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Abstract. The proximate order and type-function for analytic functions of finite order
represented by Laplace-Stieltjes transformations F(s) convergent only in the right half-
plane is introduced and the growth of such functions is investigated and two necessary and
sufficient conditions are obtained.
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1. Introduction and main results

Consider Laplace-Stieltjes transformations
+oo
F(s) = / e da(x), s =0 +it, (1)
0

where a(z) is a bounded variation on any interval [0, X], 0 < X < 400, and ¢ and
t are real variables. We choose a sequence {A\,}52 ;:

0:)\1</\2<>\3<"'<>\nT+OO, (2)

which satisfies the following conditions:

1
limsup(Ap+1 — Ap) < 400, limsup 081 _ 0, (3)
n—-+oo n——+oo )\n
log A%
lim sup 08 %n _ 0, (4)

n—-+4oo )\n

where
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Al = sup

x
—ity
n [ |
An<x<Ap41,—00<t<400 An

In 1963, Yu J.-R. [13] obtained Valiron-Knopp-Bohr formula:

Theorem 1. Suppose that Laplace-Stieltjes transformations (1) satisfy the first for-

mula of (3) and limsup,, _, ., "% < +oo, then

og A} A logn
lim sup 288 < of <limsup % + lim sup & ,
n—-4oo n n—-+oo n n—-+4o00 n
where o is called the abscissa of uniformly convergent of F(s).

By (3), (4) and Theorem 1, we can get of" = 0, i.e., F(s) is analytic in the right
half-plane. Set

M, (o, F) = sup

0<x<+00,—oco<t<+00

| eterimaag)
0

F)= Ale Mo .
(o, F) gle%{{ ne b, o>0

, >0

Dirichlet series was regarded as a special example of Laplace-Stieltjes transforma-
tion. Some problems on the growth and the value distribution of analytic functions
defined by Dirichlet series have been studied for a long time and lots of impor-
tant results were obtained in [2, 7, 9, 12]. In 1963, Yu [13] extented the results of
[3, 14] and established the Valiron-Knopp-Bohr formulas of the associated abscissas
of bounded convergence, absolute convergence and uniform convergence of Laplace-
Stieltjes transformations. Moreover, he first introduced M, (o, F), pu(o, F') and the
Borel line and the order of analytic functions represented by Laplace-Stieltjes trans-
formations convergent in the complex plane.

Many problems of analytic functions defined by Laplace-Stieltjes transformations
have been studied and some important results have been obtained in [1, 8]. Recently,
many mathematicians (such as Sun D.C., Gao Z.S., Kong Y.Y., Shang L.N. and oth-
ers) are very interested in investigating the functions represented by Laplace-Stieltjes
transformation convergent in the half-plane or the whole complex plane in the field
of complex analysis (see [4 - 6, 10, 11]). Kong Y.Y. and Sun D.C. investigated some
problems of analytic functions represented by Laplace-Stieltjes transformations con-
vergent in the half-plane, such as the exponential order and the exponential low
order of zero order Laplace-Stieltjes transformations, type-function and proximate
order of finite order Laplace-Stieltjes transformation, and their relative transforma-
tions, and obtained some interesting results (see [4 - 6]), Shang L.N. and Gao Z.S.
investigated the growth of the infinite order entire function represented by Laplace-
Stieltjes transformations and the value distribution of finite order and infinite order
analytic functions represented by Laplace-Stieltjes transformations convergent in the
right half-plane and obtained some theorems (see [10, 11]).

From those results given by these mathematicians, we can see that the results
related to the conditions which the sequence {\,} and the growth p of Laplace-
Stieltjes transformations satisfied.
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Therefore, it is natural to ask: what will happen if we alter the conditions which
the sequence {\,} and the growth p of Laplace-Stieltjes transformation satisfied.

The above problem is investigated and some theorems about the relation between
the proximate order and type function and A} of Laplace-Stieltjes transformation
are obtained in this paper. To state the results of this paper, we explain some
definitions and notations as follows.

