Stammler's circles, Stammler's triangle and Morley's triangle of a given triangle

Ružica Kolar-Šuper* and Vladimir Volenec ${ }^{\dagger}$

Abstract

By means of complex coordinates shorter proofs of the results of L. StammLer [1], [2] will be given, plus several statements connected with them.

Key words: Stammler's circles, Stammler's triangle, Morley's triangle

AMS subject classifications: $51 \mathrm{M} 04,51 \mathrm{~N} 25$
Received February 6, 2004
Accepted December 1, 2004
In the Gauss plane any point Z can be uniquely represented by the determined complex number z, its complex coordinate; then we shall write $Z=(z)$. If $A B C$ is any triangle, then we can choose the origin of the coordinate system and the measure unity so that the circumscribed circle of the triangle $A B C$ is a unit circle with the equation $z \bar{z}=1$ and radius $R=1$. If $A=(a), B=(b), C=(c)$, then $a \bar{a}=b \bar{b}=c \bar{c}=1$, i.e.

$$
\begin{equation*}
\bar{a}=\frac{1}{a}, \quad \bar{b}=\frac{1}{b}, \quad \bar{c}=\frac{1}{c} . \tag{1}
\end{equation*}
$$

Proposition 1. Point $H=(h)$ given by

$$
\begin{equation*}
h=a+b+c \tag{2}
\end{equation*}
$$

is the orthocenter of the triangle $A B C$.
Proof. For the number

$$
k=\frac{h-a}{b-c}=\frac{b+c}{b-c}
$$

because of (1) we get

$$
\bar{k}=\frac{\bar{b}+\bar{c}}{\bar{b}-\bar{c}}=\frac{\frac{1}{b}+\frac{1}{c}}{\frac{1}{b}-\frac{1}{c}}=-\frac{b+c}{b-c}=-k
$$

[^0]so k becomes a purely imaginary number, which means that the line $A H$ is perpendicular to the line $B C$. In the same way $B H \perp C A$ and $C H \perp A B$.

The lines have got linear equations on variables z and \bar{z}. The most general equation can be written in the form $z+t \bar{z}=s$. It is obvious that the equations of the form $z+t \bar{z}=s$ and $z+t \bar{z}=s^{\prime}$ present parallel lines because there is no point $Z=(z)$ that goes with $s \neq s^{\prime}$ and that would satisfy both equations.

Proposition 2. Line $B C$ has the equation

$$
\begin{equation*}
z+b c \bar{z}=b+c \tag{3}
\end{equation*}
$$

and the line perpendicular to that line through point $P=(p)$ has the equation

$$
\begin{equation*}
z-b c \bar{z}=p-b c \bar{p} \tag{4}
\end{equation*}
$$

The feet $Q=(q)$ of the perpendicular line from point P to the line $B C$ is given by the equation

$$
\begin{equation*}
2 q=b+c+p-b c \bar{p} \tag{5}
\end{equation*}
$$

Proof. Points $B=(b)$ and $C=(c)$ satisfy equation (3) as we get $b+b c \bar{b}=b+c$ and $c+b c \bar{c}=b+c$ because of (1). The altitude $A H$ has got the equation

$$
\begin{equation*}
z-b c \bar{z}=a-\frac{b c}{a} \tag{6}
\end{equation*}
$$

as because of (1) and (2) we get

$$
a-b c \bar{a}=a-\frac{b c}{a}, \quad h-b c \bar{h}=a+b+c-b c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a-\frac{b c}{a} .
$$

Lines (4) and (6) are parallel, and point P obviously lies on line (4), so that the line is perpendicular from point P to the line $B C$. For the intersection $Z=(z)$ of lines (3) and (4) from (3) and (4) follows $2 z=b+c+p-b c \bar{p}$. That proves the last statement of the proposition.

Corollary 1. The line joining two points $Z_{1}=\left(z_{1}\right)$ and $Z_{2}=\left(z_{2}\right)$ on the unit circle has the equation $z+z_{1} z_{2} \bar{z}=z_{1}+z_{2}$.

