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Abstract. The paper is devoted to the question is the Cartesian product X x P of a
compact Hausdorff space X and a polyhedron P a product in the strong shape category SSh
of topological spaces. The question consists of two parts. The existence part, which asks
whether, for a topological space Z, for a strong shape morphism F': Z — X and a homotopy
class of mappings [g]: Z — P, there exists a strong shape morphism H: Z — X x P, whose
compositions with the canonical projections of X x P equal F and [g], respectively. The
uniqueness part asks if H is unique. The main result of the paper asserts that H exists,
whenever Z is either metrizable or has the homotopy type of a polyhedron. If X is a metric
compactum, H exists for all topological spaces Z. The proofs use resolutions of spaces and
coherent homotopies of inverse systems. It is known that, in the ordinary shape category
Sh, H need not be unique, even in the case when Z is a metrizable space or a polyhedron.
AMS subject classifications: 54C56, 54B10, 54B35
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1. Introduction

In an arbitrary category the (direct) product of two objects is well defined. It may
not exist, but if it does, it is unique up to natural isomorphism. It is well-known
that in the category of topological spaces Top the product of two spaces X and Y
exists and consists of the Cartesian product X x Y and the canonical projections
mx: X XY = X and my: X xY — Y. Similarly, in the homotopy category of
topological spaces H the Cartesian product X x Y and the homotopy classes [rx],
[ry] of the canonical projections mx, my form the product of X and Y. Since shape
is a modification of homotopy, it is natural to ask if products exist in the ordinary
shape category Sh and the strong shape category SSh. The answer is known only in
some cases when the Cartesian product X x Y, together with morphisms induced
by the canonical projections, is a product. It is long known that, in general, the
Cartesian product is not a product in Sh. Such an example for metric spaces X,Y
was given in [13]. A more subtle example, where X is compact metric (in fact, the
dyadic solenoid) and Y is a polyhedron (in fact, the pointed sum of a sequence of
1-spheres S') was given in [8]. Other results concerning the Cartesian product in
Sh can be found in [14] and [18].
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In strong shape, the following question is still open.

Question 1. Is the Cartesian product X x'Y of topological spaces XY, together
with the strong shape morphisms S[rx]: X xY — X and S[ry]: X XY = Y,
induced by canonical projections, a product in the strong shape category SSh?

Here S: H — SSh denotes the strong shape functor, which keeps objects (spaces)
fixed and associates with every homotopy class of mappings the corresponding strong
shape morphism (see [15, 8.2]).

In the present paper we are primarily interested in a special case of Question 1,
which is also open and reads as follows.

Question 2. Let X be a compact Hausdorff space and P a polyhedron (CW-topoJogy).
Is the Cartesian product X x P, together with the strong shape morphisms Slrx]
and S[my], a product in the strong shape category SSh?

Even in the simple case, when X is the Hawaiian earring and Y is the pointed
sum of a sequence of copies of the 1-sphere S!, this author does not know if X x Y is a
product in SSh. There are two cases when it is known that the answer to Question 2
is affirmative. The first one is when P is compact, because the Cartesian product of
two compact Hausdorff spaces is a product in SSh [17, Theorem 12]. The second case
is when X is an FANR and P is finite-dimensional, because the Cartesian product
of an FANR and a finitistic space is a product in SSh [17, Theorem 14].

The universal property which makes (X x P, S[rx], S[wp]) a product in SSh is
the conjunction of two properties, an existence property for all topological spaces Z
(abbreviated (ESS)z) and a uniqueness property for all topological spaces Z (ab-
breviated (USS)z). Since strong shape morphisms of a topological space Z to a
polyhedron P coincide with homotopy classes [g] of mappings g: Z — P, these
properties assume the following form.

(ESS)z For every strong shape morphism F: Z — X and every homotopy
class of mappingslg}: Z — P, there exists a strong shape morphism H: Z —
X x P such that S[rx|H = F and S[wp|H = Slg].

(USS)z If Hi: Z — X x P, i = 1,2, are two strong shape morphisms such
that S[fo}Hl == S[Wx]HQ and S[Trp]Hl = S[ﬂ'p]HQ, then H1 = HQ.

The results of this paper refer to the existence property (ESS)z (see Theorems 1
and 2). Unfortunately, up to now, the author was unable to obtain relevant results
concerning the uniqueness property (USS).

The main result of the paper is the following theorem.

Theorem 1. If X is a compact Hausdorff space and P is a polyhedron (CW-
topology), then the existence property (ESS)z holds for every metrizable space Z.

From Theorem 1 we will derive the following result for compact metric spaces X.

Theorem 2. If X is a compact metric space and P is a polyhedron (CW-topology),
then the existence property (ESS)z holds for every topological space Z.
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Remark 1. In the referee’s report of an early version of the present paper (which
did not contain Theorem 1) an outline of a short proof of a version of Theorem 2
was giwen. It was based on a result of J. Dydak and S. Nowak [7, Theorem 3.10].
However, the techniques of that proof do not apply to non-metric compact spaces X
and cannot be used to prove Theorem 1.

The two main technical tools used in the proof of Theorem 1 are resolutions
and coherent homotopy mappings (or shorter, coherent mappings) h: Z —'Y from
a space Z to an inverse system Y = (Y, quu, M). Coherent mappings are col-
lections of mappings h,: Z x A" — Y, , satisfying appropriate coherence con-
ditions (see Section 2). Here p are multiindices in M, i.e., increasing sequences
= ({0, - - -, pin) of elements in M, po < ... < py,. We refer to n as to the length
|| of . By A™ C R™*! we denote the standard n-simplex spanned by the vertices
eo = (1,0,...,0),...,e, = (0,...,0,1). If n = 1, the coherence conditions imply
that hygp, @ Zx A = Zx1 =Y, po < p1, is a homotopy connecting the mappings
hyo and gy, by, . A natural definition of homotopy of coherent mappings yields ho-
motopy classes [h]: Z — Y. Chapter I of the book [15] (also see Section 2 of this
paper) can serve as general reference for coherent homotopy.

It is well known that, for a topological space Z and a compact Hausdorff space Y,
there is a bijection between strong shape morphisms H: Z — Y and homotopy
classes [h] of coherent mappings h: Z — Y, where Y is an inverse system Y of
compact polyhedra with a limit q: Y — Y. The analogous result for arbitrary
topological spaces Y assumes the following form.

Proposition 1. Let Z and Y be topological spaces and let q: Y — 'Y be an HPol-
resolution of Y. Then there is a bijection T'q from the set SSh(Z,Y") of strong shape
morphisms H: Z — Y to the set CH(Z,Y) of homotopy classes [h] of coherent
mappings h: Z — Y. If [h] = T'q(H), we say that H and [h] are associated with
each other.

A mapping q: Y =Y = (Y, quu, M) is a collection of mappings g,,: Z = Y,
p € M, such that g, = gquuqu, for p < p/. A resolution of YV is a mapping
q: Y — Y, which satisfies certain conditions, named (R1) and (R2) (see [21, I. 6.3]
or [15, IT. 6.1]). If Y is topologically complete, e.g., if it is paracompact, and all Y, are
Tychonoff spaces, then resolutions are inverse limits [15, Theorem 6.16]. Conversely,
the limit of an inverse system of compact Hausdorff spaces is always a resolution
(see [15, Theorem 6.20]). An HPol-resolution is a resolution q: ¥ — Y, where all
Y,, belong to the class HPol of spaces having the homotopy type of polyhedra.

If Y is a cofinite system, i.e., every element of the index set M has a finite number
of predecessors, then Proposition 1 is an immediate consequence of the definition of
a strong shape morphism, as described in [15, 8.2]. That Proposition 1 also holds in
the case when Y is not cofinite was proved in [20, Theorem 1].

In the case when Y = X X P, it is convenient to use a particular HPol-resolution
q: X xP—=Y =(Y,,qu, M), called the standard resolution of X x P, introduced
in [16] (there it was called the basic construction). It is determined by a limit
p: X — X, where X is a cofinite inverse system of compact polyhedra and by a
triangulation K of P. Moreover, the canonical projections 7x: X x P — X and
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mp: X X P — P induce mappings of systems wx:Y — X and wp: Y — P (see
Section 2). Note that the standard resolution of X x P is not cofinite.

We now state an existence property for coherent homotopy (ECH)z, which is
the analogue of property (ESS)z for strong shape.

(ECH)z For every homotopy class of coherent mappings [f]: Z — X and every
homotopy class of mappings [g]: Z — P, there exists a homotopy class of coherent
mappings [h]: Z =Y such that [C(wx)|[h] = [f] and [C(7p)][h] = [C(g)], where C
denotes the coherence operator (see Section 3).

The following proposition was proved in [20], as Theorem 2. It relates conditions
(ESS)z and (ECH)z and establishes an important property of standard resolutions
g XxP-=Y.

Proposition 2. Let X be a cofinite inverse system of compact polyhedra with limit
p: X = X and let K be a simplicial complex with carrier P = |K|. Let ¢: X x P —
Y be the standard resolution of X x P associated with p and K andletwx:Y — X,
wp: Y — P be mappings of systems, induced by the canonical projections wx,wp.
For every topological space Z, the properties (ESS)z for X,P and (ECH)z for X,
K are equivalent.

In view of Proposition 2, Theorem 1 is an immediate consequence of the follow-
ing Theorem 3, which is the main technical result of the present paper, proved in
Sections 4-9.

Theorem 3. Let X = (X, par, A) be a cofinite inverse system of compact polyhe-
dra with limit p: X — X and let K be a simplicial complex with carrier P = |K]|.
Let q: X x P — Y be the standard resolution associated with X and K and let
wx:Y — X and wp:' Y — P be mappings of systems induced by the canonical
projections wx,mp. Then, for every metrizable space Z, property (ECH)z holds.

2. The standard resolution of X x P

2.1. Let X be a compact Hausdorff space and let P be a polyhedron (CW-topology).
Let p = (pa): X = X = (X, paxn, A) be the inverse limit of an inverse system of
compact polyhedra and let K be a triangulation of P. According to [16] (also see
[20]), the standard resolution ¢ = (g,): X xP =Y = (Y, quu, M) of the Cartesian
product X x P is defined as follows.

Let M be the set of all increasing functions p: K — A, i.e., functions such that
o < o' implies (o) < p(o’). Endow M with the natural ordering, i.e., put p < p'
provided pu(o) < p/(0), for every o € K. It is easy to see that (M, <) is a directed
ordered set, but in general, M fails to be cofinite.

In order to define the spaces Y),, one first associates with every o € K and p € M
the Cartesian product X,,») X 0. Then one considers the coproduct (disjoint sum)

YM: H(X/‘(U) XO’). (1)

ceK

By definition, Y), is the quotient space
Y= Yu/ s (2)



AN EXISTENCE THEOREM CONCERNING STRONG SHAPE OF CARTESIAN PRODUCTS 317

where ~,, denotes the equivalence relation determined by considering points (x,t) €
Xuo) x 0 C }7# and (2/,t") € X,p) x 0’ C }N/M equivalent, provided o < ¢/, z =
Pu(oyu(oy(2') and t' = ig.s(t), where iyo i 0 — o is the inclusion mapping (we
shall usually simplify the notation and write ¢’ = ¢ instead of t' = i,,/(t)). The
corresponding quotient mapping is denoted by ¢,,: Y’H —Y,.

In order to define the mappings g, : Y,y — Y}, one first defines mappings
Quu' * f’u/ — Y/m by putting

(j,u#’ (.’t, t) = (plt(a')/l.'(ﬂ) (x)a t)v (3)

for (z,t) € X0y x 0 C ffu. It is readily seen that there exist unique mappings
Quu Y — Y, such that

Qup P = GpQup - (4)

Moreover, g qu = Quu, for p < p’ < p”, sothat Y = (Y, guur, M) is an inverse
system.

q: X x P =Y consists of mappings q,: X x P —=Y),, u € M, defined as follows.
With every o € K and p € M one associates the mapping p, ) X 1lo: X X 0 —
X,(o) X 0, where py: X — X, A € A, are the projections forming p: X — X. Put

Y/:H(XXO'):XXHO' (5)

ceEK ceK
and define mappings g, : Y — Y/m by putting
QH(CL', t) = (p,u(cr)(x)7 t), (6)

for (z,t) € X x 0 C Y. We also consider the quotient mapping ¢ = 1x x u: Y —
X x P, where u: [[, ., 0 — P is the quotient mapping defined by the requirement
that the restrictions ulo: ¢ — P are inclusion mappings o < P. It is readily seen
that there exist unique mappings g,,: X x P — Y, such that

¢u@4 = qM(b- (7)

Moreover, ¢, = quu/q,, for p < p'.

We also consider two mappings of systems wx:Y — X and wp: Y — P,
defined as follows. With every A € A one associates the constant function o +— A,
for ¢ € K, denoted by \. Clearly, X belongs to M. By (1), YX = Xa x (Hyex0)-
Moreover, if (z,t) € X5y xo=Xyx0oC f%7 (' t) € X501 ¥ o' =X\xo' C Y/X
and (z,t) ~ (2/,t'), then x = 2’ and u(t) = u(t’). To verify this assertion, it suffices
to consider the case when o < ¢’. In that case, © = p5,y3(,1)(2) = pan(a’) = 2
and t' = i/ (t), hence also u(t) = u(t’). All this shows that Y5 = X x P and the
quotient mapping ¢r: f’; — Y5 is the mapping 1x, xu: Xy x ([[,cx 0) = X x P.

By definition, the mapping 7 x is given by the increasing function A — X and
by the first projections my: Y5 = X\ x P — X,. Since ¢557 = pax X 1p, one has
TaGor = Paxv 7y and thus, wx : Y — X is a mapping. Since P is a polyhedron, the
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mapping wp: Y — P is determined (up to equivalence), by any index A € A and
by the second projection mp: Yy = X x P — P. It is readily seen that

Twxq =Pprx, Tpq=Tp, (8)
where mx: X x P — X and wp: X X P — P are the canonical projections.

2.2. In [16], it was proved that the spaces Y), are (Hausdorff) paracompact spaces,
belonging to the class HPol of spaces having the homotopy type of polyhedra. Con-
sequently, the standard resolution g: X x P — Y is a non-cofinite HPol-resolution.
Recently, the author showed that the spaces Y, are (Hausdorff) stratifiable k-spaces
(see [19, Lemmas 4 and 5]). Recall that stratifiable spaces were introduced in 1961
by J. Ceder [4] as a generalization of metrizable spaces. Ceder proved that polyhe-
dra (even CW-complexes), which in general are non-metrizable, belong to the class
of stratifiable spaces. Moreover, he proved that stratifiable spaces are (Hausdorff)
paracompact and perfectly normal spaces.

In some situations the spaces Y,, are (non-compact) polyhedra and it was proved
in 1952 by J. Dugundji [6] that polyhedra are absolute neighborhood extensors,
abbreviated ANEs, for metrizable spaces. It is known that, in general, polyhedra
are not ANEs for Lindelof spaces [5], let alone ANEs for paracompact spaces [1].
Therefore, the spaces Y, cannot be ANEs for these two classes of spaces. In the
present paper we will use the following lemma, established in [19] as Theorem 1 and
Lemma 7.

Lemma 1. The spaces Y, in the standard resolution Y = (Y, qu, M) of X x P
are ANEs for metrizable spaces.

