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Abstract. The proximate order and type-function for analytic functions of finite order
represented by Laplace-Stieltjes transformations F (s) convergent only in the right half-
plane is introduced and the growth of such functions is investigated and two necessary and
sufficient conditions are obtained.
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1. Introduction and main results

Consider Laplace-Stieltjes transformations

F (s) =

∫ +∞

0

e−sxdα(x), s = σ + it, (1)

where α(x) is a bounded variation on any interval [0, X], 0 < X < +∞, and σ and
t are real variables. We choose a sequence {λn}∞n=1:

0 = λ1 < λ2 < λ3 < · · · < λn ↑ +∞, (2)

which satisfies the following conditions:

lim sup
n→+∞

(λn+1 − λn) < +∞, lim sup
n→+∞

log n

λn
= 0, (3)

lim sup
n→+∞

logA∗
n

λn
= 0, (4)

where
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A∗
n = sup

λn<x≤λn+1,−∞<t<+∞

∣∣∣∣∫ x

λn

e−itydα(y)

∣∣∣∣ .
In 1963, Yu J.-R. [13] obtained Valiron-Knopp-Bohr formula:

Theorem 1. Suppose that Laplace-Stieltjes transformations (1) satisfy the first for-
mula of (3) and lim supn→+∞

logn
λn

< +∞, then

lim sup
n→+∞

logA∗
n

λn
≤ σF

u ≤ lim sup
n→+∞

logA∗
n

λn
+ lim sup

n→+∞

logn

λn
,

where σF
u is called the abscissa of uniformly convergent of F (s).

By (3), (4) and Theorem 1, we can get σF
u = 0, i.e., F (s) is analytic in the right

half-plane. Set

Mu(σ, F ) = sup
0<x<+∞,−∞<t<+∞

∣∣∣∣∫ x

0

e−(σ+it)ydα(y)

∣∣∣∣ , σ > 0

µ(σ, F ) = max
n∈N

{A∗
ne

−λnσ}, σ > 0.

Dirichlet series was regarded as a special example of Laplace-Stieltjes transforma-
tion. Some problems on the growth and the value distribution of analytic functions
defined by Dirichlet series have been studied for a long time and lots of impor-
tant results were obtained in [2, 7, 9, 12]. In 1963, Yu [13] extented the results of
[3, 14] and established the Valiron-Knopp-Bohr formulas of the associated abscissas
of bounded convergence, absolute convergence and uniform convergence of Laplace-
Stieltjes transformations. Moreover, he first introduced Mu(σ, F ), µ(σ, F ) and the
Borel line and the order of analytic functions represented by Laplace-Stieltjes trans-
formations convergent in the complex plane.

Many problems of analytic functions defined by Laplace-Stieltjes transformations
have been studied and some important results have been obtained in [1, 8]. Recently,
many mathematicians (such as Sun D.C., Gao Z.S., Kong Y.Y., Shang L.N. and oth-
ers) are very interested in investigating the functions represented by Laplace-Stieltjes
transformation convergent in the half-plane or the whole complex plane in the field
of complex analysis (see [4 - 6, 10, 11]). Kong Y.Y. and Sun D.C. investigated some
problems of analytic functions represented by Laplace-Stieltjes transformations con-
vergent in the half-plane, such as the exponential order and the exponential low
order of zero order Laplace-Stieltjes transformations, type-function and proximate
order of finite order Laplace-Stieltjes transformation, and their relative transforma-
tions, and obtained some interesting results (see [4 - 6]), Shang L.N. and Gao Z.S.
investigated the growth of the infinite order entire function represented by Laplace-
Stieltjes transformations and the value distribution of finite order and infinite order
analytic functions represented by Laplace-Stieltjes transformations convergent in the
right half-plane and obtained some theorems (see [10, 11]).

From those results given by these mathematicians, we can see that the results
related to the conditions which the sequence {λn} and the growth ρ of Laplace-
Stieltjes transformations satisfied.
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Therefore, it is natural to ask: what will happen if we alter the conditions which
the sequence {λn} and the growth ρ of Laplace-Stieltjes transformation satisfied.

The above problem is investigated and some theorems about the relation between
the proximate order and type function and A∗

n of Laplace-Stieltjes transformation
are obtained in this paper. To state the results of this paper, we explain some
definitions and notations as follows.