Proposition 3. The distance of the point $P=(p)$ from the line $B C$ with the equation (3) is given by the formula

$$
\begin{equation*}
|P Q|^{2}=\frac{1}{4 b c}(p+b c \bar{p}-b-c)^{2} \tag{7}
\end{equation*}
$$

and the side BC has the length given by the formula

$$
\begin{equation*}
|B C|^{2}=-\frac{1}{b c}(b-c)^{2} \tag{8}
\end{equation*}
$$

Proof. Because of (5) and (1) we get

$$
\begin{aligned}
4|P Q|^{2} & =(2 q-2 p)(2 \bar{q}-2 \bar{p})=(b+c-p-b c \bar{p})(\bar{b}+\bar{c}-\bar{p}-\bar{b} \bar{c} p) \\
& =(b+c-p-b c \bar{p})\left(\frac{1}{b}+\frac{1}{c}-\bar{p}-\frac{p}{b c}\right)=\frac{1}{b c}(b+c-p-b c \bar{p})^{2}
\end{aligned}
$$

$$
|B C|^{2}=(c-b)(\bar{c}-\bar{b})=(c-b)\left(\frac{1}{c}-\frac{1}{b}\right)=-\frac{1}{b c}(b-c)^{2} .
$$

We can choose the real axis so that

$$
\begin{equation*}
a b c=1 \tag{9}
\end{equation*}
$$

and owing to (1)

$$
\begin{equation*}
\bar{a}=b c, \quad \bar{b}=c a, \quad \bar{c}=a b . \tag{10}
\end{equation*}
$$

Because of that choice points $B_{1}=(\varepsilon), B_{2}=\left(\varepsilon^{2}\right), B_{3}=(1)$, where

$$
\begin{equation*}
\varepsilon^{3}=1, \quad \varepsilon^{2}+\varepsilon+1=0, \quad \bar{\varepsilon}=\varepsilon^{2}, \quad \overline{\varepsilon^{2}}=\varepsilon \tag{11}
\end{equation*}
$$

are the so-called Boutin's points of the triangle $A B C$. Tangents of the circle $A B C$ at points B_{1}, B_{2}, B_{3} form the triangle $S_{1} S_{2} S_{3}$ with the vertices $S_{1}=(-2 \varepsilon)$, $S_{2}=\left(-2 \varepsilon^{2}\right), S_{3}=(-2)$, which becomes from the triangle $B_{1} B_{2} B_{3}$ by homothecy with the center in the center $O=(0)$ of the circle $A B C$ and the coefficient -2 (Figure 2). The triangles $B_{1} B_{2} B_{3}$ and $S_{1} S_{2} S_{3}$ are equilateral. We shall name the points S_{1}, S_{2}, S_{3} Stammler's points of the triangle $A B C$, and the triangle $S_{1} S_{2} S_{3}$ Stammler's triangle of the triangle $A B C$.

Points S_{1}, S_{2}, S_{3} cannot be constructed by the compass and ruler (Stammler, [1]). The same statement is also valid for Boutin's points. If the parallels with lines $B C, C A, A B$ through points A, B, C intersect circle $A B C$ again at points A^{\prime}, B^{\prime}, C^{\prime}, then the points which trisect the arcs $\widehat{A A}^{\prime}, \widehat{B B}^{\prime}, \widehat{C C}^{\prime}$ of that circle are exactly Boutin's points of the triangle $A B C$.

Proposition 4. If D_{i}, E_{i}, F_{i} are the feet of the perpendicular lines from Stammler's point S_{i} of the triangle $A B C$ on the lines $B C, C A, A B$, then these equations are valid

$$
\begin{gather*}
\left|S_{1} D_{1}\right|^{2}+\frac{1}{4}|B C|^{2}=\left|S_{1} E_{1}\right|^{2}+\frac{1}{4}|C A|^{2}=\left|S_{1} F_{1}\right|^{2}+\frac{1}{4}|A B|^{2}=3+h \varepsilon^{2}+\bar{h} \varepsilon, \tag{12}\\
\left|S_{2} D_{2}\right|^{2}+\frac{1}{4}|B C|^{2}=\left|S_{2} E_{2}\right|^{2}+\frac{1}{4}|C A|^{2}=\left|S_{2} F_{2}\right|^{2}+\frac{1}{4}|A B|^{2}=3+h \varepsilon+\bar{h} \varepsilon^{2} \tag{13}\\
\left|S_{3} D_{3}\right|^{2}+\frac{1}{4}|B C|^{2}=\left|S_{3} E_{3}\right|^{2}+\frac{1}{4}|C A|^{2}=\left|S_{3} F_{3}\right|^{2}+\frac{1}{4}|A B|^{2}=3+h+\bar{h} . \tag{14}
\end{gather*}
$$