R. Cauty proved that polyhedra (even CW-complexes) are ANEs for stratifiable
spaces ([3, Theorem 2.3 and Corollary 1.5]; for CW-complexes see [2, Theorem 8]).
This opens the question, whether the spaces Y, are ANEs for stratifiable spaces. We
do not know the answer.

A pair of spaces (A, B), where B is a closed subset of A, is said to have the ho-
motopy extension property (abbreviated (HEP)) with respect to a space Y, provided
every mapping f: (Ax 1)U (B xI) — Y admits an extension h: A x I — Y. Recall
the following elementary fact.

Lemma 2. If Y is an ANE for metrizable spaces, then every metrizable pair of
spaces (A, B), B closed in A, has the homotopy extension property with respect
toY.

Proof. The well-known Dowker lemma (see [12, Lemma IV.2.1]) asserts that a pair
of spaces (A, B), B closed in A, has the (HEP) with respect to a space Y, provided
the spaces A and A x I are normal and every mapping f: (Ax 1)U(BxI) —>Y
admits a neighborhood U of B in A such that f can be extended to a mapping
Ffi(Ax1)U(U xI) — Y. If Ais metrizable and Y is an ANE for metrizable spaces,

then f admits an extension f to a neighborhood V of (A x 1) U (B x I) in A x I.
Using compactness of I, it is easy to find a neighborhood U of B in A such that
(Ax 1)U (U x I) C V. Clearly, the restriction f of f to (A x 1)U (U x I) has the
required property. O
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3. Preliminaries on coherent mappings

3.1 The general reference for this section is [15]. However, in distinction to [15], when
considering mappings of system (abbreviated as mappings) and coherent mappings
f: X — Y between inverse systems X = (Xx,pav,A) and Y = (Y, quu, M),
unless explicitly stated, we do not assume that M is cofinite. A mapping consists
of an increasing function f: M — A (the index function) and of a collection of
mappings f,: Xy — Y, such that

JuPr fw) = Quw furs 1 < . 9)

Iff: X >Yandg: Y - Z =(Z,,r,.r, N) are mappings, given by index functions
f,g and by mappings f,, g., the composition gf: X — Z is the mapping h: X —
Z, given by the index function h = fg and by the mappings h, = g, fg()-

A coherent mapping f: X — Y consists of an increasing function f: M — A

and of a collection of mappings fu = fuo..un: Xp(u,) X A" = Y, where A" =
[€0s - - ., €] is the standard n-simplex and g = (po,- - ., fn) is a multiindex in M of

length || = n > 0. One requires that the following two coherence conditions are
fulfilled. The boundary condition

quoulfdou(l‘7t)7 j: 0)
fu(l',djt) = fdju(xvt)a 1< j <n- 1a (10)
Jaruw(Ps o) 1) (@), 1), 5 =10,

where d; : A™"1 — A" are the standard boundary operators and d’ are the operators
which omit u; from p = (po, ..., pn), i, dp = (to,.-., Hj,-.., fn). Condition
(10) makes sense only when n > 0.

The degeneracy condition

fu(xvsjt):fﬂp(xat)7 OSJSnv (11)

where s;: A"t — A" are the standard degeneracy operators and s’ is the operator
which repeats uj, i.e., sTp = (uo, ... My s -5 pn). The composition gf of two
coherent mappings is given by a rather complicated formula (see Section 1.3 of [15]),
which we do not need in this paper.

If X consists of a single space X, formula (10) assumes the simpler form

N quul.fdou(xvt)a Jj=0,
Tl dst) = {fdm(x,t), 1<j<n (12)

Coherent mappings can be viewed as generalizations of mappings, because with
every mapping f: X — Y one can associate a coherent mapping C(f): X — Y
which consists of the index function f of f and of mappings fy,: Xy, ) x A" =Y,
where f,(7,1) = fuoPf(uo)f(un)(®). For mappings f: X — Y and g: Y — Z one

has C(gf) = C(g)C(f) ([15, Lemma 1.17]).

3.2. Two mappings f,f : X — Y, given by increasing index functions f, f’ and
mappings f,, fl’“ i € M, are homotopic, f ~ f’, if there exists an increasing function
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F:M— A, F>f, f such that

FuP ) FGun) = LD s () F ) (13)

Two coherent mappings f, f': X — Y, given by mappings f, f,’t are homotopic,
f ~ f', provided there exists a coherent mapping F': X xI — Y, given by mappings
F,: X xIxA"™ =Y, , which satisfy the corresponding coherence conditions and

Fu(x,0,t) = fu(z,t), Fu(z,1,t) = f;L(x,t). (14)

If for given X and Y the homotopy relation ~ for mappings (coherent mappings)
f: X — Y is an equivalence relation, the homotopy class [f] of f is well defined.
There are two simple cases when this is the case. The first one is when X = X is a
single space and the second one is when Y is cofinite (see the proofs of Lemmas 1.2
and 2.1 of [15]). Moreover, if Coh(X,Y) denotes the set of all coherent mappings
f: X — Y, then the proofs of Lemmas 2.4 and 2.5 of [15] show that, whenever
~ is an equivalence relation on Coh(X,Y’), Coh(Y, Z) and Coh(X, Z), then the
homotopy classes [f]: X = Y, [g]: Y — Z and [gf]: X — Z are well defined and
[gf] depends only on [f] and [g]. Therefore, one defines the composition [g][f] by
putting [g][f] = [gf] (for more details see [20, Lemma 1]).

3.3. In the proof of Theorem 3 we will also need the following lemma on coherent
mappings (see [15, Lemma 2.12]).

Lemma 3. Let f = (f, fu): X = Y be a coherent mapping and letg = (9,9,): Y —
Z be a mapping. Then the composition C(g)f: X — Z is homotopic to the coherent
mapping h = (h,hy): X — Z, where h = fg and hy,: Xp,,) X A" — Z,,, is given
by

h,,([L',t) = guofg(uo),...,g(un)(xut)' (15)

4. Structure of the proof of Theorem 3

4.1. Let p: X — X, K and wx and p be as in Theorem 3. To prove that (ECH)z
holds for metrizable spaces Z, one considers a homotopy class of coherent mappings
[f]: Z — X and a homotopy class of mappings [g]: Z — P. We will construct a
homotopy class of coherent mappings [h]: Z — Y such that

[C(mx)[h] = [£];
[C(mp)l[h] = [C(9)]. (17)

Let f consist of mappings fx: Z x A™ — X,,, where A = (A\g,...,\,) is a
multiindex in A of length |A| = n, satisfying the coherence conditions

1\ pxoxlde,\(Z,t), ]: 07
Iaendst) = { pon a0 (18)
f)\(Z,Sjt) :fsj)\(z7t)a OSJ Sn (19)

Note that condition (18) makes sense only when n > 0.
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The coherent mapping h: Z — Y, which we will construct, will consist of map-
pings hy: Z x A" =Y, where pp = (o, ..., ptn) is a multiindex in M of length
|| = n, n > 0, having the following three properties.

Q/»boltlhdou(zat)v J: 0,

(=, djt) = { (20)

hdju(z7t)a 1<j<n,
hu(z,85t) = hgiu(z,t), 0<j<mn, (21)
h/\*oz(z,t) = (f)\o---)\n(zvt)ag(z))v (22)

for (z,t) € Z x A™. We refer to (20) as to the boundary condition for h,. It makes
sense only when n > 0. We refer to (21) as to the degeneracy condition for h,. We
refer to multiindices g of the form A = (Mg, ..., \,) as to special multiindices and
we refer to (22) as to the special condition for hx. Note that hy- 5-(2,t) belongs to
Yi; = X0, X P just as (fx,..x,(2:1),9(2)) does.

Special condition (22) insures that conditions (16) and (17) are fulfilled. Indeed,
since h is a coherent mapping and 7x is a mapping, Lemma 3 shows that the
composition C(mx)h is homotopic to a coherent mapping h': Z — X, given by
mappings by :Z x A" = Xy, where h\ = m\h5 5. Since my, 1 Xy, ¥
P — X,, is the first projection, (22) shows that h'AOm/\" = fro..n, and thus, A’ =
f. Consequently, C(wx)h ~ f. Again by Lemma 3, the composition C(wp)h is
homotopic to a coherent mapping h”: Z — P, given by mappings hl, , : Z x A" —
P, where hy ,(2,t) = nphy; 55(2,t); here v is the index of the only element P
of the rudimentary system P. Since mp: X, x P — P is the second projection,
(22) shows that b}, ,(z,t) = g(z). On the other hand, the coherent mapping C(g)
consists of the mappings g, ., : ZXxXA"™ — P, where g, ,(z,t) = g(z). Consequently,
h" = C(g) and thus, C(mwp)h ~ C(g).

4.2. In order to construct the mappings h,, we consider the subsets Z7 x A" of
7 x A" where 0 € K and
7° =g o) C Z. (23)

Note that, whenever 7 is a face of o, i.e., 7 < o, one has Z7 C Z?. We will define
mappings hg,: Z7 x A" — Y, , which satisfy the boundary and the degeneracy
conditions and thus, form a coherent mapping h° = (hZ) Moreover, the mappings
hg, will satisfy the special condition and the following additional condition

hy|(Z7 x A™) = hy,, (24)

whenever, 7 < o. Clearly, (24) holds in general if it holds in the case when dimo =
dim7 + 1.

Note that for some o € K, the set Z? can be empty. In that case we define
h{, to be the empty function. Clearly, {Z° : 0 € K} is a closed covering of Z and
{Z7 x A™ : 0 € K} is a closed covering of Z x A™. Because of (24), there is a unique
function h,: Z x A™ =Y, such that, for every o € K,

hul(Z° % A™) = hS,. (25)
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Indeed, for every (z,t) € Z x A", there is a o € K such that (z,t) € Z7 x A™.
Put h,(z,t) = hi(z,t). If also (z,t) € 77" x A", for some o/ € K, then (24),
for 7 = 0 No’ € K, shows that h{(z,t) = hj,(z,t) = hzl(z,t). Consequently,
hu: Z x A™ =Y, is a well-defined function, which satisfies (25). Uniqueness of h,,
is an obvious consequence of (25). The functions h,, satisfy the coherence conditions
and special condition (22), because the mappings hg, satisfy these conditions. It
remains to prove continuity of h,. Since the restrictions h,[(Z7 x A™) = h{, are
continuous, the continuity of h,, is an immediate consequence of the following lemma.

Lemma 4. ZxA"™ has the weak topology determined by its closed covering {Z7 x A™ :
o€ K}.

Proof. Let B be a subset of Z x A™ such that BN (Z7 x A™) is closed in Z7 x A",
for every o € K. By the definition of weak topology, we must prove that B is closed
in Z x A™. Being a metrizable space, Z x A" is a k-space (see [10], Theorems
3.3.18 and 3.3.20). Therefore, it suffices to prove that BN C is a closed subset of
C, for every compact subset C' of Z x A™. Since C' is compact, so is gn(C) C P,
where 7 denotes the projection 7: Z x A™ — Z. Consequently, there is a finite
subcomplex L C K such that gn(C) C |L| and thus, C C 7#=1g=*(|L|). Since |L] is
the union of finitely many simplices o1,...,0,, € K, it follows that 7=t¢g=(|L|) =
(n g7 (o1)) U...U (g7 (o.n)). However, 7= 1g7 (0;) = n~1(Z7%) = Z° x A"
and thus, 7~ 1g71(|L]) = (Z7* x A")U...U(Z°™ x A"). Therefore, BNw~tg~1(|L|) =
(BN(Z% x A™))U...U(BN(Z°™ x A™)). By the assumption, BN (Z% x A™) is a
closed subset of Z7 x A™ and since Z7 x A™ is a closed subset of Z x A™, it is also
a closed subset of 7=1g~1(|L|). Tt follows that BN (Z% x A") is a closed subset of
7-tg7(|L|). Since C C g~(|L]|), we conclude that indeed, BN C is a closed subset
of C. O

4.3. We will denote simplices o € K of dimension i by o'. Therefore, we need map-
pings h‘; C 77 X A" — Y,,,?=0,1,..., which satisfy the boundary, the degeneracy
and the special condition

h%l(z,t) = (fx\o..)\n (Zat)mg(z))a S Zgi, te An7 (26)

as well as the additional condition
Ko (z,t) = b9 (2,1), forot <o'tl ez, te A" (27)
73 I - 7 ’ bl —= bl I .
In order to define the coherent mappings R = (hf;) Z —'Y we need some
auxiliary coherent mappings. We distinguish two types. The ones of the first type
are defined by explicit formulae in Sections 5, 6 and 7. They are of the form

ot —

R = ()27 - Y, 0<i,

i ) i . .
R " =, )27 xA' =Y, o'<ol, 0<i<]j,
—oigigk —gigigh i ) )
RT7T =, )27 x AP Y, o'<ol <ok 0<i<j<k,
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and satisfy appropriate special and additional conditions. The special conditions are
the analogues of (26) and read as follows.

i_j ik

RS (o) =B (s t) =B 77 (25,8) = (Fronn (51, 0(2)). (28)

The additional conditions are the following.

70-1 0-.7

h, (2 e0,t) = Ezi(z,t), z € Z"i, (29)

B (zent) =B (nt), z€ 27 (30)
i E“jaz (2,8,t), 1=0,

po (Bdist) =R 7 (2,5,1), 1=1, (31)
irjﬂj (2,8,t), 1=2,

where z € 27, s e A, t € A™.

Auxiliary coherent mappings of the second type will be defined in the course
of an induction process, using also auxiliary coherent mappings of the first type,
some explicit formulae and two coherent homotopy extension properties (CHEP)
(see Section 8). The auxiliary coherent mappings of the second type are of the form

H = (H°): 27 x A' 5 Y
7 )
—_gigitl igitl i ) )
=(H, ): Z7 x A’ =Y, o <oth
olott! oloit! ot 1 i i+1
H = (H, ):Z7 x A=Y, o <o
7010_14»2 7ULO_L+2 é . .
=(H, ): 27 x A’ =Y, o <ot
i i42 i_i42 i . .
H°7 " =(Hj" ): 27 xA' =Y, o <o,
i il _i42 i i1l _i42 i . . .
H°° o — (HZ o o ) 77" % AQ N Y, ot S O_z+1 S (TZ+2.

The corresponding special conditions are

ot gigitl pigitl oigit?
HS (2,8,t) = Hx (z,8,t) = HX (z s,t) = Hx (z,8,1)
= HE " (z5,t) = HE 70 (2,8, 1) (32)

= (on...)\n(Zv )79(75)), S Zai.