The following definition (see [4])

) log™ logt M, (0, F)
p = limsup T ,
oc—0+ log o

o >0,

is called p order of F(s) in Res = o > 0, where log™ C = max{log C,0}. If p €
(0, +00), we say that F(s) is an analytic function of finite order in the right half-
plane.
We introduce a proximate order in the case p € (0,+00) as follows.
Let p(r) (r > 7¢) be a non-negative, continuous, monotonous function and let it
have a left-hand derivative and a right-hand derivative in every r (> rg), such that
lim p(r) = p, lim p'(r)rlogr =0, (5)

r—+00 r—+00
and set U(r) = r?("), which is a strictly increasing function of 7 in r > r} > ro. Let
t=rU(r), r=W(t), r>0,t>0, (6)

be two reciprocally inverse functions. From [16], for any positive real number k, we

have
Ukr) o

rotee U(r) 77 iotee W)

For Laplace-Stieltjes transformation (1), if

Wkt) _ o (7)

log™ M, (o, F
limsup 18 Mel ) _
o—0Tt U(;)

®)

p(L) is called the Proximate order of (1) and U(Z) the type function of (1) in
Res =0 > 0.
The results of this paper are stated as follows:

Theorem 2. Suppose that Laplace-Stieltjes transformations (1) of finite order p(0 <
p < o0) satisfy (2), (3), (4) and

loglogn P

9)

lim su .
n_>+o£ log A\, 1+p

Then n +
log™ M, (o, F ) log™ A*

lim sup og—l(o) =1 <= limsup % M 1, (10)
o0+ U(E) n—+oo BUJ (Iog)"\'nA* )

where B = (14 p)'*°p=° and U(r) are defined by (8).
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Theorem 3. Suppose that Laplace-Stieltjes transformations (1) of finite order p(0 <
p < o0) satisfy (2), (3), (4) and (9), then

log™ M, (o, F logt A*
lim og—l(a,) =1 (1) limsuph =1;
o—0+ U(*) n—-+oo BU ( )\n )
7 logt A7,

(ii) There exists a non-decreasing positive integer sequence {n,} satisfying

log™ A* An
lim e e o, lim 2Pt (11)
v——+400 BU <10g+n2* ) v——+400 )\nu

where B and U(r) are stated in Theorem 2.

2. Some Lemmas

Lemma 1 (See [15, 16]). Let a and A be any positive real numbers, then

1
p(o) =alU () + Ao, o>0,
o
obtain the minimum
el A . (ap) 7
p+1 —(1 1 = 1 1 .
art = W()\)(—H)( ), A— 400 in o WOy (I40(1)), A=+

For the convenience of the reader, we give the process of proof of this lemma as
follows.

Proof. For the definition of U (%), we have
1 1
"o)=—-aU' [ =) - =5 + A
¢'(0)=—a <U> i

Then we can get

20 (b ()b
- %U (i) (I+0(1)), A— +4oo,

as ¢'(0) =0.

With the value of o increasd through the above given value, the value of ¢'(o)
changes from a negative one to a positive one. Then, from (6), (7) and the definition
of ¢(0), we can get that ¢(o) obtains the minimum when

(ap) 7T
ey

o= (I1+0(1)), X— +4oo,
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and the minimum is

. W\ (ap)7iT

v ((amoh(l +o<1>>> MRRTIEY
_ 1
=W

1+0(1))

(
WNUWO) ]
(P (11 ofryy PO

WA [

A
W(A)

ya a ap)71 (1 + o1
e o) T ())1

1 p+1
=it ——_ " (14 0(1 A = +o0.
artt pﬁ 1% ()\)( o(1),

>

Thus, we complete the proof of Lemma 1. O

Lemma 2. Let b and o be any positive real number, then

xT

P(z) = Wew) ox,

obtain the mazimum

P’ 1
rEnG U (U) (1+0(1)), o—0"

1/ p \'"1 /1
== U= 1 —0t.
=4 <p+1> UU o (I1+0(1), o—0

Proof. From (6), we can get

m

dt _U(r)+rU'(r)dr dr tW'(t)dt

t U(r) roor W)t

Differentiating U(r) = 7?(") and applying (5) and the above two equalities, we can
have

W () U(r) 1

W) U +rU(r)  p+1
By (6), (7) and the above equality, we can have

i W(bx) — baW'(bx)
e I
L2 1 )0 2o 4.
bott p+1W(z) ’

+o(1), t— +oc.

Then we can get that
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as ¢'(xz) =0, i.e.,

oo L p1(1+0(1))U< ! p1(1+0(1))>

bt pt+lo prT p+1lo

1l op T, 1 .

as ¢'(z) = 0.

