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Stammler’s circles, Stammler’s triangle and
Morley’s triangle of a given triangle
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Abstract. By means of complex coordinates shorter proofs of the
results of L. STAMMLER [1], [2] will be given, plus several statements

connected with them.
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In the Gauss plane any point Z can be uniquely represented by the determined
complex number z, its complex coordinate; then we shall write Z = (z). If ABC
is any triangle, then we can choose the origin of the coordinate system and the
measure unity so that the circumscribed circle of the triangle ABC' is a unit circle
with the equation 2z = 1 and radius R = 1. If A = (a), B = (b), C = (¢), then

aa =bb=cc =1, ie.

- 1 1
a = — b = — cC = —.
“=w b’ cTe
Proposition 1. Point H = (h) given by
h=a+b+c
is the orthocenter of the triangle ABC.
Proof. For the number
b h—a b+c
b—c b—c
because of (1) we get
- bt+e H12 b
k:——i_f:? i:— +C:—k7
b—c §—< b—c

(1)

*Teacher Training College, University of Osijek, L. Jagera 9, HR-31 000 Osijek, Croatia, e-mail:

rkolar@vusos.hr

TDepartment of Mathematics, University of Zagreb, Bijenicka c. 30, HR-10000 Zagreb, Croatia,

e-mail: volenec@math.hr



162 R. KOLAR-SUPER AND V. VOLENEC

so k becomes a purely imaginary number, which means that the line AH is perpen-

dicular to the line BC. In the same way BH 1 CA and CH 1 AB. O
The lines have got linear equations on variables z and z. The most general

equation can be written in the form z 4 ¢tZ = s. It is obvious that the equations of

the form z +tZ = s and z + tZ = s’ present parallel lines because there is no point

Z = (z) that goes with s # s and that would satisfy both equations.
Proposition 2. Line BC' has the equation

z4+bcz=0b+c, (3)
and the line perpendicular to that line through point P = (p) has the equation
z —bcz = p — bep. (4)

The feet Q = (q) of the perpendicular line from point P to the line BC' is given by
the equation
2¢g=b+c+p—bep. (5)

Proof. Points B = (b) and C = (c) satisfy equation (3) as we get b+bcb = b+c
and ¢ + beé = b+ ¢ because of (1). The altitude AH has got the equation

_ be
z—bcz—a—g (6)
as because of (1) and (2) we get
a—bcdza—ﬁ, h—bch=a+b+c—bc<l+l—|—l)=a—@.
a a b ¢ a

Lines (4) and (6) are parallel, and point P obviously lies on line (4), so that the
line is perpendicular from point P to the line BC. For the intersection Z = (z) of
lines (3) and (4) from (3) and (4) follows 2z = b+ ¢+ p — bep. That proves the last
statement of the proposition. O

Corollary 1. The line joining two points Z1 = (z1) and Zy = (22) on the unit
circle has the equation z + z129Z = 21 + 23.

Proposition 3. The distance of the point P = (p) from the line BC with the
equation (3) is given by the formula

1 ~
|PQ|? = 4—bc(p+bcp—b—c)2, (7)

and the side BC' has the length given by the formula

[BOP =~ (b~ ). (®)

Proof. Because of (5) and (1) we get
AIPQI* = (2¢ — 2p)(2q — 2p) = (b+ ¢ — p = bep) (b + & — p — bep)

_ N e A b2
=0b+c—0p bcp)(b—|—C P bc>—bc(b—|—c p — becp)?,
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. 1 1 1
BC|? —b)(e—b)=(c—b)(~-—=]=—=(b—0c)
BOP =(e-0)e-D = (-0 (-3 ) =300
O
We can choose the real axis so that
abe =1, (9)
and owing to (1)
a = be, b= ca, ¢=ab (10)
Because of that choice points By = (g), Bs = (¢2), B3 = (1), where
e3=1, 2+4+e+1=0, £=¢2, 2=g¢, (11)

are the so-called Boutin's points of the triangle ABC. Tangents of the circle ABC
at points By, B2, Bs form the triangle 5715253 with the vertices S; = (—2¢),
Sy = (—2¢2), S3 = (—2), which becomes from the triangle B;BsBs by homothecy
with the center in the center O = (0) of the circle ABC and the coefficient —2
(Figure 2). The triangles B B2 Bz and 515255 are equilateral. We shall name the
points S, Sz, S3 Stammler’s points of the triangle ABC, and the triangle S;.52S53
Stammler’s triangle of the triangle ABC.