The corresponding additional conditions are

HM’(Zve(Jvt) - hi(zvt)? S Zgl’ (33)
Hp (2,e1,t) :Ezy(z,t), I ASDAR (34)
O_i o o_i—lo_‘L ot
Hj (2,8,t) = H, (z,8,1), z€2Z7 (35)
—gtgitt i .
i h,, i+1(z7s,t), z € Z"i7 se Al j=0,
H, (z,d;s,t) = Hz_" (z,8,1), zEZ”‘7 se Al j=1, (36)
Hf;l(z,s,t), ze 2%, seAl, j=2,
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" (2,8,t) = HZ a'o! (z,8,1), z€ 777 se A2, (37)
HT " (2 e0,) = b (2,8), z€ 27, (38)
i i —gitt i
HZU+1(Z761)t):hH (z,1), z€Z7, (39)
H”iglﬂ(z, s,t) = HZIAUIH(Z, s,t), z€27% (40)
—gtgit? i
it h, i i+2(z7s,t), z € Z"i7 se Al j=0,
M (2,djs,t) = sz” (z,8,t), z€ Z"-7 se Al j=1, (41)
H (z,5t),  z€27,s€Al, j=2,
__gigit? —oOgigit2 o 9
" (z,8,t) =h, (z,8,t), z€Z%,seA (42)
H " (2 e0,) = b (2,8), z€ 27, (43)
i_it2 —gtt2 i
Hp° (z7e1,t)=h” (z2,8), z€Z7, (44)
i_it2 —o0gt12
H 7 (z,8,t)=h, (z,8,t), z€2Z7, (45)
7Ui+10i+2( )
h z,8,t), 7=0
o_io_i+la_i+2 © i i T ’ . ’
Hp. (Zadjsut) = H‘UL g +2(Z,S,t), ] = 1, (46)
oloitt s
H}, (z,8,t), J=2,

where z € Z°', s € A2, t € A". Note that in (42) and (45) z is restricted to A

4.4. We will define, by induction, a sequence H°, H', ... of coherent mappings of
the following form.

0_1 0.2 0_1_2

o o o g o o o o o
h? | H , H , H , H? |
1 ——glo? 1 2 ——0olo? 1.3 1.2 3 2
h°  H , H 7, H , H°?, H°7°7, H |
(47)
i ologttl i it olott?2 i _it2 i i1 _it2 i+1
hO' , , HO' [ea , , g o , g o g , HO'

All terms of the sequence will satisfy the above given special and additional

conditions. Since the sequence (47) contains all h', i > 0, this will complete the
proof of Theorem 3.

To obtain the sequence (47), we will show how one defines H J | assuming that we
already have H, ..., H’~! and know that the latter coherent mappings satisfy the
corresponding special and additional conditions. We begin the induction process by
defining explicitly the four initial terms of (47) by putting

ololo?

n

0_2
0_2 —0 O 0_1_2 —
w HL? =h, ,H,77 =h

oY —a° o951 —_
he, =h, , H, " =h (48)

It is readily seen that these coherent mappings do satisfy the corresponding special
and additional properties.
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Terms of the form h,L, H Z“ and H ﬁ+2 are easily obtained from their immediate
predecessors by explicit formulae, described in the Subsection 4.5. The remaining
terms are obtained from their predecessors using one of the four constructions (C1)—
(C4), described in Section 9. These constructions are based on a coherent homotopy
extension lemma (Lemma 12), which guarantees that we do obtain coherent map-
pings, satisfying the special and the corresponding additional properties. This will
complete the proof of Theorem 3.

4.5. The coherent mappings h"i‘, H Hl, Ho
4.5.1. Given H;f, we define h;‘:, i > 1, by formula (33). To verify (27) (for i — 1)
note that, for z € Z°' ', (35) and (38) (for i — 1) imply

a,i 0_1 0_7‘,710_7‘, 0_7‘,—1
hp, (th):Hp, (Za€01t):H/_L (Zae()vt) :h’p, (Z7t)

7,a_z+1 i

i i1

__gigitl
4.5.2. Given H,, , we define Hp, by formula (36), for j = 1. That H
has the additional properties (38), (39) and (40) is verified as follows. Since dieq =
eo = daeg, (41) and (33) imply

i _i+4+1 i _i+1

i i1 —oc'o —'c i i
HZU+(2760at):H;1, (ZadleOat):Hp (27d2607t):HZ (Zﬂ607t):hz (Z,t),

which is (38). Similarly, since die; = ex = dpes, (36) and (30) imply

P it i il i it i i1 i1

7 g O g o 1 g O -0
H° l(z,el,t):H“ (z,dver,t) = H,, =~ (2,doer,t) = h,  (z,e1,t) =h, (1),

which is (39). Finally, using (37) and (46), we see that for z € Z° ', one has

i _id1 A oi—lgigitl

Hp, (z,8,t)=H, (z,d1s,t) = H,

(Z, d]_S, t) = H0i710i+1

" (Z,S,t),

which is (46).

4.5.3. Given ﬁzlgl , we define Hfj"i+2 by formula (41), for j = 1. That Hj,
has the additional properties (43), (44) and (45) now easily follows. Indeed, since
€y = d1€0 = d2€0, (41) and (33) imply

+2 i_it2

i _id2 a_zo,z+2 0,1,0,1+2

HZ"’ (z,e0,t) = H,, (z,dieo,t) = H, (z,doeq,t) = HZ (z,e9,t) = h;’: (z,1),

which is (43). Similarly, since es = dye; =dpes, (41) and (30) imply

i 142 i 142 70_'i0_'£+2 7oi+2

U(z,dlel,t)zHZ “(z,dper,t)=h (z,e1,t) =h, (2,1),

HS' 7 (2 e0,t) =T,

I 7

which is (44). Finally, using (42) and (31), we see that for z € Z°, one has

i _i+2 0 i _i+2 7‘700_14»2

(zost) = H ' (zdus,t) =h5 "7 (zdis,t) =B (2,8,1),

o_io_i+2
Hy,

which is (45).
4.6. The four constructions, (C1)—(C4) have the following form.

I M
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PR i i1
i—1 g6 il olo

(C1) associates with H° and H® the coherent mapping H
i i2

(C2) associates with H‘T the coherent mapping H® °

(C3)

C4) associates with the set of coherent mappings H © o where o ranges over
pping s g
i1

oit1 oit? i+l _it2
associates with H and H® the coherent mapping Hoo T

all i-dimensional faces of o*t', the coherent mapping H°
It is readily seen that the mput coherent mappings in any one of the constructions
(C1)—(C4) precede the output coherent mapping in the sequence (H?).

_0-1

5. Construction of mappings h,,

For every i > 0 and every multiindex g = (uo, - . ., f4n ), we define mappings EZ A

A™ =Y, by the natural formula

E;i(zvt) = ¢H0(fp.(ai)(zat)7g(z))’ (49)

where p(o?) = (po(o?), ..., un(c?)). Note that z € Z"ix implies g(z) € 0! and thus,
({“(Ui)(z,t)g(z)) € X, (0i) X 0" C Y,,. Therefore, EZ (z,t) is a well-defined point
of Y,,.

Lemma 5. Mappings EZ L 27 X A" Y,, form a coherent mapping XA
Y, which satisfies special condition (28).

Proof.
5.1. Verification of the boundary condition

—ot Eai ) 1), =0,
Byt = | B Paen(st), 3 =0 50)
hgip(251), 1<j<n.

If 5 = 0, (49) shows that hg (z,dot) = buo(fro(oi)...un(oi) (2, dot), g(2)). Using
(18), we see that f,,,(s).. (o )(z dot) = Pug(oi)uy (o) fui(oi)...un (o) (2, 1) and thus,
(fug(ai)...,un((r'i)(zvdot)7g(z)) = (p,uo(tfi),ul(ai) X 1)(.][‘/»141 (o%).. #n(di)(z t) g( )) Since
Quops = Puo(o)pi(ei) X 1 and éuGuopy, = Quops Gy, We conclude that h (;,dot)
= q#oﬂl(vb#l (ful(ai)‘..un(oi)(z,t)ag(z))' HOWGV@I‘ (Nl( )a cee a:U'n( )) =d° (UZ) and
thus, ¢u, (fu, (i) un(o1)(2:1),9(2)) = E;o#(z,t). We omit verification of formula
(50), when 1 < j < n, because that case is similar to the case j = 0 and is simpler.
5.2. Verification of the degeneracy condition

i

EZ (z,s5t) = 77,

sjp.(zﬁt)‘ (51)

By deﬁ_nition Ezl (Z’Sjt) = ¢H0(fu(0i)(zvsjt)vg(z)) = ¢1Lg(fsju(a'i)(zvt)7g(z)) and
on(2:8.8) = bue (Foip(on (2. 1).9(2)).

also h
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5.3.  Verification of special condition (28). If g = (Xo,...,\,), then p(c?) =
(Mos---An) and we see that Iy 5-(2,t) = ¢5-(frg..rn(2,1),9(2)). If we put
(z,8) = (frg..nn(2,1),9(2)) € Xy, x 08 = X5g(oi) % o' and note that the quo-
tient mapping % maps X, X 0 to X, x P by inclusion, we conclude that qﬁx
maps (z,s) to itself and thus, E? satisfies (28).

Note that mappings E;t do not satisfy the analogue of condition (27). E.g., if

0

¥ < 011 and z € Z° and thus, g(z) = 6° = eq, then hy, (2,t) = duy (fu(o0)(2,1), €o)
and EZ (2,t) = buo(fru(er)(2,t),e0). However, (fuo0)(2,1),e0) ~u (fu@or)(2,1),€0)

implies Py, (59) 0 (1) frio(01)(2) = fuo(s0)(2) (apply Lemma 1 of [19]), which does not
hold in general, because the coherent mapping f need not be a mapping. This is the

—otgd —o —a7 i
reason why we introduced homotopies hZ 7, which connect hz to hZ (Z7 xA™). O

—oligi

6. Construction of the homotopies 1/,

6.1. For 0 <4 < j and every multiindex p = (o, ..., fin), we will define the

mapping ﬁz o 277 x A x A" — Y,,, though in the proof of Theorem 3 we need
only the cases when (¢,j) is of the form (i,i + 1), (4,7 + 2) and (0,4). To state
the definition, we need the standard triangulation A" of the Cartesian product
Al x A™ = |AL"|. Recall that A = [eg,e1] € R? and A" = [eg,...,e,] C R*TL
For the points (e, e,) € R"™3 where 0 < u < 1, 0 < v < n, we will use the
abbreviation e,,. We consider (n + 1)-simplices

1

Ak’n = [6007 A 7607{}7 elk}a ) eln]7 (52)
where 0 < k < n. Note that the points eqg,..., ek, €1k, ..., €1 are in general
position. The simplices A,lc’”, k € {0,...,n}, and their faces form the simplicial

complex A" (see [11]). Note that n = 0 implies & = 0 and thus, Ay"™ = [ego, e10] =
[eo, 1] X eq is the only I-simplex of ALY,

For k <1,
1 1
Ak’n N AlJ’rnl = [600, e €Oy CLI4 T e s eln]. (53)
In particular,
Ai’n ﬂA,lc’]:l = [600,...,60k761k+17...,61n]. (54)

Comparing (53), for k and k 4 1, we see that, for 0 < k < k+1 <1< n,

1, 1, 1, 1,
AT OAT A NA. (55)

The following relations are easily verified.
Al,n+1

1,n 9 ZS ka
(Ixdi) (A") € {A]}:’ﬂkl, k<l
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A E<I,

57
AV, U<k (57)

(1x s1) (A" ¢ {

We will also need the simplicial mapping eb™: ALm — A"+ given by el (eg,) =
e, and eV'"(e1,) = eyy1, for 0 < v < n. The induced mapping Al x A? — An+!
will also be denoted by e%™. Note that e%(egg) = eo and '%(ejg) = e; and
therefore, €10 [eg, e1] X eg coincides with the first projection [eq, e1] x eg — [eo, e1],
ie., e10(s,eq) = s, for s € [eg, e1].

The following formulae are easily verified, because it suffices to verify their va-
lidity at the vertices.

VAL NALT) = [eo - ek €2, s eng1] = dir1(A™). (58)

w Jdigt AL, 1<k,
e 1 xdy) Ayt =4 1|n i (59)
dl+1£ ’ |Ak’ 5 k < l
1.n 1,n
Ln—1 1 _ ) siae ALY, k<
o 1 x A" = 60
(x| 2 {Slslx”m};", I <k. (60)

6.2. ForO§i<j,z€Z”i,0§k§nand (s,t)EAi’"gAl x A™, we put

t),9(z)). (61

s, t)
Since el(s,t) € A" and (uo(0?),. .., puk(0c)pr(0?), ..., un(c?)) is a multiindex
of length n + 1, it follows that = = fﬂo(gi)”_#k(gi)#k(,,j)_”“n(gj)(Z,El’n(s,t)) is a well-

70-1 0-.7

hu (Za 5, t) = ¢u0 (fpo(ai)...#k(ai)uk(Uj)...yn(a’j)(Zv El,n(

defined point of X, (). However, g(z) € o* and thus, (z,g(2)) € X, (si)x0" C Y-
Consequently, ¢,,(z,g(z)) is a well-defined point of Y,,. If n = 0, i.e., p = po,
formula (61) assumes the form

g
h,uo (Z, S, 60) = ¢,uo (fuo(ai)uo((rj)(zv 8)7 g(Z)), (62)
because e19(s, eq) = s, for s € [eg, €1].

Lemma 6. For0<i<j<nandz€ Zgi, formula (61) determines a well-defined
mapping EZ 779 XAl x A" — Y-

—olgd i
Proof. To prove the lemma denote by hzz the mapping Z7 x Ai’" — Y, given
by the right-hand side of (61). We must prove that (s,t) € A" N A]™ implies

—_—atad —ogto? [
hz,? (z,8,t) = hzlg (z,8,1), for z € Z7, 0 < k,I < n. This is obvious if k = [. If
k # I, we can assume that k < [. We will first prove the assertion in the special case,

—cgtag?
when | = k 4 1, i.e., we will prove that (s,t) € A,lc’” N A,le’fl implies hZ,: (z,8,t) =

—otgd

huk+1(zasat)' o
By (58), el'™(s,t) = dgi1v, for some point v € A™. Therefore, EZ,: (z,8,1t)
i
= Do (Frio(0) (0 (0 .copin (09) (%5 Ak110), 9(2)). We also have h, (2, 5,1) =

Buio (Frio(0).piipr (0 0k 41 (09)im (03) (2, iy 10), g (2) ). However, these two values coin-
cide, because by the boundary condition (18),
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Fu0(00)-pin (o) ir (07). i (07) (25 Akt 10) =Frug(00). i (0 g1 (07)oopin (o) (2,0)  (63)

= 10(0%).pirs1 (0 11 (09).pin (07) (2 D4 10).-

If k+1 < n, (55) for I = k+1, yields A,lc’"ﬂA,lc’fQ - A,lc’flﬁA,lc’frg and thus, (s,t) €
A,lc’" N A,lg’:Q implies (s,1) € A,lcfl N A,lc’f:Q. By the assertion in the special case, we

i i j
see that hz i1 (2,8,1) = hZ raa(z,8,t). Since also (s,t) € A" NALT,, we conclude,

—atald —otgd
using again the assertion in the special case, that hz,: (z,8,1) = h;ljﬂ(z,s,t).
i

—oigd
Consequently, hzz (z,8,t) = hz ,Z+2(z,s,t). If £+ 2 < I, we repeat the argument

—atad —_—atad
and conclude that also hz,: (2,8,t) = hz ,:+3(z, s,t), etc. By induction, we obtain

g o igd
the desired conclusion that hz,j (z,8,8) =R, (z,8,1). O

wrl
6.3. Our next goal is to prove the following lemma.

gigi
Lemma 7. The mappings hz 7727 x Al x A" - Y, form a coherent mapping

720 A Y, which satisfies special and additional conditions (28), (29)
and (30).

Proof.
6.3.1. Verification of the boundary condition. Let (s,t) € A,ﬁ’". In determining

EZ 7 (z,8,d;t) we distinguish two cases, when [ < k and when k < [. In the first

case, by (56), (s, d;t) € Aiffl. Therefore, by (61),

il .
hH (z,8,dit) = Duo (fuo(gi)muk+l(gi)uk+l(gj)_”“n+1(g.7‘)(Z, ghntl (s,dit)), g(2))
= d)lto (fﬂo(gi)---MkH(Ui)#k+1(0j)-»-#n+1(0j)(Z’ dlsl’n(sv t)),9(z))
= Do (D X 1) (fdt (o (01)...jons1 (0 Ypin 1 (0 )ooopin (03) (2 €77 (8, 1))

(64)
,9(2)),

where p x 1 stands for p,,,(si)u, (01) X 1 if I = 0 and should be omitted if 0 < < k.
Since uo (Puo (o) (07) X 1) = Quops Py » We see that

EZ J'(z, s, dot) (65)

= Quopr d)/l.l (fpl(ai)...uk+1(ai)uk+1(aj)“.;4n+1(aj)) (Za 51,n(57 t))a g(Z))7

which, for [ = 0, coincides with quwlﬁg;(: (z,8,t), as required by the boundary
condition. If 0 < I <k, by (64),

—otgd

hZ 7 (2, s,dit) (66)

= buo (f#o(ffi)m#l—l(Ui)#z+1(0i)~-#k+1(Ui)#k+1(0j)-~~#n+1(ﬂj) (2, 517”(57 t)),9(2))-

Now put d'pu = v = (vg,...,v,...,v,) and note that (vg,...,v—1) = (o, - - -, f1—1)
and (vg,...,vn) = (W41, - - fnt1)- Since (s,t) € A,lc’", we see that
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—cto?

hu (sz7t)
= ¢Vo (fuo(oi)...ul,l(a'i)ul(a'i)...uk(cri)uk(a'j)...l/n(aj)(Za el,n(& t))v g(Z)) (67)
= Puo (fﬂo(o'i)“-lil—l(Ui)HPrl(C"i)~--ﬂk+1(Ui)lLkJrl(Uj)mlinJrl(o'j) (2, 517”(57 t)),9(2)).