Proof. If $S_{1}=\left(s_{1}\right)=(-2 \varepsilon)$, according to Proposition 3, because of (9) and (11) we get

$$
\left|S_{1} D_{1}\right|^{2}=\frac{1}{4 b c}\left(s_{1}+b c \overline{s_{1}}-b-c\right)^{2}=\frac{a}{4}\left(-2 \varepsilon-2 b c \varepsilon^{2}-b-c\right)^{2}
$$

and $|B C|^{2}=-a(b-c)^{2}$, therefore because of (9), (11), (10) and (2) follows

$$
\begin{aligned}
\left|S_{1} D_{1}\right|^{2}+\frac{1}{4}|B C|^{2} & =\frac{a}{4}\left[\left(2 \varepsilon+2 b c \varepsilon^{2}+b+c\right)^{2}-(b-c)^{2}\right] \\
& =\frac{a}{4}\left(2 \varepsilon+2 b c \varepsilon^{2}+2 b\right)\left(2 \varepsilon+2 b c \varepsilon^{2}+2 c\right) \\
& =a\left(b+\varepsilon+b c \varepsilon^{2}\right)\left(c+\varepsilon+b c \varepsilon^{2}\right) \\
& =a b c+a(b+c) \varepsilon+a b c \varepsilon^{2}(b+c)+a \varepsilon^{2}+2 a b c \varepsilon^{3}+a b^{2} c^{2} \varepsilon^{4} \\
& =3+(a+b+c) \varepsilon^{2}+(b c+c a+a b) \varepsilon \\
& =3+(a+b+c) \epsilon^{2}+(\bar{a}+\bar{b}+\bar{c}) \varepsilon \\
& =3+h \varepsilon^{2}+\bar{h} \varepsilon .
\end{aligned}
$$

Because of the symmetry on a, b, c it follows that the other equations (12) are valid. By substitutions $\varepsilon \rightarrow \varepsilon^{2}$ and $\varepsilon \rightarrow 1$ from equation (12) follow the equations (13) and (14) owing to (11).

From Proposition 4 it follows:
Theorem 1. Circles $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}$ with the centers at Stammler's points of the triangle $A B C$ and the radii $\rho_{1}, \rho_{2}, \rho_{3}$ given by the equations

$$
\begin{equation*}
\rho_{1}^{2}=3+h \varepsilon^{2}+\bar{h} \varepsilon, \quad \rho_{2}^{2}=3+h \varepsilon+\bar{h} \varepsilon^{2}, \quad \rho_{3}^{2}=3+h+\bar{h} \tag{15}
\end{equation*}
$$

cut off segments $|B C|,|C A|,|A B|$ on lines $B C, C A, A B$, respectively. Centers of these circles form an equilateral triangle (Figure 1).

We can find the statement of Theorem 1 (except formula (15)) in Stammler [1], so we shall name circles $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}$ in that theorem Stammler's circles of the triangle $A B C$. See also Stärk [3].

Because of (11) and (15) we get

$$
\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}=9+(h+\bar{h})\left(\varepsilon^{2}+\varepsilon+1\right)=9
$$

i.e. there holds:

Corollary 2. For the radii $\rho_{1}, \rho_{2}, \rho_{3}$ of Stammler's circles and the radius R of the circumscribed circle of the triangle $A B C$ the equation

$$
\begin{equation*}
\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}=9 R^{2} \tag{16}
\end{equation*}
$$

is valid.
Because of the inequality of the squared, arithmetic and geometric means from (16) we get the following inequalities

$$
R \sqrt{3}=\sqrt{\frac{\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}}{3}} \geq \frac{\rho_{1}+\rho_{2}+\rho_{3}}{3} \geq \sqrt[3]{\rho_{1} \rho_{2} \rho_{3}}
$$

where the equalities holds if and only if $\rho_{1}=\rho_{2}=\rho_{3}$, i.e.

$$
\begin{equation*}
h \varepsilon^{2}+\bar{h} \varepsilon=h \varepsilon+\bar{h} \varepsilon^{2}=h+\bar{h} \tag{17}
\end{equation*}
$$

However, the first equation (17) can be written in the form $(h-\bar{h})\left(\varepsilon^{2}-\varepsilon\right)=0$, that owing to $\varepsilon^{2}-\varepsilon \neq 0$ gives $h=\bar{h}$. Because of that from (17) we get the equation
$h\left(\varepsilon^{2}+\varepsilon-2\right)=0$, i.e. because of (11) we get $-3 h=0$ or finally $h=0$. The equation $h=0$, i.e. $H=O$ is valid if and only if the triangle $A B C$ is equilateral.