Points 51, S2, S3 cannot be constructed by the compass and ruler (STAMMLER,
[1]). The same statement is also valid for Boutin’s points. If the parallels with lines
BC, CA, AB through points A, B, C' intersect circle ABC' again at points A, B,
C’, then the points which trisect the arcs AA’ BB’ CC’ of that circle are exactly
Boutin’s points of the triangle ABC.

Proposition 4. If D;, E;, F; are the feet of the perpendicular lines from
Stammler’s point S; of the triangle ABC on the lines BC, CA, AB, then these
equations are valid

1 1 1 -

|S1D % + Z|B(J|2 = |S1E|* + Z|CA|2 = |S1F1|? + Z|AB|2 =3+ he’ +he, (12)
1 1 1 -

|52D2|2 + Z|BC|2 = |SQE2|2 + Z|CA|2 = |SQF2|2 + Z|AB|2 =3+ he+ h627 (13)
1 1 1 -

|53D3|2 + Z|BC|2 = |53f?3|2 + Z|CA|2 = |53F3|2 + Z|AB|2 =3+ h+h (14)

Proof. If S; = (s1) = (—2¢), according to Proposition 3, because of (9) and (11)
we get

1
|S1D1[* = 1

e —(s1+bcsy —b—c)? = %(—253 —2bce® —b—¢)?
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and |BC|? = —a(b — ¢)?, therefore because of (9), (11), (10) and (2) follows

1
|S1 D1 + Z|B(J|2 = %[(25 +2bce® + b+ ¢)? — (b—¢)?

- %(26 + 2bee? + 2b)(2¢ + 2bes + 2¢)

= a(b+¢e + beg?)(c + € + bee?)

= abc + a(b+ c)e + abee? (b + ¢) + ag® + 2abee® + ab’c*e?
=3+ (a+b+c)e? + (bc+ ca+ ab)e

=3+ (a+bt+e)e +(a+b+eoe

= 3+ he? + he.

Because of the symmetry on a, b, ¢ it follows that the other equations (12) are valid.
By substitutions € — &2 and ¢ — 1 from equation (12) follow the equations (13)
and (14) owing to (11). O
From Proposition 4 it follows:
Theorem 1. Clircles S1, So, S3 with the centers at Stammler’s points of the
triangle ABC' and the radii p1, p2, ps given by the equations

pi=3+he* +he, p3=3+he+he?, pj=3+h+h (15)

cut off segments |BC|, |CA|, |AB| on lines BC, CA, AB, respectively . Centers of
these circles form an equilateral triangle (Figure1).

We can find the statement of Theorem I (except formula (15)) in STAMMLER [1],
so we shall name circles S, Sz, S3 in that theorem Stammler's circles of the triangle

ABC. See also STARK [3].
Because of (11) and (15) we get
pi+pa+ps=9+(h+h) (e +e+1)=09,

i.e. there holds:
Corollary 2. For the radii p1, p2, ps of Stammler’s circles and the radius R
of the circumscribed circle of the triangle ABC' the equation

i+ P+ p5 = 9R? (16)

1s valid.
Because of the inequality of the squared, arithmetic and geometric means from
(16) we get the following inequalities

2 2 2
T2t T ot
RV3 =& '(;2 LERNy. '22 S > o/pipaps,

where the equalities holds if and only if p; = ps = p3, i.e.

he® 4 he = he + he? = h+ h. (17)

However, the first equation (17) can be written in the form (h—h)(e? —¢) = 0, that
owing to €2 — ¢ # 0 gives h = h. Because of that from (17) we get the equation
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h(g?2+e—2) =0, i.e. because of (11) we get —3h = 0 or finally h = 0. The equation
h =0, ie. H = O is valid if and only if the triangle ABC is equilateral.