(66) and (67) imply the desired boundary condition.

In the second case, i.e., when k <, (s,d;t) € A,lc’"H and therefore,

fuo(ai).“uk(oi)uk(a-i)...un+1(oj)(z7 El7n(87 dlt>)a g(Z))
S0 (0) i (0 Yyt (07 ) oot 1 (091 (2 g1 (5, 1)), 9(2)) (68)
Fat+1 uo (00 i (0 as (0)..opim 11 (0)) (2 €7 (5, 1)), 9(2))

|
<
=
<)

= QSILO (f(/,Lo(O'i)‘..Mk(ﬂ'i)#k(o'j)uqul—l(Uj)Hl+1(Uj)...ﬂn+1(0j)) (Zv 51’n+1(57 t))ﬂ g(Z))

Since (s,t) € A,lﬂ’rﬂ we see that

il

hu (Z,S,t) = d)Vo(fuo(o”") (o) (od)..vy—1(0d).. V7L(O'7)(Z € b (S t)) g( )) (69)
¢#o(fuo o).k (o) (09). i1 (09 ) piyi(od). ‘,un+1(of)(2751’ (s,t)),g(z)).

Clearly, (68) and (69) yleld the desired boundary condition.

6.3.2. Verifying the degeneracy condition. Let (s,t) € A,lc’". In order to determine

h

il
o7 (2,8, st), we distinguish two cases, when k <[ and when [ < k. In the first

"

case, by (57), (s, sit) € A"~ ", Therefore, by (60),

oigd -

hu (szaslt) d)lto flto(ffZ () pr(09) i — 1(07)(2 51 1(5 Slt))v (Z)

( )
= (buo(f/to(al) (o) pr(09) . — 1(01)(2 5l+15 (s, t)), (Z)> (70)
(o1 a0 (o)t 0k (7)1 (7)) (2277 (5,)), 9(2)
= Duo (flpoe) . 002 9y (09) 2 (09) (227 (5,)), 9(2).
Put s'(p) = v = (vo,..., v, Vi1, .., vn). Clearly, (vo,...,v) = (uo,..., ) and
(Vig1y -y Vn) = (W, fin—1). Since (s,t) € A", we see that

il

hy " (2,58) = Blfug(04)..on (0 (09).n (o9 i1 (09) v (09) (26" (5,1)), 9(2)) (T1)

- ¢#&f}1«o o) (0 pr (o). (o9 )i (7). .unfl(aj)(zvgl’n(s t)) g(Z))
Now (70) and (71) imply the desired degeneracy condition Ef:"fz, s, sit)=hu H(z s, t).
In the second case, i.e. when [ < k, (57) shows that (s, s;t) € A,lc’fl ! and thus,

By (280518) = Buo (o)t (010910 (25277 5, 511)), 9(2))

= o (fruo (o)t 1 (01 a1 (09)ooopin 1 (09 (25 81877 (5, 1)), 9(2)) (72)
= Duo (st (o (0%) oot -1 (0 Vi1 (09)ooopin 1 (o)) (227 (5,8)), 9(2))
= DuolFuo ().t ()10 pit—1 (Y pit—1 (99 i1 (09) (2, €777 (5,2)), 9 (2)-
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Since (s,t) € A,lv’n, we see that

70-10-_7

h,  (z,s,t)
= (bl/o (fug(o'i)‘..ul(0"7)1/[+1(o‘i).‘.Vk(ai)uk(aj)...un((Tj)(Zvgl’n(sat))vg(z)) (73)
= d)ﬂo (fuo(a'i)...m(ai),u],(cri)...p,k_l(Ji)p‘k_l(crj)...unfl(oj))(Za al,n(57 t))).g(z))

o)

Now (72) and (73) imply the desired degeneracy condition E;‘: (2,8, s1t) = EZ;ZEZ, 8, 1).

6.3.3. Verifying the special condition. If z € Z°" and (s,t) € A}ﬂ’", then (61) shows
that

—o?

Pag. 32 (28,1) = bx(Froaunnan (2,677 (5, 1)), 9(2)). (74)
Since (Ao, .-+ Moy Ay -+ 5 An) = 85(Xo, ..., Ak, .-+, An), one concludes by (19) that

)

0 O

by > (z,8,t) = G5 (Fronnn (25 85 el (s,1)), 9(2)). (75)
The restriction of by to X, ¥ o' is the inclusion mapping X, x 0! — X, x P.
Therefore, in formula (75) one can omit ¢5-. Consequently, to prove (28), it suffices
to show that, for (s,t) € Ai’",

spel™(s,t) =t, (76)

i.e., the restriction sy 51’"|A,1€’n coincides with the corresponding restriction of the
second projection A' x A" — A" to A,lﬂ’”. Since both mappings are simplicial
mappings of Ai’", the assertion follows from the fact that s ¢™™ maps the vertices
€00, - - s €0k €1ks « - - €1n 1O €0y ..., €k, €k, ... En, Tespectively, and the second projec-
tion does the same.

6.3.4. Verifying the additional conditions. For t € A™, we have (eg,t) € [eoo, - - - , €on)

C [e0o,---s€onein] = AL™ and eb"(eg,t) = dn+1(t), because el(egy) = €, =
dni1(ey), for 0 < v < n. Consequently, for z € Z°,
oigd
hu (Za €0, t) = ¢/Lo(fug(ai).“,un(ai)un(o'j)(Za dn—i—lt)v g(Z))
= (b#o(fuo(ff"’)mun(oi)(zvt)ag(z)) = E; (th)' (77)
Similarly, (61, t) S [610, ceey €1n] Q [600, €105y eln] = Ag and 51’”(61, t) = do(t),
because 2" (e1,) = e,41 = do(ey), for 0 < v < n. Therefore,
EZ 7 <Z7 €1, t) = (bMO(f/t()(O'i)/Lo(O'j).../Ln(O'j) <Z7 dOt)a g(Z))
= Opo (puo(o”)uo(aj)fuo(oj)...un(oj)(Za t),9(2))- (78)

Since = fl0(09)..un(09)(2:1) € X095y and g(z) € o' < o7, we see that the
points (z,9(2)) € Xpy(os) X 0 and (Dug(0i)uo(07) (%), 9(2)) € Xy (i) X 0 aTE ~ Y0
equivalent and thus, @, (Puo(ei)ue(0)(7),9(2)) = due(x,9(2)). Consequently, by
(78),

—gtogd —g

hZ, 7 (Zaelvt) = ¢Mo(f/to(oj)...un(aj)(zvt)7g<z)) = hy, (Zat) O
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—otgighk

7. Construction of the 2-homotopies #,,

7.1. For 0 <i < j < k and every multiindex p = (po, ..., pn), we will define the

—otoioh i
mapping h,, 1 Z7 x A? x A™ — Y, , though in the proof of Theorem 3 we need
only the cases when (4, j, k) is of the form (¢,7+ 1,7+ 2) or (0,4,i+ 1). To state the
definition, we need the standard triangulation A%" of A% x A" (see [11]). Recall

that A% = [eg, e1,e2] CR3, A" = [eq, ..., e,] € R" L. The vertices of A%" are the
points (€uy) = (ey,e,) € R™3 where 0 <u <2, 0<v <n. For 0 <k <k"” <mn,
the points egg, . .., €0, €1k/s - -+, €1k, €2k, . - . , €2y are in general position and span

an (n + 2)—Simplex
A f = (e € (& 2 2 79
k'k’ [ 005 - - -5 €Ok’ 1k'7"'7elk”7ek"a"'7en]' ( )

The simplices Ai’,ﬁ,, and their faces form the complex A%". Note that n = 0 implies
k' = k" = 0 and thus, Agbo = [e0o, €10, €20] = [€0, €1, €2] X €g is the only 2-simplex
of A%0,

It is readily seen that, for ¥ +1 < k' +r < k",

2, 2,
A VAL = (€005 -+ -5 €Ok s €1k s+« +, €187, €277, - - - 5 €21 (80)
and for k" +1 <K' +r <n,
2 2
Ak”z” m Ak}”?k:”«l»’r = [6007 MR eOkHelk’; M) elk”ye2k”+7‘? ) 6271]' (81)
Comparing (80) with (80) for r 4 1, we see that
2,n 2,n 2,n 2,n
Aklk// ﬂ Ak,+7‘+17k// g Aklk// m Akl_i_,,‘,k)//' (82)
Similarly, comparing (81) with (81) for » + 1, we see that
2,n 2,n 2,n 2,n
A VAR o grp1 © B VAR g (83)

The following relations are easily verified.

N e

(Ixd) (ARR) C S AR, K <1<k, (84)
A, K<l
AL, K <1,

(Ixs) (A C AV, K <1<k, (85)
ARy L< K.

We also need the simplicial mapping e2™: A%" — A™2 given by 2" (eq,) = €y,
e2"(e1y) = epy1 and e2"(eg,) = €442. A straightforward verification establishes the
following relations.

XA VAL o) = [€0y - €hry oy oy enga) = d 1 (A", (86)
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(Ak;/k// n Ai}zﬂ-{-l) = [607 ey ek”+1) ek”+37 ety €n+2} = dkl’+2(An+1)' (87)
dl€2 n| Ak’k”’ l § k/a
2 (U x d) | ALY, = < dip1e2™| AL, K <I<E" (88)

dl+2€2 7L| A k'K k‘” < l7

51406 |Ak,k/,, k' <1,

82 n= 1(1 X Sl) |Ak/k” = 8[4,_162 n| Ak: k!t k/ S l < k// (89)

3[52n|Ak/k//7 l < k/.
Note that €2%(egg) = €g, €29(e10) =e1 and £29(eg0) =e5. Therefore, £20: [eg, e1, €] X
eo coincides with the first projection [eq, e, e2] X eg — [eq, €1, €3], i.e., e20(s, eq) = s,

for s € [eg, €1, €2].

7.2. For p= (o, ..., pn), 2 € Z": 0<K <Kk'<nand (s,t) € Ai’/z,/ C A? x A,
we put

—ololoh

" (z,8,1) (90)

= Bpao (Fuo (o) sins (0t (09).opir (09 g (0#) o (o) (2, €77 (5, 1)), 9 (2)).

If n =0, ie., p = uop, formula (90) assumes the form

—otoioh
hﬂo (275760) = ¢M0(fuo(ai)ug(crj)uo(ak)(273)79(2))7 (91)
because £2:(s, eg) = s, for s € [eg, e1, €a].

Lemma 8. For 0 < i < j <k < n and z € Z°, formula (90) determines a
ik

well-defined mapping E(:U 779 xA?x A" — Yo

i gk ;
Proof. To prove the lemma, denote by hz,j,,;, the mapping Z9 x Ai’,z,, — Yo,
given by the right-hand side of (90). We must show that forze 2 ,0<k <k'<

O'O'O'k

k
n,0 <V <1” <nand(s,t) € AZ,Z,,HA;,;},, one has h“k o (2,8,1) = by (2,8,1).
We will first prove the assertion in four special cases (¢)—(iv).

Case (i), (I, l”) = (k:' +1,K"), ¥ +1 < k’. We must show that (s,t) € Ak,k// N

O'O'O'k

k
Ak'+1k” implies ), k,k,, (2,8,t) = hypri1pn (2, 5,1). By (84), e2"(s,t) = dyy1v, for
some point v € A”H Therefore,

—oloioh

hykir (2,8,1) (92)
= ¢,uo (fuo(oi)...uk/(Ui)uk/(o’j).“uk//(o’j)uku(ok)...un(ak)(zv dk-‘rlv)a g(z))

We also have
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—ololoh

huk’+1,k’/(z757t) (93)

= Opuo (fro (o) pigr 41 () g 41, (09 eotiprr (09 st (08 (o) (25 A1), 9 (2)).-

However, the values given by (92) and (93) coincide, because by the boundary con-
dition (18),

o)t (09 (09)-tigor (69 1gr (%) (o) (25 ks 410)

= fuo(ai).“uk/(Ui)ukurl(aj)..‘uku(Uj)uk//(ok)...un(ak)(zv U) (94)

= fuo(ai).“ukurl(Ui)uk/+l(aj)...uk//(Jj);tk//(ak)...un(ok) (Za dk’+1v)-

Case (ii), (I',l") = (K" + r k"), k’ —|— 1 < kK +7r < k' We must show that
U g O'k

k
(s,t) € A%, N Ak,+rk,, implies h#k,k,, (2,8,1) = hpypr g (2,8,1). If v =1, this
is just case (i). Let us show that the assertion holds for r + 1, if it holds for r.
By (82), (s,t) € AZ", N Amr“ o implies (s,t) € ApL, NART, ., and the in-
k k
duction hypothesis shows that h“k o (2,8 t) = h“ k,_:T w (2, 8,t). Moreover, since

2 2. o —ololoh
( ) Ak'ir k,,‘ﬂ Ak'tLFTJrl ) ( ) yleldb h[.l,k:'-‘rT k! (Z S t) = h,LLk'+7‘+1 k! (Z S t)

k
O'O'O' /

—oloioh
Consequently, h,, i (2,8,t) = by iy (2, 8,1), which is assertion (i4) for (k' +
r+1,k").
Case (ii1), (I',1") = (k’ k" +1), K" + 1 < n. We must show that (s,?) € AN
k O' o O'k
Ak,k,,ﬂ implies h k k,, (z,8,t) = P, w412, 8,t). By (84), e2"(s,t) = dpr4ov, for
some point v € A”+1 Therefore,

—ololoh

hy, o (2,8,1) (95)
= o (fruo(09)opins (01111 (09 ooty (09 i (%) (o) (25 At 420), 9 (2)).