Figure 1.
Theorem 2. The potential center of Stammler's circles of the triangle $A B C$ is the center $O_{9}=\left(\frac{h}{2}\right)$ of his Euler's circle (Figure 1).

Proof. Point O_{9} has with respect to the circle \mathcal{S}_{1} the power which owing to (11) is equal to

$$
\begin{aligned}
p_{O_{9}, \mathcal{S}_{1}} & =\left|O_{9} S_{1}\right|^{2}-\rho_{1}^{2}=\left(\frac{h}{2}+2 \varepsilon\right)\left(\frac{\bar{h}}{2}+2 \varepsilon^{2}\right)-\left(3+h \varepsilon^{2}+\bar{h} \varepsilon\right) \\
& =\frac{h \bar{h}}{4}+4 \varepsilon^{3}-3=\frac{h \bar{h}}{4}+1=R^{2}+\frac{1}{4}|O H|^{2},
\end{aligned}
$$

and by substitutions $\varepsilon \rightarrow \varepsilon^{2}$, i.e. $\varepsilon \rightarrow 1$ the result does not change, so the point O_{9} has the same powers with respect to the circles \mathcal{S}_{2} i \mathcal{S}_{3}.

The orthogonal circle of the circles $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}$ has the center O_{9} and radius ρ so that it gives $\rho^{2}=R^{2}+\frac{1}{4}|O H|^{2}$ (Figure 1).

Figure 2.
Let the order of the points on a unit circle and the unity point B_{3} be chosen so that in positive sense the points come in the sequence B_{3}, A, B, C. For the sake of simpler calculation let follow this $A=\left(a^{3}\right)=\left(a^{3} \varepsilon^{3}\right), B=\left(b^{3}\right), C=\left(c^{3}\right)$, while $a^{3} b^{3} c^{3}=1$, so

$$
\begin{equation*}
a b c=\varepsilon \quad \text { or } \quad a b c=\varepsilon^{2} . \tag{18}
\end{equation*}
$$

In that case points $A_{b}, B_{a} ; B_{c}, C_{b} ; C_{a}, A_{c}$ which divide the arcs in the following order $\overparen{A B}, \overparen{B C}, \overparen{C A}$ into three equal parts (Figure 2), having this form

$$
A_{b}=\left(a^{2} b\right), B_{a}=\left(a b^{2}\right), B_{c}=\left(b^{2} c\right), C_{b}=\left(b c^{2}\right), C_{a}=\left(c^{2} a \varepsilon\right), A_{c}=\left(c a^{2} \varepsilon^{2}\right)
$$

According to Corollary 1, lines $C A_{b}$ and $A C_{b}$ have the following equations

$$
\begin{aligned}
& z+a^{2} b c^{3} \bar{z}=a^{2} b+c^{3} \\
& z+a^{3} b c^{2} \bar{z}=a^{3}+b c^{2}
\end{aligned}
$$

Multiplying these equations by a and c and by substracting the obtained equations we get for the intersection $E=(e)$ of these lines the equation

$$
(a-c) z=a^{3} b-c^{3} b+a c^{3}-a^{3} c=(a-c)\left(a b c+a^{2} b+b c^{2}-a^{2} c-a c^{2}\right)
$$

with the result

$$
\begin{equation*}
e=a b c+a^{2} b+b c^{2}-a^{2} c-a c^{2} \tag{19}
\end{equation*}
$$