Figurel.

Theorem 2. The potential center of Stammler’s circles of the triangle ABC is
the center Oy = (&) of his Euler’s circle (Figure 1).

Proof. Point Og has with respect to the circle §; the power which owing to
(11) is equal to

h h _
e~ \0951\2 —p% = <§ +25) (5 +252) - (3—|—h€2 + he)
hh hh 1
o 43_ _ 1= 2 - H2
L e 3 Tt R +4|O 1%,

and by substitutions ¢ — €2, i.e. € — 1 the result does not change, so the point
Og has the same powers with respect to the circles Sy 1 Ss. O
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The orthogonal circle of the circles S1, S2, S3 has the center Og and radius p so
that it gives p> = R? + 2|OH|* (Figure 1).

Sy

Figure2.

Let the order of the points on a unit circle and the unity point B3 be chosen so
that in positive sense the points come in the sequence Bz, A, B, C. For the sake
of simpler calculation let follow this A = (a3) = (a®¢3), B = (b3), C = (c?), while
a’h3c3 =1, so

abc = ¢ or abc = £2. (18)

In ‘c;t\lat case Roints Ay, By Be, Cy; Cqy, Ac which divide the arcs in the following

order AB, BC, C A into three equal parts (Figure 2), having this form

Ay = (a®b), B, = (ab?), B. = (b*c), Cy = (bc?), Co = (c*ac), A. = (ca®e?).
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According to Corollary 1, lines C A, and AC}, have the following equations
z 4+ a?bc3z = a?b+ 3,
24 a®bc?z = a® + b2
Multiplying these equations by a and ¢ and by substracting the obtained equations
we get for the intersection E = (e) of these lines the equation
(a—c)z=a®b— b+ ac® — a’c = (a — ¢)(abe + a®b + bc? — a*c — ac?)
with the result
e = abc + a’b+ bc? — a*c — ac?. (19)

By substitutions a — b — ¢ — ae for the points F = AB. N BA. = (f) and
D = BC, NCB, = (d) we get equations

f = abce + b?c + a’ce® — ab’c — abe?,

(20)
d = abcs? + ac’e + ab® — bc’e — b?ce?.
Because of (11) from (19) and (20) it follows e.g.
f—e=abc(e — 1)+ b%c+a’c(e? + 1) — ab’c — a*b(e® + 1) — be? + ac?
= abc(e — 1) + b*c — a’ce — ab®e + a®be — bc* + ac®
= (b* + ac — ab — bc)(c — ag) = —(a — b)(b — ¢)(c — ae),
and then by means of substitutions a — b — ¢ — ae we have the equations

f—e=—(a—0b)(b—c)(c— as),
d—f=—ela=b)(b—c)(c—ae)=¢(f —e), (21)
e—d=—c*(a—b)(b—c)(c—ac)=*(f —e).

From these equations it immediately follows that DEF is a positively oriented

equilateral triangle, which is the matter of the famous Morley’s theorem.
If the first possibility in (18) is valid, then from (21) because of (11) we get

f—e:—G—%) (%—%) (%-i) zm(a—b)(b—c)(c—%)
=(a—b)(b—c)(c—ac)=—(f—e).

That means that the number f — e is purely imaginary, i.e. the line FF is per-

pendicular to real axis OBjs, namely it is parallel with the lines B; By and 51.55.

Therefore the triangle EF D is homothetic with the triangles By Bo B3 and S1.52S573.
If the second possibility in (18) is valid, then from (21) we get

cae e (P (DY (e L) - e - e
= e2(a—b)(b—¢)(c — ag) = —(e — d),
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so now the line DFE is perpendicular to the real axis OBg, i.e. parallel with the
lines B1 By and S1S5. Therefore the triangle DEF is homothetic with the triangles
BlB2B3 and 515253.

So we have proved:

Theorem 3. Stammler’s triangle of the given triangle is homothetic with its
Morley’s triangle (Stammler [2]).
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