We also have

—oioioh

hpk’,/c”+1(z?87t) (96)
= Buo (fruo (09) v optns (01111 (09)cotinrr 11 (09 i 41 (%)t () (25 At 420), 9 (2))-

However, the values given by (95) and (96) coincide, because by the boundary con-
dition (18),

Fuo(0)cotiyr (09 (09 ) tisor (6 ager (6 Vpgr 1 (05 ) o (o) (25 A 420)
= S0t (0 s (09 ).t (09 a1 1 () ot (o) (2 A7 :20) (97)

= Su0(0%) . ttir (05 (09 oopir (09 ot 1 (6 ) tgrr 41/ (0%) ot (o) (25 i 420)-

Case (), (I',l") = (l-c’ k” +7), k" +r < n. We must show that (s,t) € Az’/fk,, N

k
Ai,"k,urr implies %, k,k,, (z s,t) = hz,;f,kf,+r(z7s,t). If » = 1, this is just assertion

(i1i). Let us show that the assertion holds for r+ 1, if it holds for r. By (83), (s,t) €
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AZR, N Ai/ e implies (s,t) € Ak,k// N Ai/nk,, and the induction hypothesis

+r
O'O’O'k

k'
shows that huk/k// (2,8 t) = huk/ w4r(2,8,t). Moreover, since (s,t) € Ai’,?k,, N

+r
O'(7(7k

Az,”k,urﬂrl, (i74) yields hﬂ s k/uﬂ(z $,t) = hyy g g ry1(2,8,1). It now follows that

7(70'0',‘ O'O'O'k

howir (2,8,8) = by g oriyq (2, 8, 1), which is assertion (iv) for (K, k" + 7+ 1).
General case. Let (s,t) € A%, N AZ,. We must show that

—ololah —ololoh

hltk/k// (Z,S7t) h nln (Z,S,t). (98)

This is obvious if (k', k") = (I',1"”). Therefore, we assume that (k',k") # (I,1").
There is no loss of generality in assuming that k" < [”. We distinguish three cases:
(a), when k' =1, (b), when k¥’ <" and (c), when k' > I'.
Case (a). Since (K', k") # (I’,1”) and k¥’ = I’, we must have k" # I” and thus,
k" < 1". Consequently, I” is of the form I"” = k" + r and (iv) shows that (98) holds.
Case (b). In this case, I’ is of the form I’ = &' + 7 < I” and (i) shows that

—ololah —ololah

b (2,8,) = by (z,s,t). If K" = 1", the latter equality becomes (98). If
7Jia'ja'k
k" < 1", 1" is of the form I" = k" +r and (iv) for (k', k") yields h, ppn (2,5,t) =

—ololoh

hy ko (2,8,t). This and the previously obtained relation prove that again (98)
holds.
Case (c) In this case, k' is of the form k" = I’ + 7 < k" < 1" and (ii) shows
—oigio ok
that h”l,l,, (z s,t) = h”k,l,, (z,8,t). IfK” =1", the latter equality becomes (98). If

O'O'(Tk

k" < U 1" is of the form I” = k" 4+ and (iv) yields h”k g (z 5,t) = hy o (2,8,1).
This and the previously obtained relation prove that again (98) hOldb O

7.3. Our next goal is to prove the following lemma.

—otoioh i
Lemma 9. The mappings h,, 1 27 x A2 x A" =Y, form a coherent mapping

n oot : 79 x A2 Y, which satisfies special and additional conditions (28) and

(31).

Proof.

7. 3.1. Verification of the boundary condition. Let (s,t) € Ak,k// In determining
k

hz o' (z, 8,d;t) we distinguish three cases, when [ < k’, when k' < [ < k" and when

k" < 1. In the first case, by (84), (s,d;t) € Ai’ff{}k,,ﬂ and thus,

70’0’0’

“ (z,8,dit) =

¢“0 (f/‘f)("'i)ml’«k’+1 (U'i)#k’+1(‘Tj)m/ik”Jrl(Uj)Hk"+1("k)~~//«n+l(0'k)

(z, 52’"'*'1(57 dit)), g(z)) (99)
By (88), e2"1(s,dit) = dje*"(s,t) and we see that, for 0 <1 < K/,

2,n+1
0@t 1 (0 11 1 (09 )eettr 1 (01 11 (0ot (o) (2, €7 (8, i)



336 S. MARDESIC

2, dig®"(s,t)) (100)

= F0 (0wt 2 (0 42 (0ot 2 (0 Vg 42 ()t 1 () (
2,n
= L 10(0) iy 1 (0130 1 (09 i 1 (0 s 1y ()i (o) (25 €7 (8, 1)).
Therefore,

—ololoh

7T (2,5, dit)

= QSFLO (fﬂo(ai)~~-ﬂl—1(C"i)MJrl(Ui)-~~ﬂk/+1(Ui)lilcud(Uj)---ﬂk”+1(Uj)ﬂk/’+1(Uk)mMnJrl(Uk)

(2,6"(s,1)). 9(2)). (101)

Now put d'pu = v = (vg,...,v,...,v,) and note that (vg,...,vi—1) = (o, - -, H1—1)
and (v, ...,vn) = (W41, - -+, nt1)- Since (s,t) € Aiiz,,, we see that

7crio'ja

v Z S, t ¢Vo(f v (o) (o) .vg (o) v (09) ..o (09 v (0F)..vp (o)
(2, 2”(8 1), 9(2)) (102)
(fﬂo (09 =10 141(0) s 1 (0 gt 4 1(09) o pgorr 1 (0 pgerr 1(0F) . i 1(0F)

(2,6%"(5,1)),9(2)).

(101) and (102) imply the desired boundary condition. For I = 0 a slightly different
argument, like the one used in 6.3.1, is required.

We now consider the case when &' < [ < k”. By (84), (s,dit) € A;”,j,,ﬂ_l and
thus,

n (’Z s dlt) ¢,U«o (f,uo 0 )eitigr (0 s (09)pigerr 1 (09 ) pugerr 1 (0F) oo pim 1 (0F)
(2,2 (s, dit)), g(2)). (103)
By (88), e2" (s, djt) = dj11e%"(s,t) and we see that,
2,n+1
Fuo(@0) i (00t (0t 1 (0 agr 1 (08 eoopimga (o) (2, €77 (8, dit))

2,
= Su0(0") bt (0 (09)eostir 1 (6 agrr 1 (%)t (o) (2 i1 €77 (5, 8)) - (104)

= L1 0 ()t (09t (09 )t 12 (09 1 (08t ) () (2 €27 (5, 8)).
Therefore,
oigigk
" (z,8,d;t)
= B1io (fra0 (0.t (V)i (09) ottt 1 (0914109 otir 1 (09 Vi1 41 (%ot 1 (%)

(2,6 (s,t)),g(Z))- (105)
Since (s, t) € A}, we see that

—ctola®
v (Zv S, t) = ¢Vo (fyg(o"i)...uk/(ai)vk/(Uj)..,ul,l(o‘j)ul(aj)...uku(o‘j)uku(a’“)...un(ak)

(2,62"(s,1)),9(2)) (106)

= Buio a0 (0910 (001 (0911 (09143 (09t 42 (V41 ()i 1.(04)
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(2,62 (s,1)), 9(2)).-

(105) and (106) imply the desired boundary condition.
Finally, assume that ¥’ < I. By (84), (s,d;t) € Ai’,tl,:,r,l and thus,

$,d1t) = B (Fuo (o) (1) i (09).copr (99 gt () i 1. (0%)
(2,52’”+1(8,dlt)),g(z)). (107)
By (88), e2" (s, dit) = dj1 262" (s,t) and we see that
2,n+1
fug(ai)...,uk/(U’i),uk/(o’j)...,uk//(o’j)uku(ak)...,un+1(ak)(Z75 e (S7dlt))
2,n
= fuo(ai)...uk/(oi)uk/(U-f)...uku(U-j)uk//(ak)...un+1(o’k)(z7dl+2€ (Sat)) (108)

2,n
= fdl+2(,u0(ai)...p,k/(Ui)uk/(aj)...,uku(Uj);Lk//(crk)...pn+1(ak))(27 € L(Sv t))

Therefore,

-0 U"jO'
w28 dit) = Guo (frug (09t (091 (0ot (09) s (09 ottt —1 (09 a1 (05 ot 1 ()
(2,62 (s,1)),9(2))- (109)

Since (s,t) € A%, we see that

,Uigjak
v (28,1) = Bue (Fuo(oh).v (01 (09 (0301 (7)1 (%) () ocm (%)
(2,¢€ 2"(3 £)),9(2)) (110)
= Puo (flto cettgyr (1) s (09) oo pigrr (09 g (0F) pa—1 (0% )41 (0F) o ptrp 1 (oF)
(2,6 ( t)),9(2))-

(109) and (110) imply the desired boundary condition.
7.3.2. Verification of the degeneracy condition. Let (s,t) € Ai}%,,. In determining

ik
ZU 7 (z,s,5t) we distinguish three cases, when k’ < I, when k¥ <1 < k" and

when [ < &’. In the first case, by (85), (s, sit) € AZ")! " and thus,

—cloioh
wo (28808) = Bpo (Fruo (o). (09 1igs (09) et (09 s (0ot —1 (o)

(2,2 (s, sit)), 9(2)). (111)
By (89), 2" 1(s, 51t) = 814262 (s,t) and we see that
2,n—1
F10(01) .ty (@) 11 () oot (09 iy (%) (o) (2, €7 (8, 5ut))
2,n
= Fruo(0%) oot (09 )par (09 )ooetinrr (09 Ypagrr (08 )oopim—1 (%) (25 S1267 " (5, 8)) - (112)
2,n
= L2 (0 (0t () a1 (09t (09 )1y (%) oin—1 (o%)) (2, €77 (8, )).
Therefore,

—oioioh

p (25808) = o (frao(or) .o (09)1mgs (09) i (09 Ypisr (o) it ()it (0% ). tim—1 (o)
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(5,67 (5, 1)), 9(2)). (113)
Now put s'u =v = (1g,...,1,...,v,) and note that (vg,...,1;) = (po,. .., ) and
Vi1, -y Vn) = (M1y - -« in—1). Since (s,t) € Az}z,,, we see that

—aiojok
v Z S, t ¢l/0 f v (0 v (09) v (0 v (oF)..vi(6F ) vip1 (oF)...vn (oF)

(2, 2"(3 t)),9(2)) (114)
= Buo (Fuo (0t (09111 (99).obinr (09 Vs (0ot ()10 ). i1 (%)
(2,

e*"(s,1)), 9(2))-

(113) and (114) imply the desired degeneracy condition.
Now assume that &' <1 < k”. By (85), (s,sit) € A7 k/, , and thus,

w (25808) = Bpuo (frao(om) .o (091t (07wt y (09 g3 (0%)ctin 1 (%)
(2,27 (s, s1t)), 9(2)). (115)

By (89), 2" 1(s, 5it) = 814162 (s,t) and we see that

Fuo(@) s () 1agr (09). s 1 (6 Vs 1 (%) i1 (%) (2, €277 (5, 511))
= fuo(ai»..uk/<ai>uk/<af)...uk~,1<af)uku(ak)...unfl(ak)(Zv8l+152’"(5 t))  (116)
= Lot (g (o) etins (09 (69)otir 1 (69 Yty (0% tim 1 (o) (2, €27 (5, 1))
Therefore,

—otoloh
© (Z7 S, Slt)
= Puo (Frio(0t) st (0911 (0911 (99 Y1 (69 opirr 1 (09 g1 1 () -pim 1 (0*)

(2,67 (s,1)),9(2))- (117)
Since (s,t) € A s We see that

oot
By 77 (2,8,8) = bug (fu(o0)...s (6 (091 (08 141 (0F) s (69 Y (0#) . (H)

(z,¢ ( 1)), 9(2)) (118)
o(fuo(ai) gt (@) pger (09)eccpr (09 Yy (03).oopgerr —1 (03 ) pgorr —1 (%) opin—1 (o)
(2,67"(s,1)),9(2)).

(117) and (118) imply the desired degeneracy condition.
Finally, assume that I < k’. By (85), (s, s;t) € Ai," 11k,, , and thus,

D
—c'c’o

" (z,8,8t) =

Brio (S0 (09). obts 1 (0t 1 (09 otrr 1 (69 Yt 1 (0% oim 1 (%)
(2,627 (s, s1t)), 9(2)). (119)
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By (89), 2" 1(s, s;t) = s;6%"(s,t) and we see that

2,62 (s, 51t))
(gk)(mleQ’"(s,t)) (120)
2,%"(s,1)).

Ju0(09)ectinr 1 (0 11 (09).ttgr 1 (09 ) pigrr 3 (0F)evopin—1 (o) (

= Suo(0%) et 1 ()i (07 )iy (09 Vpigrr —y (%)t 1

= fot o (09). s 1 (09111 (09)ecepiyir 1 (6D 1y 1 (0%)eoopin—1 (09
Therefore,

—otoloh
"
= Duo (Fro (1)t (09t (0%)ootins 1 ()t 1 (09 ooinrr 3 (09 Ypigrr s (%) ooopim 2 (o) (121)

(2,7 (s,1)), 9(2)).

Since (s,t) € A}, we see that

(Za Saslt)

—oioioh

hy, (z,8,t)
= ¢l/o (fuo(ai)“.ul(oi)ul_kl(o’i)..‘uk/(U")Vk/(af)u.l/ku(o’j)uku(ak)u.un(o’k)

(2,627 (5,1)), 9(2)) (122)
= Ouo (Frao (0).wit ()00 ctins (Vi1 1 (09wt (09pagr 1 (F)etin (o)
(Z, 527“(57 t))v g(Z))
(121) and (122) imply the desired degeneracy condition.