With the value of z increased through the above given value, the value of ¢'(z)
changes from a positive one to a negative one. Then, from (6), (7) and the definition
of ¢(x), we can get that ¢(z) obtains the maximum when

1/ p V1 /1
- L= “U (=) (14001 +
2 <p+1> UU . (I+0(1)), o—0T,

and the maximum is

P pH 177 (1 o )
iy ) e

OISR ROt

Thus, we complete the proof of this lemma. O

Lemma 3. Let A > 0 and {\,,} be a strictly increasing sequence tending to
oo(v — o) and satisfy An, > Ar(U(ry) where r{ is stated as in Section 1. If

lim, 400 ;““ =1, then there exists a monotone decreasing positive sequence {o, }
convergent to 0 satisfying
1 1
1 1 U ( » )
An, = A—U () , lim =4t AT
Oy Ovy

V—00 1 1
U (%)

Proof. Let t(c) = ALU (%), then t(¢) is a continuous function as ¢ > 0, and is

increasing with o reduced as 0 < ¢ < . Hence for A,, > ArjU(r}) = t(&) > 0,
0 0

there exists o for 0 < o7 < & and it satisfies

H
1 1
)\nl = t(Ul) = A*U () .
g1 g1
Since \,, > A,,, there exists og for oo < 07 and it satisfies

ha = tlon) =AU ().

g9 g9
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Therefore, we can get a positive, decreasing sequence {o, }(v — +00) satisfying

M, = How) = AU (1) .

Oy Ov

By the definition of U() and A, — +oo(v — +00), we can get o, — 0(v — +00).

Hence, from the condition of this lemma and A,,, = A%U ( ), we can get

4
Oy
1 1
. 0’u+1U (Uu+1)
lm ———%~ =1.

vooo 17 (L
~U ()

Thus, we complete the proof of this lemma. O

3. The proof of Theorem 2

Proof. Firstly, we prove the sufficiency of the theorem. For any ¢ > 0, IN; €
N, := N\ {0}, as n > Ny, we have

A
log™ A* < (1+ BU<")7
0og n <( £) 10g+ Ax

i.e.

A A
An < (1 B "_U o .
(1+e) log™ Ay, (log+ A;i)

Since r = W(t) and t = rU(r) are two reciprocally inverse functions and mono-
tone increasing functions, then we can get

An An
W < i
(B(1+s)> ~ logt Az

o
W ()

Thus, there exists a positive constant D, such that

Hence we have
log* A7, <

An

A < Dexp | — |
w (3(115))

n=0,1,2---. (12)

Let .
Iy (z;it) = / e Wdaly), M\ <z < Apg1
Ak
for any t € R, then we have
[T it)| < A (13)
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Therefore, for any = : A\ <z < Ag41,0 > 0, we can get

T ) n—1 Akt1
/ e~ o (y) = Z/ e~ 7Ydy, Iy (y; it) +/ e Ydy, I (y; it) (14)
0 k=1 "Mk An
n—1 ,\kJr1
= [ AR (N3 i) +J/ e TVI( y,zt)dy‘|
k=1 Ak

+ e I (x3it) + o / e~V I, (ys it)dy.
>\n

Thus, for any o > 0 and any t € R, we have

n—1

/I _((T_Hf)yda ‘ ZA* —)\k+1a + |e—)\k+1a _e—Aka)|
0 k=1
_,'_A;sl(e—ow_’_l —or _ no| < ZA* —/\ka (15)

From (12) and (15), we can get

ZA* —Ano <DZeXp W'<7;‘)_)\na

B(1l+e)

An =
<Dsup{exp | ———< — (1l —¢)o Z e~ AnEo
n>0 W ( Ay ) o
Bli+eo) n=
(16)
From (9), there exists p; € (0, p) such that
) loglogn o1
lim su . 17
n—>oop log Ay, 1+ p1 ( )
Thus there exists No € Ny such that
p1t1
An > (logn) 71 >1, n> Na. (18)

Hence we can get

p1+1
ZE—A €T < Ny + 1+ Z n_¢&° (logn) r1
n=Ns+1
+oo
< No+1+ Z n"E 4+ Z n=2
n=Ns+1 n=T+41
T dx 1
<D+ [ =Dyt i
N, T 1—-co
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)Pl

where T = [e(% ] and Dy, Dy are two real constants.

