̄. (5)

Proof. Points B = (b) and C = (c) satisfy equation (3) as we get b+ bcb̄ = b+ c
and c + bcc̄ = b + c because of (1). The altitude AH has got the equation

z − bcz̄ = a − bc

a
(6)

as because of (1) and (2) we get

a − bcā = a − bc

a
, h − bch̄ = a + b + c − bc

(
1
a

+
1
b

+
1
c

)
= a − bc

a
.

Lines (4) and (6) are parallel, and point P obviously lies on line (4), so that the
line is perpendicular from point P to the line BC. For the intersection Z = (z) of
lines (3) and (4) from (3) and (4) follows 2z = b + c + p− bcp̄. That proves the last
statement of the proposition. ✷

Corollary 1. The line joining two points Z1 = (z1) and Z2 = (z2) on the unit
circle has the equation z + z1z2z̄ = z1 + z2.

Proposition 3. The distance of the point P = (p) from the line BC with the
equation (3) is given by the formula

|PQ|2 =
1

4bc
(p + bcp̄ − b − c)2, (7)

and the side BC has the length given by the formula

|BC|2 = − 1
bc

(b − c)2. (8)

Proof. Because of (5) and (1) we get

4|PQ|2 = (2q − 2p)(2q̄ − 2p̄) = (b + c − p − bcp̄)(b̄ + c̄ − p̄ − b̄c̄p)

= (b + c − p − bcp̄)
(

1
b

+
1
c
− p̄ − p

bc

)
=

1
bc

(b + c − p − bcp̄)2,
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|BC|2 = (c − b)(c̄ − b̄) = (c − b)
(

1
c
− 1

b

)
= − 1

bc
(b − c)2.

✷

We can choose the real axis so that

abc = 1, (9)

and owing to (1)

ā = bc, b̄ = ca, c̄ = ab. (10)

Because of that choice points B1 = (ε), B2 = (ε2), B3 = (1), where

ε3 = 1, ε2 + ε + 1 = 0, ε̄ = ε2, ε̄2 = ε, (11)

are the so-called Boutin’s points of the triangle ABC. Tangents of the circle ABC
at points B1, B2, B3 form the triangle S1S2S3 with the vertices S1 = (−2ε),
S2 = (−2ε2), S3 = (−2), which becomes from the triangle B1B2B3 by homothecy
with the center in the center O = (0) of the circle ABC and the coefficient −2
(Figure 2). The triangles B1B2B3 and S1S2S3 are equilateral. We shall name the
points S1, S2, S3 Stammler’s points of the triangle ABC, and the triangle S1S2S3

Stammler’s triangle of the triangle ABC.
Points S1, S2, S3 cannot be constructed by the compass and ruler (Stammler,

[1]). The same statement is also valid for Boutin’s points. If the parallels with lines
BC, CA, AB through points A, B, C intersect circle ABC again at points A′, B′,
C′, then the points which trisect the arcs AA′�

, BB′�
, CC′�

of that circle are exactly
Boutin’s points of the triangle ABC.

Proposition 4. If Di, Ei, Fi are the feet of the perpendicular lines from
Stammler’s point Si of the triangle ABC on the lines BC, CA, AB, then these
equations are valid

|S1D1|2 +
1
4
|BC|2 = |S1E1|2 +

1
4
|CA|2 = |S1F1|2 +

1
4
|AB|2 = 3 + hε2 + h̄ε, (12)

|S2D2|2 +
1
4
|BC|2 = |S2E2|2 +

1
4
|CA|2 = |S2F2|2 +

1
4
|AB|2 = 3 + hε + h̄ε2, (13)

|S3D3|2 +
1
4
|BC|2 = |S3E3|2 +

1
4
|CA|2 = |S3F3|2 +

1
4
|AB|2 = 3 + h + h̄. (14)

Proof. If S1 = (s1) = (−2ε), according to Proposition 3, because of (9) and (11)
we get

|S1D1|2 =
1

4bc
(s1 + bcs̄1 − b − c)2 =

a

4
(−2ε − 2bcε2 − b − c)2
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and |BC|2 = −a(b − c)2, therefore because of (9), (11), (10) and (2) follows

|S1D1|2 +
1
4
|BC|2 =

a

4
[(2ε + 2bcε2 + b + c)2 − (b − c)2]

=
a

4
(2ε + 2bcε2 + 2b)(2ε + 2bcε2 + 2c)

= a(b + ε + bcε2)(c + ε + bcε2)
= abc + a(b + c)ε + abcε2(b + c) + aε2 + 2abcε3 + ab2c2ε4

= 3 + (a + b + c)ε2 + (bc + ca + ab)ε
= 3 + (a + b + c)ε2 + (ā + b̄ + c̄)ε
= 3 + hε2 + h̄ε.

Because of the symmetry on a, b, c it follows that the other equations (12) are valid.
By substitutions ε → ε2 and ε → 1 from equation (12) follow the equations (13)
and (14) owing to (11). ✷

From Proposition 4 it follows:
Theorem 1. Circles S1, S2, S3 with the centers at Stammler’s points of the

triangle ABC and the radii ρ1, ρ2, ρ3 given by the equations

ρ2
1 = 3 + hε2 + h̄ε, ρ2

2 = 3 + hε + h̄ε2, ρ2
3 = 3 + h + h̄ (15)

cut off segments |BC|, |CA|, |AB| on lines BC, CA, AB, respectively . Centers of
these circles form an equilateral triangle (Figure 1).

We can find the statement of Theorem 1 (except formula (15)) in Stammler [1],
so we shall name circles S1, S2, S3 in that theorem Stammler’s circles of the triangle
ABC. See also Stärk [3].