7.3.3. Verifying the special condition. If z € Z°' and (s, t) € A2, then (90) shows
that

—cloloh n
Pe. 3 (208,1) = b5 (o de A A A An (2,677 (5,1)), 9(2)). (123)
Since (Agy -« s Aty Aty e v oy Ak, At o vy Ap) = sk//“sk/()\o, ey Aky .oy An), ONE CON-

cludes by (19) that

—cloloh

hTo-..z@:’ 87t> = %(fsk’“rlsk’()\o...)\n)(zv Ezﬁn(&t))vg(z))
= %(fAO---An(Z’ Sk/sk//+1€2’n(8,t)),g(z)). (124)

Since the restriction of ¢—to Xy, x 0* is the inclusion mapping Xy, x o’ — Xy, X P,
in formula (85) one can erase ¢5-. Consequently, to prove (28) it suffices to show
2,
that for (s,t) € AL,
Sk/Sk//+1€2’n(S7 t) = t, (125)

ie., sk/sk//+152’"|Az}7€,, coincides with the corresponding restriction of the second
projection AZxA™ — A™ to Ai’,z,,. Since both mappings are simplicial, the assertion
follows from the fact that sz sg/4 1™ maps the vertices egq, . . ., €on/, €1x/5 - - - 5 €1k,
€'ty . v vy €y OF Ai’,z,, t0 €0y . v s /s CRly ooy Chrry Chrry ..., €y, Tespectively, and the
second projection does the same.
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7.3.4. Verifying the additional condition. If (s,t) € A x A", thereisav, 0 < v < n,
such that (s,t) € AL™ = [ego, . .., €00, €10, -,€1n] 1t follows that (do x 1)(s,t) €
[6107 ey Clyy €20y e ey 627’7,] g [6007 3 €10y -+ €10y €20y - - - 76271] = AOZUTL COHSQquently,

—otoloh n
1O (Z7 d057 t) = ¢,uo(fuo(oi)uo(aj)...uv(oj)MU(U’“)..AMn(ak)(Z7 62’ (doS, t))v g(Z))
(126)
A straightforward verification shows that
e2(dy x 1) = doe™ ™. (127)

Therefore,

Fuo(0i) a0 (09) -t (03 (%) pim (o) (2, €27 (o5, ))
= Fuo( 009 (0910 ().t (o) (2 doET " (5,1))
= Pruo(oi o (07) Jd0 (o (0 Yo (07 (0910 (o) pin (o) (2, €77 (8,8)) (128)
= Puo(oiuo(07) f1uo(09) i (09 tu (0% (o) (2, €177 (5, 1)).
Putting & = fL(07)...10 (09 )10 (05 ). pam (o) (25 ebn(s,t)), we see that x € X ,10(09)- More-
no(od) X 07 &

Yo and (Dpg(oi)uo(09) (@) 9(2)) € X0ty X 0 C Y, are ~ -equivalent. Conse-
quently, d)uo (pﬂo(ai),uo(crj)(x)vg(z)) = ¢);Lo (x,g(z)) It follows that

over, z € Z° implies g(z) € o* < 07 and thus, the points (z,g(z)) € X

—otoioh

huo.../_tn (Za dOs? t) = (bllo (fug(oj)...,u,,(crj),uv(o"f)...yn(ak)(Zv El’n(sv t))v g(z)) (129)

However, since z € Z° C Z%, (s,t) € AL™, the right-hand side of (129) equals

gk
hZoij--un (z,s,t) and we obtained the desired relation (31), for I = 0.
Now assume that [ = 1. Since (s,t) € AL™ = [ego, - - -, €0u, €10, - - - , €11, ONE SeES

that (dy x 1)(s,t) € [€00,- - -, €0v, €20, - - - , €2n] C AZ™. Consequently,

VU

—ololoh

Py (2818, 8) = Dug (Frg (07) . pra (0910 (03 Y (0) i (o) (2, €27 (d15, 1)), 9 (2)).
(130)
A straightforward verification shows that
e2"(dy x 1) = dyyq1e™™. (131)
Therefore,
2,n
F10(09) (0 0 (09) (0% ) ot (o) (2, €77 (d15, 1))
= Fuo(0i).ttn (09110 (0910 (08). ot (07) (2 Do 167 (5, 1))
= L1 0 (07 i (0 i (07 Y (0 i (1)) (2, € (5, 1)) (132)

= fpo(a'i)...u,,(a'i)p“(ak)...un(a'k) (27 El,n(& t))
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It follows that

—oigiok

h,uo.u,u,n (27 d187 t) = ¢H0 (fpo(a’i)...u,,(a'i)/_L1,(a’“).,.;Ln(0'k) (Za €l’n(sv t))7 g(Z)) (133)

However, since z € Z° and (s,t) € AL", the right-hand side of (133) equals

e

By (2,8,1) and we obtained the desired relation (31), for I = 1. Now as-
sume that [ = 2. Since (s,t) € AL™ = [ego, .-, €00, €10 - - - €1n), ONE sees that
(dg x 1)(8,t) € [€005 - - -  €0vs €10, - - - €1n] C A2, Consequently,

—ololoh n

P i (2828, 8) = D (Fug(0).cpva (0 (09 o (0 (1) (25 €7 (dzs,t))7g(2)()1~34)

A straightforward verification shows that
e2™(dy x 1) = dpyoe™™. (135)
Therefore,

0@t (09110 (09 (03 Y (o) (2, €77 (28, 1))
= Fruo(0®). e (0911009 i (09 Y (o) (2 Ay 261 (5,2))
= Fan 20 (57). b0 (0 Y10 (09t (0 Y (o)) (2, €17 (5,1)) (136)
= Fuo(@i).ttn (09110 (09 pan(09) (2, €7 (5, 1))

It follows that

—otod o_k

h/[l,()‘..[_l,n (Za das, t) = (blto (fuo(ai).uuv(ai)uv(Uj)u-un(oj)(27 El’n(sv t))7 g(z)) (137)

However, since z € Z° and (s,t) € AL", the right-hand side of (137) equals

70'ja'k . . .
By (2, 8,1) and we obtained the desired relation (31), for [ = 2. O

8. Coherent homotopy extension properties

8.1. The standard homotopy extension property (HEP) was stated in Subsection 2.2.
In this subsection we will first define a coherent version of (HEP) called the coherent
homotopy extension property,abbreviated (CHEP).

Definition 1. A pair of spaces (A, B), where B C A is a closed subset of A, is
said to have the coherent homotopy extension property (CHEP) with respect to an
inverse system of spaces Y = (Y, quu, M), provided the following holds. For any
coherent mapping k = (ku): ((A x e1) U (B x [eg, e1])) = Y, there exists a coherent
mapping h = (hy): A X [eg,e1]) = Y, which extends k, i.e., h, extends k,, for
every multiindez p in M.

Lemma 10. Let Y = (Y, quu, M) be an inverse system consisting of spaces Y,
which are ANEs for metrizable spaces. Then every metrizable pair (A, B), B closed
in A, has the (CHEP) with respect to Y .
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Proof. By assumption, for multiindices g = (ug, ..., pn) in M, we have mappings
kp: ((Axe)U(B x[eg,e1])) x A™ =Y, such that coherence conditions (10) and
(11) hold. We must extend mappings k,, to mappings h,: (A X [eg, e1] X A") = Y},
in such a way that the coherence conditions continue to hold and therefore, h = (h,,)
is a coherent mapping. We will define the desired mappings h,, by induction on the
length n = |u|.

If n =0, then p = (po), A" = [eo] and kyy: ((Axe1)U(B x [eg,e1])) X eqg = Y,
is a mapping. Since Y),; is an ANE for metrizable spaces, A is metrizable and B C A
is closed, Lemma 2 shows that the pair (A4, B) has property (HEP) with respect to
Y,,. Consequently, there exists an extension h,,: (A X [eg, e1]) x eg = Y, of k.
In this case the coherence conditions are empty.

Now assume that n = 1, i.e., u = (uo, 1), A = [eg, e1]. Since ey = dieg and
e1 = doeg, kuou, : (Ax e1 x AY)U (B X [eg, e1] x A) =Y, is a mapping such that

kuom (a,e1,e9) = kuo (a,e1,e0), a€ A,

kHOHI (b7 S, 60) = kuo (b7 3760)’ be B, se [€0a 61]7

kpuous (@, e1,€e1) = quopr b, (a,€1,e0), a €A,
)=q

kuoul(b75761 uoulkul(bvs760)a b € 137 ENS k@;ely

If pu = (po,p1) is nondegenerate, we define hy,,,, : (A x €1 x AU (A x Al x
{eg,e1}) U (B x [eg, e1] x A') = Y, by the following formulae.

) = kuops (a,e1,t), a€A,

hyops (@, 8, €0) = hyy(a,s,e0), a €A, s€ ey, eil,
) = Quopr s (@, s,€0), a €A, s € leg, e,
) = kuous (b, s,t), be B, s € e, e1).

(
(
h#oﬂl(a757el (
huom (b7 87t (
(142) is compatible with (143), because k., (a,e1,e0) = ku, (a,e1,€9) and also
huola, e1, eq) =ku (a, e1, e0). (142) is compatible with (144), because kj,,,,(a, e1,€1) =
Qpuop Ky (@, €1,€0) = Quops Py (@, €1, e0). (142) and (143) are compatible with (145),
because, for a = b and s = ey, all three expressions assume the value k,,,, (b, e1,1).
Compatibility of (144) and (145) follows from k.., (b,s,€1) = quops kpui (b, 5,€0) =
Quops Py (b, s, €0). Since Y, is an ANE for metrizable spaces and (A x A, A x
{eo,e1}UB x Al) is a closed pair of metrizable spaces, one can apply Lemma 2 and
conclude that the pair has property (HEP). Consequently, the mapping k,,,,, admits
an extension Ay, 1 A x Al x Al = Y, such that formulae (142)-(145) continue
to hold. Formulae (143) and (144) show that the required boundary conditions are
fulfilled.
If p is degenerate, i.e., u = (o, pto), we put

hpope (@, 8,1) = hyy(a,s,e0), a€ A, s€le, e, t € leg, el (146)

Note that hygu,(a,s,doeo) = huo(a,s,€0) = QuouoNdo(uo,u0) (@, 5, €0) and also
Ppopo (@, s, dreg) = hyy(a, s, e0) = hat(u,u0)(@, s, €0), which shows that the required
boundary conditions are fulfilled. (146) shows that the corresponding degeneracy
conditions are fulfilled, because s;(t) = eq, for ¢ € [eg,e1] and j € {0,1}. To verify
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that hy,u, extends k., note that hyg,.(a,er,t) = hyy(a,er,e0) = ky,(a,e1,e9) =
Epopo(a, e1,t), because eg=s1(t). Similarly, h,,uq(a, s, €j) =hp(a, s, e0) =ku(a, s, eq) =
kuouo (@, s,e5), j € {0,1}. Finally, hypu,(a,s,e5) = hu(b,s,e0) = kuy(b,s,e0) =
koo (b, s, €5), because s;(t) = e.

Now assume that n > 2 and that we have already defined mappings h ..., : A X
Al'xAl Y, 0 <1 < n—1, which extend k.. ., 0 (Axeq x ADU(Bx [eg, e1] x Al) —
Y, and satisfy the coherence conditions applicable at this stage of the induction
process. We will first define mappings hy,, = hyy ., 0 A x Al x A™ — Y, in the
case when p is nondegenerate.

Put

q th a, s, t ) .] =Y
hyula,s,dit) =4 ult: 1) (147)
hdju(a757t)a 1 S] Sna

where a € A, s € A and t € A", Since the length |d’p| = n — 1 < n, the
right-hand side of (147) is defined. Note that (147) corresponds to formulae (143)
and (144), for n = 1. Let us show that the expressions on the right-hand side of
(147) are compatible and therefore, define a mapping hy,: A x Al x A" — Y, ,
where JA™ denotes the boundary of A™. Since 0A™ = U;igdj(A"’l), every point
of DA™ is of the form d;t, for some 0 < j < n and some t € A"~!. It can happen
that d;t = dyt’, for some ¢,t' € A"~! and j # k, say j < k. We must show that the
values obtained by (147) using ¢ and using ¢’ coincide.

Let us first show that there exists a point t* € A”~2 such that t = dj_t*
and t' = d;t*. Indeed, the barycentric coordinate ay_; of ¢ must be 0, because
j < k implies that oj_; is the k-th barycentric coordinate of d;t and the latter is
0, because d;t = dyt’ € dp(A"'). Consequently, t € dj_1(A"2) and there exists
a point t* € A"~2 such that t = dy_,t*. Similarly, the barycentric coordinate oz}
of ¢ must be 0, because 7 < k implies that oz9 is the j-th barycentric coordinate
of dit’ and the latter must be 0, because dt’ = d;t € d;(A™'). Consequently,
t' € d;(A""?) and there exists a point ¢* € A""2 such that ¢’ = d;t’". Now note
that dyd; = djdg_1: A2 — A" (see the analogue of (1.2.16) in [15]). Therefore,
djdp_1t* = djt = dipt' = dkdjt/* = djdk_lt/*, Since djdy_1: A2 5 A" is an
injection, it follows that ¢'* = ¢* and thus, also ¢’ = d;t*.

If j = 0, then dot = dodi—1t*. Therefore, (147) shows that h(a,s,dot) =
Quopr Paop (@, 8,dp—1t*). If k > 1, this equals quopu, hge-140,(a,5,t*). On the other
hand, dit’ = dpdot* and therefore, by (147), hu(a,s,dit’) = hgr,(a,s,dot™) =
Quops haoas p(a, s, ). Since dF~1d® = d°d* (see (1.2.19) in [15]), we conclude that
indeed, hy(a, s, dot) = hyu(a, s, dit’). The same conclusion holds if j = 0 and k£ = 1.
Then dot = dodot*, hy(a,s,dot) = quopu, haop(a, s, dot™) = Quops Quyps Paodo (@, 5, 7).
On the other hand, dit' = dydpt* and we see that hy(a,s,dit’) = hq,(a, s, dot*) =
Quopshaoarp(a, s,t*). Since d°d° =d°d", we see that again hy,(a, s, d;jt) =hy(a, s, dit’).

If j > 0, the verification is simpler. Indeed, since d;t = d;di—1t*, we see that
hyu(a,s,djt) = hgip(a,s,de-1t") = hgr-14i,(a,s,t*). On the other hand, dpt’ =
dpd;t* yields hy(a, s,dgt’) = hgr,(a, s,dit*) = hgigr,(a, s,t*), which coincides with
hu(a, s, d;t), because d*1d? = d7d* (see (1.2.19) in [15]).
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In analogy with (142) and (145), we define h,, on (A x e; x A™)U (B x Al x A"™)
by putting

(av elat)v ac Av (148)
(b,s,), be B. (149)

Let us verify that formulae (148) and (149) are compatible with (147) and there-
fore, yield a well-defined mapping h,: (4 x e; x A™) U (B x Al x A") U (A x
Al x OA™) — Y,,. By (148), hyu(a,e1,dot) = kp(a,e1,dot) = Guop, kaop(a,e1,t)
and by (146), hy(a,e1,dot) = Guop, haop(a, e1,t). Since the length |dOp| = n — 1,
(148) for n — 1 shows that hgo,(a,e1,t) = kqo,(a,eq,t) and thus, the right-hand
sides of (147) and (148) assume the same value at the point (a,ep,t). A similar
and simpler argument proves the same fact if j > 0. To show that (147) and (149)
are compatible, note that, by (147), h,(b, s, dot) = Guop, haop (b, s,t) and by (149),
hu(b, s, dot) = ky(b, s, dot) = Guop, kao (b, s,t). Since the length |d°p| = n—1, (149)
for n — 1 shows that hgo,(b,s,t) = kgo,(b,s,t) and thus, the right-hand sides of
(147) and (149) assume the same value at the point (b, s, ). A similar and simpler
argument proves the same fact if j > 0.

Applying (HEP) to the metrizable pair (4 x A™ A x 0A™ U B x A™), we obtain
a further extension hy,: A x A x A™ =Y, of h,, which extends k,, and satisfies
the boundary conditions (147). Since g was assumed nondegenerate, the degeneracy
condition hy,(a, s;t) = hgi,(a,t) does not apply at this stage of the induction process,
because |s7pu| =n+1> n.