Therefore, by Lemma 2, we have

My(0,F) < Dexp {(1 U (=) +0(1))} (D2 + fEUle) ,
thus we get
log™ My (0, F) < (1+35)U(§)(1+0(1)). (19)

Hence we have N
1 M,(o, F
lim sup Og—1<0) <1.
o—0*t U(;)
Suppose that the above inequality is right, we have
. log* M,(o, F)
limsup ———F——
o—0t U(;)

Set £1 > 0 and 5 + 3¢ < 1, then there exists og > 0

=<1 (20)

logt M, (0, F) < (8 + 51>U(§). (0 <o < o).

On the other hand, let

I(m;a—i—it):/ e*(UJrit)yda(y).
0

From (3), there exists K > 0 satisfying 0 < A\p41 — Ay < K(n=1,2,---). For
o(> 0) sufficiently reaching 0, it follows e < %
When z > A,,, we have

/ e "Wda(y) :/ e’Yd,I(y; o + it)
A A

n n

T
= I(y;0 +it)e” |5 — G‘/ e’V 1(y; o + it)dy.

n

For any o > 0 and any = € (A, Any1], it follows that

‘ffn e~ "da(y)| < Mu(o,F)|[e” + 7| +[e7* — e7n]
< 2M, (0, F)ePntK)e < 30, (0, F)ern.

From (21), we have

1
logt A; < (B+ 251)U(;) + Apo. (22)
When n is sufficiently large, from Lemma 1, we have

+1 A An
o e = (B + 200 s (L ea),
prti n

log+AZ§(5+2€1)T}rl Wou
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ie.,

W(An) (B(B+2e1))PTH1 +&1).

< n
~ logt Ax

For x > xg = r{U(r{), the function W (z) is monotone increasing, then we have

An
A < —2
log™ A},

)\7l
~ logt Az

(B(@+ 220y 1+ 20U (ZE (B + )+ 0))

(B(B+2¢1))(1+e1)"" (14 0(1))U (log)-\knA* ) .

Therefore we can get
log™t Ay

————" = < (B+3e1)" (1 + o(1)).
BU (log%\*'nAfl)

Hence .
log™ A*
lim sup & “n

— T _<f<1
o BU (e )

Hence we get a contradiction to the condition of the theorem. Thus, sufficiency

of the theorem is completed.

The necessity of the theorem can be easily proved similarly to the proof of suffi-

ciency.

4. The proof of Theorem 3

Proof. We first prove sufficiency of Theorem 3. From conditions (i),(ii) of Theorem

3, for any ¢ € (0,1) and for sufficiently large v, we have

A
log™ A* > (1—)BU | —2m
og ny ( ) <1Og+A;:V>

i.e.,

An,, - An,, U An,
(=28~ log* 4, \log" 43, )

Since r = W(t) and t = rU(r) are two reciprocally inverse functions and mono-

tone increasing functions, then we can get

A An
W v > v ,
((1 — 5)B> logt Az

ie.,

logt A7 >
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We take a positive real sequence {o,} satisfying
p+1
p 1 1 o 1 1
A, = | —— 1-e)B—U|— |Q+e)=p(l—-&)—U|—].
w=(27) a-on v (L) asg—pu- (o

From Lemma 3, we have o, | 0, then for any sufficiently small ¢ > 0, there exists
v € N, such that 0,41 <o <0o,. By Lemma 2 and Lemma 3, we have

log® (o, F) > log™ A% — X, 0 >log" AL — A, 00
An,

“ W ()

(- O 4o (;) — (1 +0(1)-% U( | )

v Op+1 Op+1

o—,,lﬂ) > (1+o(1)U C_) .

From (21), we have log* M, (0, F) > log™ pu(0, F') + log 1. Then from this and
the above inequality, we can get

— An, Oy

> (1+0(1))U(

log™ M, (o, F log™ p(o, F) + log +
i inf 108 Mu(@ F) oo plogm plon ) Hlogs

530 Ud) =0 Ud)

Combining Theorem 2, we get

. log™ M, (o, F)
hm I s —
o—0 U(,)

o

=1

We prove the necessity of Theorem 3 in the following.
logJr M, (o,F)
U(3)
Then we will prove (ii) of Theorem 3 in the following. We take a positive decreasing

sequence {e;}(0 < ¢g; < 1), = 0(i = 00). Let

If lim,_,o+ = 1, by Theorem 2, we can easily get (i) of Theorem 3.