Because of (11) and (15) we get

ρ2
1 + ρ2

2 + ρ2
3 = 9 + (h + h̄)(ε2 + ε + 1) = 9,

i.e. there holds:
Corollary 2. For the radii ρ1, ρ2, ρ3 of Stammler’s circles and the radius R

of the circumscribed circle of the triangle ABC the equation

ρ2
1 + ρ2

2 + ρ2
3 = 9R2 (16)

is valid.
Because of the inequality of the squared, arithmetic and geometric means from

(16) we get the following inequalities

R
√

3 =

√
ρ2
1 + ρ2

2 + ρ2
3

3
≥ ρ1 + ρ2 + ρ3

3
≥ 3

√
ρ1ρ2ρ3,

where the equalities holds if and only if ρ1 = ρ2 = ρ3, i.e.

hε2 + h̄ε = hε + h̄ε2 = h + h̄. (17)

However, the first equation (17) can be written in the form (h− h̄)(ε2−ε) = 0, that
owing to ε2 − ε �= 0 gives h = h̄. Because of that from (17) we get the equation
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h(ε2 +ε−2) = 0, i.e. because of (11) we get −3h = 0 or finally h = 0. The equation
h = 0, i.e. H = O is valid if and only if the triangle ABC is equilateral.

Figure 1.

Theorem 2. The potential center of Stammler’s circles of the triangle ABC is
the center O9 = (h

2 ) of his Euler’s circle (Figure 1).
Proof. Point O9 has with respect to the circle S1 the power which owing to

(11) is equal to

pO9,S1 = |O9S1|2 − ρ2
1 =

(
h

2
+ 2ε

)(
h̄

2
+ 2ε2

)
− (3 + hε2 + h̄ε)

=
hh̄

4
+ 4ε3 − 3 =

hh̄

4
+ 1 = R2 +

1
4
|OH |2,

and by substitutions ε → ε2, i.e. ε → 1 the result does not change, so the point
O9 has the same powers with respect to the circles S2 i S3. ✷
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The orthogonal circle of the circles S1, S2, S3 has the center O9 and radius ρ so
that it gives ρ2 = R2 + 1

4 |OH |2 (Figure 1).

Figure 2.

Let the order of the points on a unit circle and the unity point B3 be chosen so
that in positive sense the points come in the sequence B3, A, B, C. For the sake
of simpler calculation let follow this A = (a3) = (a3ε3), B = (b3), C = (c3), while
a3b3c3 = 1, so

abc = ε or abc = ε2. (18)

In that case points Ab, Ba; Bc, Cb; Ca, Ac which divide the arcs in the following
order AB

�
, BC

�
, CA

�
into three equal parts (Figure 2), having this form

Ab = (a2b), Ba = (ab2), Bc = (b2c), Cb = (bc2), Ca = (c2aε), Ac = (ca2ε2).
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According to Corollary 1, lines CAb and ACb have the following equations

z + a2bc3z̄ = a2b + c3,

z + a3bc2z̄ = a3 + bc2.

Multiplying these equations by a and c and by substracting the obtained equations
we get for the intersection E = (e) of these lines the equation

(a − c)z = a3b − c3b + ac3 − a3c = (a − c)(abc + a2b + bc2 − a2c − ac2)

with the result
e = abc + a2b + bc2 − a2c − ac2. (19)

By substitutions a → b → c → aε for the points F = ABc ∩ BAc = (f) and
D = BCa ∩ CBa = (d) we get equations

f = abcε + b2c + a2cε2 − ab2ε − a2bε2,

(20)
d = abcε2 + ac2ε + ab2 − bc2ε − b2cε2.

Because of (11) from (19) and (20) it follows e.g.

f − e = abc(ε − 1) + b2c + a2c(ε2 + 1) − ab2ε − a2b(ε2 + 1) − bc2 + ac2

= abc(ε − 1) + b2c − a2cε − ab2ε + a2bε − bc2 + ac2

= (b2 + ac − ab − bc)(c − aε) = −(a − b)(b − c)(c − aε),

and then by means of substitutions a → b → c → aε we have the equations

f − e = −(a − b)(b − c)(c − aε),
d − f = −ε(a − b)(b − c)(c − aε) = ε(f − e), (21)
e − d = −ε2(a − b)(b − c)(c − aε) = ε2(f − e).

From these equations it immediately follows that DEF is a positively oriented
equilateral triangle, which is the matter of the famous Morley’s theorem.

If the first possibility in (18) is valid, then from (21) because of (11) we get

f̄ − ē = −
(

1
a
− 1

b

) (
1
b
− 1

c

) (
1
c
− 1

aε

)
=

1
a2b2c2ε

(a − b)(b − c)(c − aε)

= (a − b)(b − c)(c − aε) = −(f − e).

That means that the number f − e is purely imaginary, i.e. the line EF is per-
pendicular to real axis OB3, namely it is parallel with the lines B1B2 and S1S2.
Therefore the triangle EFD is homothetic with the triangles B1B2B3 and S1S2S3.

If the second possibility in (18) is valid, then from (21) we get

ē − d̄ = −ε

(
1
a
− 1

b

) (
1
b
− 1

c

) (
1
c
− 1

aε

)
=

1
a2b2c2

(a − b)(b − c)(c − aε)

= ε2(a − b)(b − c)(c − aε) = −(e − d),
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so now the line DE is perpendicular to the real axis OB3, i.e. parallel with the
lines B1B2 and S1S2. Therefore the triangle DEF is homothetic with the triangles
B1B2B3 and S1S2S3.

So we have proved:
Theorem 3. Stammler’s triangle of the given triangle is homothetic with its

Morley’s triangle (Stammler [2]).
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