In order to define h, for degenerate p, we follow the procedure used in the
proof of Lemma 1.13 in [15]. Clearly, there are k uniquely determined integers
0 <up < - <ug—1 < nsuch that po = -+ = pyg—1 < fug = =+ = fyy—1 <
Py = v Mo 1—1 < fuyy_, = -+ = [bn, Where < stands for < and #. Define an
increasing function w: {0,1,...,n} — {0,1,...,k}, by putting u(j) =0, if 0 < j <
ug, putting u(j) =14, if u;—; < j < u;, where 1 <i < k — 1, and putting u(j) = k, if
up—1 < j < n. The function u induces a simplicial mapping u,: A™ — AF, defined
by putting u.(e;) = ey,, 0 < i < n. Define v = (vy,...,v), by putting vy = g
and v; = py, ,, for 1 < i < k. Note that vy = py,_, = ptn. Also note that v is a
nondegenerate multiindex of length k.

We now define h,, by the formula

hu(a,s,t) = hy(a,s,ust), a€A, s€A', teA™ (150)

Since v is a nondegenerate multiindex of length k < n and u.t € A¥, we see that
the right-hand side of (150) is well defined.

In the proof of Lemma 1.13 in [15] one finds a proof of the fact that h,, de-
fined by (150), satisfies the boundary conditions. There it is also proved that the
degeneracy condition hy(a,s,s;t) = hgi,(a,s,t) is fulfilled. There is one more de-
generacy condition, which at this stage of the induction process makes sense and
must be verified. It is the condition hg;,(a,s,t) = hu(a, s, s;t), where |pu| =n — 1
and t € A"~ 1. Indeed, if the role of u is played by s’/u, then p assumes the role of
v and s; assumes the role of u,. Consequently, formula (150) assumes the desired
form h;,,(a, s, t) = hu(a,s,s;t).
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It remains to prove that also in the case of degenerate p, b, extends k. Indeed,
fora € A, s € Al and t € A", one has hy(a,s,t) = hy(a,s,u.t). Since |v| < n, we
already know that h, extends k, and thus, h,(a, s, u.t) = k,(a, s, u.t). However,
ku(a,s,t) = ku(a, s, ust), because p = u*(v) and the degeneracy conditions for v
imply &y (a, s, ust) = ku(a,s,t) = ku(a, s, t). Hence, hy(a,s,t) = ku(a,s,t). O

8.2. In this subsection, we will prove two coherent homotopy extension lemmas,
needed to perform constructions (C1)—(C4). To state the first lemma, we introduce
some terminology. Recall that ¢ = (g,): X XP =Y = (Y,,, quu, M) is the standard
resolution of X x P, f = (f\): Z — X = (X, pxr,A) is a coherent mapping and
g: Z — P is a mapping. If A is a closed subset of Z, we say that a coherent
mapping h = (h,): A — Y has the special property provided (22) holds. We say
that a coherent mapping h = (h,): A x A =Y has the special property provided

hys. so(as8,t) = (fag..an(a:t), g(a)), a€ A, s€ Al te A", (151)

Similarly, we say that h = (h,): A x A? — Y has the special property provided
(151) holds, for s € A2,

Lemma 11. Let the space Z be metrizable and let B C A be closed subsets of Z.
If k= (ku): (Axe)U (B xleg,e1])) = Y is a coherent mapping, which has the
special property, then there exists a coherent mapping h = (hy): (A X [eo,e1]) = Y,
which extends k and also has the special property.

Proof. The assumption that k has the special property means that both coherent
mappings k|(A x e;) and k|(B x [eq, e1]) have that property. If n = 0 and g = (A\o)
is special, we put hx(a,s,eo) = (fa(a,t),9(a)). The mapping hs; extends ks,
because the latter mapping satisfies the special condition. If n = 1, i.e., o = (o, pt1),
one first extends k,, to h, in the cases when p is special, by putting hm(a, s,t) =
(frons (a,t),9(a)). Then one proceeds to the cases when p is not special, following
the proof of Lemma 10.

Now assume that n > 2 and that we have already defined mappings h ..., : A X
Al x Al Y., 0 < 1 < n—1, which extend k.. ,,: (A x e; X A U (B x
[eo, €1] x Al) — Y, and satisfy the coherence and the special condition in situations
when they are applicable at this stage of the induction process. We first define
Py =Py s Ax Al x A™ =Y, . for p nondegenerate.

If p is also special, i.e., g = A = (Ag,...,\n), then we put hro___/\fn(a,&t) =

(fro..a(a,t), g(a)). This insures the validity of special condition (151). Note that
we do obtain an extension of k5~ 5— because the latter mapping satisfies the special

e An

condition. Also hnx(a, S, djt) = (f>\o-~>\n (aa djt)ag(a)) - (fdj()\o‘..)\n)(ai)ag(a))a
for j > 0, because f satisfies the boundary condition. Since d’(Xg,...,\,) is a
special nondegenerate multiindex of length n — 1, the induction hypothesis im-
plies that hdj(/\fomz)(a,s,t) = (f&1 (ro..2n) (a5 1), g(a)) and thus, hy- 5—(a, s, d;t) =
h (Roo ) (a, s,t), as required by the boundary condition. The case when j = 0 is es-

tablished by a similar argument. Since s/(Xg ... \,_1) is degenerate and s?(Ag ... \,)
is of length n + 1, at this stage there are no degenerate conditions to be verified.

If p is nondegenerate, but not special, we proceed as in the first part of the
proof of Lemma 10. This is possible, because by Lemma 1, Y consists of ANEs for
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metrizable spaces. We obtain mappings h,, which satisfy the coherence conditions
and extend k,,.

In the case when p is degenerate, we proceed as in the second part of the proof
of Lemma 10, i.e., we define h,,, by formula (149). As in that proof, the obtained
mappings h,, satisfy the coherence conditions and extend k,. It only remains to
show that in the case of degenerate special multiindices g = X, the special con-

dition remains valid. Indeed, by definition, hs- 5-(a,s,t) = hu(a, s, ust), where
u: {0,...,n} — {0,...,k}, v* and v are deﬁnedﬁm the proof of Lemma 10.
Since v is nondegenerate and of the form v = (\;,...,\;,), where the length

= |v| < n, the induction hypothesis implies that h, has the special property
and thus, hy(a,s,ut) = hyx— 5—(a,s,uct) = (fa,, .., (@, ust), g(a)). By the de-
Ai i

0

generacy property of f, fi, .., (a,u* ) = fro.n, (1) and thus, hys 5-(a,s,t) =
(fro..a, (a,t),g(a)), as required by the special property (151) for hf O

Lemma 12. Let the space Z be metrizable and let Z° C Z' be closed subsets of
Z. Let b = (hd): Z' x leg,e1] = Y, h'? = (h2): Z' x [e1,e2] = Y and
| (hglz): Z% x [eg,e1,e2] — Y be coherent mappings, satisfying the special
condition, and let the following conditions be fulfilled.

hl(z e1,t) = bl (z,e1,t), z€Z', te A", (152)
h?LlQ(z,s,t) = hzl(z, s,t), z€Z°% s€leg,el], t €A", (153)
hzu(z,s,t) = hllf(z, s,t), z€Z° s€lep e, t €A™ (154)

Then there exists a coherent mapping h = (hy,): Z' x [eg, €1, e2) = Y, which extends
the coherent mappings RO h'? and h°'? and satisfies the special condition.

Proof. Recall that the standard triangulation Al of the Cartesian product A' x Al
consists of 2-simplices A(l)’l = [eoo, €10, €11, A}’l = [eoo, €01,€11] and their faces.
Also recall the simplicial mapping e'': Al! — A2 defined in 6.1, by e'!(eq;) = €;
and e (ey;) = ej41, for 0 < j < 1. Define mappings A" : Z' x [ego, e10] x A" —
N07 h12 Zl [610,611] x A" — Y al’/l\d /};2122 ZO X (Al X Al) x A" — Yu«o’
by puttlng hOI(z s,t) = hpl(z,eV1(s), t), h2(z,8,t) = h (2,5 (s),t) and h%u =
2 (z, et (s 1),

It is readily seen that b~ = (R0'): Z' x [ego,e10] = Y, b~ = (h}2): Z' x

~012 ~

[er0,€11] = Y and b~ = (h0?): Z° x (A' x A') — Y are coherent map-
pings, satisfying the special condition. Indeed, if j > 0, then ﬁ?}(z,s,djt) =
WO (z, el (s), djt) = hY) (2,681 (s), 1) = hg}“(z,s,t),because h°! satisfies the bound-

dip
ary conditions. A similar argument proves the assertion in the case j = 0. Further-

more, since h’! satisfies the degeneracy condition E O (2, 8,85t)=hV! (2,61 (s), 5;t) =
hY, (2,680 (s), 1) = hg}u(z,s,t) Also note that h,\0 o (z,8,0)= h%mz(z,el’l(s),t):
(fro..x, (2,1),9(2)), because h’" has the special property. Analogous arguments

show that b~ and b are coherent mappings, satisfying the special condition.
Formulae (152), (153) and (154) show that mappings h01 h12 and h012 are com-

patible, i.e, E%l(z,elo,t) = E}f(z,elo,t), for z € Z1, h%u(z,s,t) = hgl(z,s,t), for
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2 € Z9% s € [ego, e10] and ﬁgu(z, s,t) = ELQ(z,s,t), for z € Z°, s € [e10, €11]. Conse-
quently, these mappings determine a mapping k,,: (A x xep) U (B X [eg, e1]) = Yy,
where A = Z' x [eg,e1] x A™ and B = (Z! x e; x A™)U (Z° x [eg, e1] x A™). Since
fAI,Ol7 A and b are coherent mappings, it follows that k = (k,): (A X eg) U (B x
[eo,e1]) = Y is also a coherent mapping. We will now extend k to a coherent map-
ping h = (/Azu): Z' x [eg,e1] — Y, which satisfies the special condition, proceeding
as in the proof of Lemma 11.

Assume that we have already defined mappings hu0 it AX A x Al 5 Y,
0 <1< n—1, which extend k.., : (Axe; x AYU(Bx e, e1]xAl) — Y,,, and satisfy
the coherence and the spemal condltlon in situations when they are apphcable at this
stage of the induction process. We first define h# =h PAX AV X AT 5 Y,
for nondegenerate .

If p is also special, i.e., g = XA = (Ag,...,\n), then we put h s(a,s,t) =
(fro..x, (a,t),g(a)) and thus, insure the validity of the special condltlon Note
that, h (a s,d; t) = (f)\o---/\n(avdjt)vg(a’)) = (fdj(/\o...)\n)(avt)ag(a))a for j >
0, becauee f satisfies the boundary condition. Since d?(Ag,...,\,) is a special
nondegenerate multiindex of length n — 1, the induction hypothesis implies that
hai g 3@ 8, 8) = (fas (ro.. a0 (@ 1), 9(a)), henceh da, s, djt)= hd,(/\om)\n)(a s, 1),
as requ1red by the boundary condition. The case j = ( is established by a similar
argument. Since s7(\g...\,_1) is degenerate and s7(\g ... \,) is of length n + 1, at
this stage there are no degenerate conditions to be verified.

If p is nondegenerate and not special, we proceed as in the first part of the
proof of Lemma 10. This is possible, because by Lemma 1, Y consists of ANEs for
metrizable spaces. We obtain mappings h,, which satisfy the coherence conditions
and extend k,,

In the case when p is degenerate, we proceed as in the second part of the proof of
Lemma 10, i.e., we define hu, by formula (150) (with h replaced by h) Following that
proof, we obtam mappings h;m which satisfy the coherence condition and extend k.
It only remains to show that in the case of degenerate special multiindices p = X, the
special condition remains valid. Indeed, by definition, hx- 5-(a, s,t) = hy(a, s, u.t),
where u: {0,...,n} = {0,...,k}, u* and v are defined as in the proof of Lemma 10.

Since v is nondegenerate and of the form v — (Xigs - - -5 A, ), where the length

HO---fn *

k = |v| < n, the induction hypothesis implies that h, has the special property
and thus, hy,(a, s, u.t) = h (a s$,ust) = (fay,..0i, (@,ust), g(a)). By the de-
generacy property of f, fx, .., (a,u* ) = fro..n, (a,t) and thus, h so(a,s,t) =
(Fro..xn(a,t),g(a)), as requlred by the special property (151) for h)\.

Now note that the restriction -1 of e to [eg, €10, €11] is a homeomorphism
ell: [ego, €10, €11] — leo,e1,e2]. Therefore, (1571 x ebl): Z1 x [eqo, €10, €11] —
Z' x [eq, €1, €3] is also a homeomorphism. Denote by 7 its inverse and define map-
pings hy: Z'x A2x A" — Y, by putting h,, (2, s,t) = h,(z,n(s),t). Since h has the
boundary property, we see that h,(z, s, dot) = hu(2,1(5), dot) = Guop, Paop(2,1(8),t)
Quops haop (2, 8,t). Similarly, for j > 0, hy(z,s,d;t) = hgi,(2,s,t). Furthermore,
hu(z,s,85t) = hu(z,m(s),55t) = heipn(2,1(8),t) = hgipu(2,s,t). Consequently, the
mappings i, : Z1x A% x A™ form a coherent mapping h = (h“): Z'x A% 5 Y. Since
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h has the special property, so does h, because by 5o(z8,1) = ﬁ)\fo_”z(z, n(s),t) =

(Fro.2n (2:8),9(2))-

Finally, the fact that ﬁ” is an extension of ﬁ?}, /f;}f and ﬁ?}z implies that A,
is an extension of hl!, hy? and h)!? and thus, h is an extension of R R'? and
h912. Indeed, for (z s5,t) € Z1 x [eg, e1] x A", we have (z,7(s),t) € Z* x [ego, €10] ¥
A", hy(z,5,t) = hu(z,n(s),t) = h8(z,n(s),t) = h9(z,ebn(s),t) = h0(z,s,1).
For (z,s,t) L'x [e1,ea] x A", we have (z,m(s),t) € Z* X [e19,e11] X A™ and
P 5,8) = (), 8) = RE2(20(6),6) = E2(2 (), 1) = B2 (2,0, Fimaly,
for (z,s,t) € Z' x [eq, €1, €] X ‘An , we have (z, n( ), ) E Zt x [600,610,611] x A™ and
hu(z,8,t) = hyu(z,n(s), ):hﬂm( z,0(s),t) = B2 (z,e01n(s), t) = W12 (z,5,1). O

€
h

9. The constructions (C1)—(C4)

In this section we describe the four constructions (C1)-(C4), which yield coherent
mappings satisfying special and appropriate additional conditions. This will com-
plete the proof of Theorem 3.

9.1. Construction (C1). This construction is based on Lemma 12. Consider the
pair of metric spaces (Z1, Zo), where Z; = Z° x A™ and Z, = 777" x A™. Define
the mappings h%': Z; x [eg,e1] = Y, h'?: Z1 x [e1,e2] = Y, and h%1%: Zy x
[eo, e1, e2] — Y., by putting

hOY(z,dos,t) = HY (2,5,1), 2€ 27, s€ Al (155)
—igitl i

h'(z,dos,t) = h, "~ (2,51), z€Z°,seA (156)

WO2(z,5,t) = HS 7 (z2,8,1), z€27 , se A’ (157)

Let us verify conditions (152), (153) and (154). Since dye; = 61 = dpeg, we see
that, for z € Z°, hO(z,e1,t) = hO%(z,dgeq, t) = HZ.(zyel, t) = " ( t). However,

oigitl
one also has h'%(z,e1,t) = h'?(z,dpeo,t) = h (z,e0,t) = hu( t). Further-
—1 i

more, for z € Z° ', s € AL, by (46), h012(z,d28,t) H" o' (2 dys,t) =
thlal(z,s,t) and also h01(2,d23 t) = H"l(z s,t) = H" "l(z s,t), because of
(35). Finally, by (46), forz € Z° ', s € Al , W92 (2, dos, t) = H"l ol (4 dos, t) =

i it oitl
hz 7 (z,s,t) and also h'2(z,dys, t) = h (z,8,1).
This enables us to apply Lemma 12 and conclude that there exists a coher-
iyttt
ent mapping H , which has the special property, and consists of mappings

1 __i+1
277 X A2 x A" — Y,,,, which extend mappings h°!, h'? and h%'2. Conse-

quently, additional conditions (41), for j = 0,2, and (42) are satisfied. For j = 1,
(41) holds by 4.5.2.