By substitutions $a \rightarrow b \rightarrow c \rightarrow a \varepsilon$ for the points $F=A B_{c} \cap B A_{c}=(f)$ and $D=B C_{a} \cap C B_{a}=(d)$ we get equations

$$
\begin{align*}
& f=a b c \varepsilon+b^{2} c+a^{2} c \varepsilon^{2}-a b^{2} \varepsilon-a^{2} b \varepsilon^{2} \\
& d=a b c \varepsilon^{2}+a c^{2} \varepsilon+a b^{2}-b c^{2} \varepsilon-b^{2} c \varepsilon^{2} \tag{20}
\end{align*}
$$

Because of (11) from (19) and (20) it follows e.g.

$$
\begin{aligned}
f-e & =a b c(\varepsilon-1)+b^{2} c+a^{2} c\left(\varepsilon^{2}+1\right)-a b^{2} \varepsilon-a^{2} b\left(\varepsilon^{2}+1\right)-b c^{2}+a c^{2} \\
& =a b c(\varepsilon-1)+b^{2} c-a^{2} c \varepsilon-a b^{2} \varepsilon+a^{2} b \varepsilon-b c^{2}+a c^{2} \\
& =\left(b^{2}+a c-a b-b c\right)(c-a \varepsilon)=-(a-b)(b-c)(c-a \varepsilon)
\end{aligned}
$$

and then by means of substitutions $a \rightarrow b \rightarrow c \rightarrow a \varepsilon$ we have the equations

$$
\begin{align*}
f-e & =-(a-b)(b-c)(c-a \varepsilon) \\
d-f & =-\varepsilon(a-b)(b-c)(c-a \varepsilon)=\varepsilon(f-e) \tag{21}\\
e-d & =-\varepsilon^{2}(a-b)(b-c)(c-a \varepsilon)=\varepsilon^{2}(f-e)
\end{align*}
$$

From these equations it immediately follows that $D E F$ is a positively oriented equilateral triangle, which is the matter of the famous Morley's theorem.

If the first possibility in (18) is valid, then from (21) because of (11) we get

$$
\begin{aligned}
\bar{f}-\bar{e} & =-\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{c}-\frac{1}{a \varepsilon}\right)=\frac{1}{a^{2} b^{2} c^{2} \varepsilon}(a-b)(b-c)(c-a \varepsilon) \\
& =(a-b)(b-c)(c-a \varepsilon)=-(f-e)
\end{aligned}
$$

That means that the number $f-e$ is purely imaginary, i.e. the line $E F$ is perpendicular to real axis $O B_{3}$, namely it is parallel with the lines $B_{1} B_{2}$ and $S_{1} S_{2}$. Therefore the triangle $E F D$ is homothetic with the triangles $B_{1} B_{2} B_{3}$ and $S_{1} S_{2} S_{3}$.

If the second possibility in (18) is valid, then from (21) we get

$$
\begin{aligned}
\bar{e}-\bar{d} & =-\varepsilon\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{c}-\frac{1}{a \varepsilon}\right)=\frac{1}{a^{2} b^{2} c^{2}}(a-b)(b-c)(c-a \varepsilon) \\
& =\varepsilon^{2}(a-b)(b-c)(c-a \varepsilon)=-(e-d)
\end{aligned}
$$

so now the line $D E$ is perpendicular to the real axis $O B_{3}$, i.e. parallel with the lines $B_{1} B_{2}$ and $S_{1} S_{2}$. Therefore the triangle $D E F$ is homothetic with the triangles $B_{1} B_{2} B_{3}$ and $S_{1} S_{2} S_{3}$.

So we have proved:
Theorem 3. Stammler's triangle of the given triangle is homothetic with its Morley's triangle (Stammler [2]).

References

[1] L. Stammler, Dreiecks-Proportionalschnittkreise, ihre Mittenhyperbel und ein Pendant zum Satz von Morley, Elem. Math. 47(1992), 158-168.
[2] L. Stammler, Cutting Circles and the Morley Theorem, Beiträge zur Algebra und Geometrie 38(1997), 91-93.
[3] R. StäRk, Über die Kreise, welche aus drei Geraden Strecken vorgegebener Länge herausschneiden, Elem. Math. 49(1994), 118-119.
[4] J.-P. Ehrmann, F. van Lamoen, The Stammler Circles, Forum Geometricorum 2(2002), 151-161.

[^0]: *Teacher Training College, University of Osijek, L. Jägera 9, HR-31 000 Osijek, Croatia, e-mail: rkolar@vusos.hr
 ${ }^{\dagger}$ Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@math.hr