) logt A
Y
BU <1OgJr Az )

it follows that Vi, E; # ® and E; C E;_;. For each i, we arrange n(€ E;) in an

increasing sequence {n&l)},‘f’:l, then we consider the two cases as follows.
AL

Case 1. Suppose that lim, o “(f)l = 1 for any i. Then there exists N; €

Ei = >1- €i ¢ (23)

n

E;(i € N4), when n$) > N;, we have

A, )
— <1+ & (24)

ng?)
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Note E;+1 C E;, take N;41 > N;, denote by E! the subset of F;
E;:{’HGEZNlSTLSNH,l},

thus the elements of E! satisfy (23) and (24).
Therefore, let E = |J;-, E} and arrange n(€ EY) in an increasing sequence {n, },
(ii) is proved.
AL

n .
X vt £ 1, then since A oy >
ns,i) Tyt

Case 2. If there exists i € N satisfying lim, , 1

n(i) . .
A, we get limy, o 5 ”(;1 > 1. Hence there exists {nl(,zk)} C {n,(,l)} (still marked

ny

with {nff)}) and 6 € (0, 5(1+ %)_p)7 and it follows that

A,
¢>1+6 1/21,2,"'
A @
ny
Let
ro_ @) (4) ro_ (9
Ny ="MN1" Mg ="Ng"y =, Ny =Ngy_1, * "
no_ @) (i) o (4)
Ny =MN1° Ng =Ny~ =o0 5 Ny =MNgy,y "0y

where {n/ },{n/} are two increasing positive integer sequences, and
ny <mny,iy, Ay > 140Ny, v=1,2---.

Take v = %ei > 0 and from (23), for any sufficiently large v, when n ¢ F; satisfies
n, <n <n,, we can get

log™ A

—y Sl-e<l-n,
BU <log+nA;‘L)

thus )
log™ A% < 7; ,
(B(l%))
i.e.,
* _—Apo )\n
log(Are 7)) < — AnO.
w (713(1’1@)

For o sufficiently reaching 0% and from Lemma 2, it follows that
1
log(Aze %) < (1 —4)(1 + o(1))U () . n,<n<mn. (25)
o

Take > 0 and
1+p

<l—-n 0<n<l.
144 g g
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" -1
Let 0, = {W (%)} , then we have o, | 0 and
1 1
Ay = (1 +p)B—U () ) (26)
oy o,

For above p > 0 and from Theorem 3 (i), there exists a positive integer ng € N,

An

w (5

log(A%e %) <
B(1+ ))

— A0, n>ng. (27)

When n > n; > ng, then \,, > A\, Since W(t) is an increasing function, from
(26) and (27), we have

1

An//
w (B(l-i—u))
From Lemma 2 and for sufficiently large v, when ny < n < nl,, it follows that

v
1
An S Apy, < m)‘”/u/’ then we have

log(A%e 7)) <\, ( —0,)=0. (28)

1
—=An 1
lOg(AZB_A"U”) < 1+6 v

%)‘nfl’ B 1 + )
w (5 )

_ gy (L : -
1+6BUVU(U”> W(W[%%))

11;0(”1)3 [(1 +O)T — 1+ 0(1)] U <01V)

ety (10507 (5)
- 11%0271) {5(1 + %)” + 0(1)} U (;U)
<@ +om (£,

Ov

)\ngO',, (29)

IN

IN

when n > ng, from (25), (28) and (29), we have

1
log(A%e 7)) < (1 — B)(1 + o(1))U <U> , 0< B =min{n,~v} <1
Hence we have

o F) < Coxp (1= 81+t ()] (30)

Ov

where C' is a positive real number.
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From (19), for any € > 0 we have

M, (oy, F ZA* Aoy < w((l—e¢)o,, F Ze_”"

n=0

from the process of proving Theorem 2 and (30), we have

M, (o,,F) < Cyexp {(1 —B)(1+o(1))U <O_1V>} {02 + Tlm} ,

1—co,

where T = [e(%)m} and C1,Cy are two constants.

Therefore, when v is sufficiently large, we have

log™ My (0, F) < (1 —B)(1+o(1))U (1) +(1—¢)( 2 )7+ Cs
< (1= )0 +o)U(),

where ('3 is a constant.
Therefore, we get

. log™ M (0, F)
lim sup ———~—————
V—00 U (L)

This is contradictory to the condition of Theorem 3. Then the necessity of Theorem
3 is proved.
Therefore, we complete the proof of Theorem 3. O

<1-2
- 2
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