9.2. Construction (C2). This construction is also based on Lemma 12. Let us first
show that .

Ui —0 o O'D
Hp (z,8,t)=h, (z,51t), z2€Z7. (158)
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i—1 1

Indeed, by (35), H"i (z,8,t) = Hy (z,8,t), for z € 77", Moreover, by (40)
for i — 1, Hz1'71”1'(z s t) H" “o'(z,8,t), for z € Z° " and by (45) for i — 2,

i—2 i

Hf 77 (z,8,t) = E for z € 2% Since Z°" C 77 © C z°", (158) follows.

Now consider the pair of metric spaces (Z71,Zp), where Z; = 77" x A" and
Zo = 77" x A", Define the mappings hOY: Zy xeg, e1] = Yy, K121 Zy x[er, e2] = Y,
and h%'%: Zj X [eg, €1, e2] — Y,,,, by putting

WOV (z, dos,t) = HS (2,,1), 2€ 27, s€ Al (159)
7 z+2 i
h'2(z,dos,t) =R, °  (2,5,1), z€Z°, s A (160)
0'00101+2
hO'2(z,8,t) = h,, (z,8,t), z€ Z"O, se A2 (161)

Let us verify conditions (152), (153) and (154). Since dae; = e1 = doeq, we
see that, for z € Z°', (34) implies h°'(z, ey, ) = hm(z doer,t) = Hgl(z,eht) =
Ezt (2,t). Also h'2(z,e1,t) = h'2(z,dgeo,t) = h (2,e0,t) = hgz( t), which es-
tablishes (152). Furthermore, by (158), for z € Z" , hO (2, das, t) H" (z,8,t) =

0'(7'0'-*—2

04t
h,  (zs,t) and by (31), h%'%(z,das,t) = h,, (z,das,t) = }5 +(22 ,8,t), which
establishes (153). Finally, for z € Z" , hO2(z dgs,t) = B’ i (z,dps,t) =

—glgtt2

oit2
h,, (2,s,t) and also h'?(z,dys,t) = h (2, s,t), which establishes (154).

This enables us to apply Lemma 12 and conclude that there exists a coher-
1 7,+2
ent mappmg H’ , which has the special property, and consists of mappings
707,O_L+2
c 77 X AZX A" — Y,.,, which extend the mappings h°!, h'? and h%'2. Con-
sequently, the additional conditions (36), for j = 0,2, and (37) are satisfied. For

j =1, (36) holds by 4.5.3.

9.3. Construction (C3). Denote by b the barycenter of the standard 2-simplex
A? = [eg,e1,e2]. Consider three 2-simplices A2 = [b,e1,ea], A? = [b,eg,e2] and
A2 = [b,eg, e1]. Clearly, these 2-simplices and their faces form a triangulation of AZ.
Consider the simplicial mappings ax: A7 — A% k =0,1,2, where ag maps b, e1, e2;
a1 maps eg, b, e2 and as maps eqg, b, e1 to eg, e1, ea, respectively.

We define the mapping Hzl‘71+1"1+ 277 x A2 x A" — Y,, by putting

pigitlgit2 9
(z,a0(s),t), se€A§,
sigitlgit? —_oigit2
(z,5,t) = {H,, " (2,01(s),1), s e A2, (162)
i il
HZJ (2, ag(s),t), s € A3.

Let us first verify that the mapping H" oo™ s well defined by (162). If
€ AN A? = [b,es], then s is of the form s = (1 — u)b + ueg, where 0 <
< 1. Consider the point s’ = (1 — u)eg + ue; € A' and note that ap(s) =
—u)eg + ues = di s’ and a1(s) = (1 — u)e; + ues = dos’. Therefore, by (31),

(41)

—~c »

1

" (ZaQO(S)J:f) :E
we also have FZ 7 (za1(s),t) = FZ o

ig_'i+10,'i+2 L+10,L+2 L ’L +2
(z,d18',t) = h (z,8',t). However, by (41),

i+2

>

i _i42
(z,dos’,t) = hz 7 (2, 8,1).
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If s € A2N A% = [b,eq], then s is of the form s = (1 — u)b + ue;, where
0 < u < 1. Consider the point s’ = (1 — u)eg + ue; € Al and note that ag(s) =
(1 —u)eg + ue; = dos’ and ag( ) =(1—-u)e + ueg = dos’. Therefore, by (31),

—gigitlgit2 +tlg,it+2 oitl
h,, (z,aoy.( )+ ) = h (z, d2+s ,t) = h (z,s;f) However, by (36),
we also have F; 7 (z,aa(s),t) = H; 7 (z,dgs' t) = EZ 7 (z,6,1).

Finally, consider the case when s € A? N A3 = [eg,b]. Then s is of the form

s = (1—u)ey + ub, where 0 < u < 1. Let s’ = (1 — u)ep + ue; € A! and note that
ai1(s) = (1 —u)eg + uey = dps” and as(s) = (1 — u)eg + ue; = das’. Therefore, by
oloit? —oloit? i
(41), H (z a1(s),t) = H,, (z,d2s',t) = Hj, (2,5',t). However, by (36), we
o+l __gigitl i

also have H (z,a2(s),t) = H, (z,dos',t) = H}, (2,5',1).

It remains to verify (46). Indeed, if s€ Al, then dys€ [e1, e2]C A2 and therefore,

y 5 pigitlit?

by (162), Hy, 7 T 2 dos, t) = h,, (z,a0dps, t). Since agller, e2] is the iden-
i __i+1 1+2
(z,dps, t)=

tity mapping, we see that aodos—dos Consequently, by (31), Hy, ©
(2,s,t). Furthermore, dis € [eg,e2] € A? and

i _i+1 1+2 +1 _i+2

oigit?

720 (z,dos,t) = h 7

therefore, by (162), H"L"i+1 ot (z,dys,t) = F# (z,a1dy8,t). However, ajd;s =
dys and thus, by (41), for 5 = 1, H"l"?+1 (2, dys,t) = Faigi“(z,dls,t) =
H”l‘ﬂ”( s,t). Finally, dos € [eg,e1] € A3 and therefore, H(’I"l+1 ot (z,das,t)
FZ J.H(z, asdas,t). If s = (1 —u)eg + ueq, then das = (1 — u)eg + uey and aadas =
(1 — u)eg + ueg = dys. Consequently, by (36), for j = 1, H"7”Z+l o't (z,das,t) =
HO.LO.1+1

" (z,dys,t) = H"l(’1+l(z, s,t). This completes the proof of (46).

9.4. Construction (C4).

We will first define H"Hl on 297 x Al x A", where by definition, Z%7
g 190" C g (o) = ottt
oyU...Uo! and 70" =

i+1

CIfol, ..., 0! are all i-faces of 0!, then doit! =
= Z"O U...U Z%. Therefore, it suffices to define mappings

Hflfl on Z° x Al x A™ [ =0,...,i, such that any two of these mappings coincide
at the intersection of their domains. Then, putting
Hziﬂ(z,s,t) = Hl":rl(z,s,t), z € Z"li, (163)

we obtain a well-defined mapping H;‘IHI on 297" x Al x A",
We define H l‘i“ by the formula

i1 oligttl i
Hp, (z,s,t) = Hy! (z,8,t), =z€ Z%. (164)

If | # ', then o} No}, is an (i — 1)-face o*~! of both i-simplices o}, o},. Therefore,
i i i—1 olottt -1yt
by (40), for z € Z9t N Z°v = Z° , one has H,'" (z,s,t) = H}, ' +1(z,s,t) =

i—1 _i4+1 i _i41

[3 i+1
HZ"U (2,5,t). Note that in the sequence (47), H; @ precedes H, °
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Let us now show that the mapping Hgi+1 c 2077 AL X AT Y,, extends to
77" X ey x A", by putting

i1 —gitt

HS (z,e1,t) = h,

“ " (nt), zez7. (165)

Indeed, if z € Z"li, by (35), HZiJrl(z?el,t) = Hf;“(z,eht) = HZ;Ui+1(z7el,t)

i+l
= h,, (z,t). This enables us to apply (HEP) and obtain a further extension of

HﬁiH to the desired mapping HZHl 227 X AL X AT Y, Clearly, H“le has
properties (34) and (35) (for i + 1), i.e.,
oitl —gitt it
Hp  (z,e1,t) =h, (2t), 2€Z7 (166)
HZHl(z,s,t) = HZZ”1+1(z,s,t), zeZ°%. (167)

Note that (33) holds because of 4.5.1.

10. The case when 7 is a CW-complex
10.1. An easy consequence of Theorem 1 is the following corollary.

Corollary 1. Let X be a compact Hausdorff space and let P be a polyhedron. Then
the existence condition (ESS)z holds for every CW-complex Z.

We will first prove the following lemma.

Lemma 13. Let X be a compact Hausdorff space and let P be a polyhedron. If
Z,7' are spaces such that Z is strong shape dominated by Z', then (ESS)z implies
(ESS)z.

Proof. Let F': Z — X be a strong shape morphism and let [g]: Z — P be a
homotopy class of mappings. We must produce a strong shape morphism H: Z —
X x P such that S[rx]H = F and S[rp]H = S[g]. By assumption, there are strong
shape morphisms ®: Z — Z’ and ¥: Z/ — Z such that ¥® = 1. Consider the
strong shape morphism F/ = F¥: Z’ — X and note that the strong shape morphism
Slg]¥: Z' — P is of the form S[¢']: Z’ — P, where [¢']: Z' — P is a homotopy class
of mappings. This is so because P is a polyhedron. By (ESS)z/, there is a strong
shape morphism H': Z' — X x P such that S[rx|H' = F' and S[rp|H' = S[¢'].
Now put H = H'®: Z — X x P. Then, S[rx]H = S[rx|H'® = F'® = FU® = F.
Similarly, S[rp|H = S[rp|H'® = S[¢g'|® = S[g]¥® = S[g] and we see that (ESS)z
holds. O

Proof of Corollary 1. It is well known that every CW-complex has the homotopy
type of an ANR for metric spaces. All the more, every CW-complex is strong shape
dominated by an ANR. Since ANRs are metrizable spaces, the statement follows
from Theorem 1 and Lemma 13. O
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Remark 2. If the standard resolution Y of X x P consists of spaces Y, which are
polyhedra or CW-complezes, the assertion of Theorems 1 and 8 can be strengthened
by allowing the spaces Z to be stratifiable. The only change in the proof is that, in-
stead of using the fact that the spaces Y, are ANEs for metrizable spaces (Lemma 2),
one uses the fact that polyhedra and CW-complexes are ANEs for stratifiable spaces
(see 2.2). Consequently, as in Lemma 2, every pair (Z, B), which consists of a strat-
ifiable space Z and a closed subset B C Z, has the homotopy extension property with
respect to every polyhedron and every CW-complez.

11. The case when X is a metric compactum

11.1. We will first prove the following lemma.

Lemma 14. Let X = (X;,pi,N) be an inverse sequence of metric compacta and
let P be a polyhedron. If Z is a topological space, f: Z — X is a coherent mapping
and g: Z — P is a mapping, then there exist a metrizable space Z', a mapping
w: Z — Z', a coherent mapping f': Z' — X and a mapping ¢': Z' — P such that

flClu)~f, Ju~g. (168)

Proof. In 4.2 of [15], with every cofinite inverse system of compact Hausdorff spaces
X was associated a space T(X), called the the cotelescope of X, and a coherent
mapping 7x: T(X) — X such that, whenever f: Z — X is a coherent mapping
from a space Z, then there exists a mapping v: Z — T(X), unique up to homotopy,
such that f ~ 7xC(v) (Lemma 4.17 in [15]). According to its construction, T'(X) is
a subset of the product [, (Xy,)?", where X ranges over all multiindices (A, . . . , An)
in A. In our case, A = N and therefore there are Y, factors in that product.
The factors (X;,)2" are spaces of singular n-simplices in Xj;,, endowed with the
compact open topology. Since A™ is compact and X;, is metrizable, the mapping
space (X;,)2" is metrizable. Therefore, the whole product, hence also T(X), is a
metrizable space.

Mappings v: Z — T(X) and ¢g: Z — P induce a mapping w: Z — T(X) x P
such that 7’w = v and 7w = g, where ', 7”" are canonical projections of T'(X) x P.
Denote by K a triangulation of P and let P, be the carrier |K| = P, endowed with
the metric topology. It is well known that P (with the CW-topology) and P, have
the same homotopy type. Therefore, there exist mappings k: P — P, and k¥': P,,, —
P such that kk" ~id and k'k ~ id. Now put Z’ = T(X) x Py, u = (1px) X k)w
and note that Z’ is a metrizable space. Moreover, put f' = 7xC(7'(1p(x) X k')
and ¢’ = 7" (1p(x) x k). Note that [f']=[rx][C(7")][C(1rx) X k)] and [C(u)] =
[C(Lr(x) x B)][C(w)] and therefore, [F'C(u)] = [F][C(w)] = rx][C(T)][C{Lrx) X
C(px) x k)][C(w)] = [Tx][C(m")][C(1rx) x K'F)][C(w)] = [T x][C(x")][C(w)] =
[Tx][C(7'w)] = [Tx][C(v)] = [TrxC(v)] = [f], i-e., f'C(u) ~ f. In this argument
we used the property of the operator C' that C'(kh) = C(k)C(h) (Lemma 1.17 in
[15]) and we used homotopy classes of coherent mappings and the associativity law
because conditions of Lemma 3 are fulfilled (for all coherent mappings involved either
the domain is rudimentary or the codomain is cofinite). Finally, g'u = 7" (1p(x) x
EN(1pxy x k)w = 7" (1p(x) x K'k)w ~ n"w = g.
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11.2. Proof of Theorem 2. Let X be a compact metric space and let P be a
polyhedron. There exist an inverse sequence of compact polyhedra X = (X;, piir, N)
and an inverse limit p = (p;): X — X. Moreover, let K be a triangulation of P.
Note that K is countable. By Proposition 2, to prove that for every topological space
Z condition (ESS)z for X, P holds, it suffices to prove that condition (ECH) for
X, K holds.

Let f: Z — X be a coherent mapping and ¢g: Z — P a mapping. By Lemma
14, there exists a metrizable space Z’, a mapping w: Z — Z', a coherent mapping
f':Z" - X and a mapping ¢’: Z' — P such that f'C(u) ~ f and g'u ~ g. By
Theorem 3, there exists a coherent mapping h': Z' — Y such that C(mwx)h' ~ f’
and C(mwp)h’ ~ C(g'). Now define a coherent mapping h: Z — Y, by putting
h = h'C(u). Clearly, wxh ~ f and wph ~ C(g). O
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