The following definition (see [4])

ρ = lim sup
σ→0+

log+ log+ Mu(σ, F )

log 1
σ

, σ > 0,

is called ρ order of F (s) in Res = σ > 0, where log+ C = max{logC, 0}. If ρ ∈
(0,+∞), we say that F (s) is an analytic function of finite order in the right half-
plane.

We introduce a proximate order in the case ρ ∈ (0,+∞) as follows.
Let ρ(r) (r > r0) be a non-negative, continuous, monotonous function and let it

have a left-hand derivative and a right-hand derivative in every r (> r0), such that

lim
r→+∞

ρ(r) = ρ, lim
r→+∞

ρ′(r)r log r = 0, (5)

and set U(r) = rρ(r), which is a strictly increasing function of r in r ≥ r′0 > r0. Let

t = rU(r), r = W (t), r > 0, t > 0, (6)

be two reciprocally inverse functions. From [16], for any positive real number k, we
have

lim
r→+∞

U(kr)

U(r)
= kρ, lim

t→+∞

W (kt)

W (t)
= k

1
ρ+1 . (7)

For Laplace-Stieltjes transformation (1), if

lim sup
σ→0+

log+ Mu(σ, F )

U( 1σ )
= 1, (8)

ρ( 1σ ) is called the Proximate order of (1) and U( 1σ ) the type function of (1) in
Res = σ > 0.

The results of this paper are stated as follows:

Theorem 2. Suppose that Laplace-Stieltjes transformations (1) of finite order ρ(0 <
ρ < ∞) satisfy (2), (3), (4) and

lim sup
n→+∞

log log n

log λn
<

ρ

1 + ρ
. (9)

Then

lim sup
σ→0+

log+ Mu(σ, F )

U( 1σ )
= 1 ⇐⇒ lim sup

n→+∞

log+ A∗
n

BU
(

λn

log+ A∗
n

) = 1, (10)

where B = (1 + ρ)1+ρρ−ρ and U(r) are defined by (8).
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Theorem 3. Suppose that Laplace-Stieltjes transformations (1) of finite order ρ(0 <
ρ < ∞) satisfy (2), (3), (4) and (9), then

lim
σ→0+

log+ Mu(σ, F )

U( 1σ )
= 1 ⇐⇒ (i) lim sup

n→+∞

log+ A∗
n

BU
(

λn

log+ A∗
n

) = 1;

(ii) There exists a non-decreasing positive integer sequence {nν} satisfying

lim
ν→+∞

log+ A∗
nν

BU
(

λnν

log+ A∗
nν

) = 1, lim
ν→+∞

λnν+1

λnν

= 1, (11)

where B and U(r) are stated in Theorem 2.

2. Some Lemmas

Lemma 1 (See [15, 16]). Let α and λ be any positive real numbers, then

φ(σ) = αU

(
1

σ

)
+ λσ, σ > 0,

obtain the minimum

α
1

ρ+1
ρ+ 1

ρ
ρ

ρ+1

λ

W (λ)
(1+o(1)), λ → +∞ in σ =

(αρ)
1

ρ+1

W (λ)
(1+o(1)), λ → +∞.

For the convenience of the reader, we give the process of proof of this lemma as
follows.

Proof. For the definition of U
(
1
σ

)
, we have

φ′(σ) = −αU ′
(
1

σ

)
· 1

σ2
+ λ.

Then we can get

λ =
α

σ
U

(
1

σ

)[
ρ

(
1

σ

)
+ ρ′

(
1

σ

)
· 1
σ
log

1

σ

]
=

αρ

σ
U

(
1

σ

)
(1 + o(1)), λ → +∞,

as φ′(σ) = 0.
With the value of σ increasd through the above given value, the value of φ′(σ)

changes from a negative one to a positive one. Then, from (6), (7) and the definition
of φ(σ), we can get that φ(σ) obtains the minimum when

σ =
(αρ)

1
ρ+1

W (λ)
(1 + o(1)), λ → +∞,
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and the minimum is

αU

(
W (λ)

(αρ)
1

ρ+1 (1 + o(1))

)
+ λ

(αρ)
1

ρ+1

W (λ)
(1 + o(1))

=
1

W (λ)

[
αW (λ)U(W (λ))

(αρ)
ρ

ρ+1 (1 + o(1))
+ λ(αρ)

1
ρ+1 (1 + o(1))

]

=
λ

W (λ)

[
α

(αρ)
ρ

ρ+1 (1 + o(1))
+ (αρ)

1
ρ+1 (1 + o(1))

]

= α
1

ρ+1
ρ+ 1

ρ
ρ

ρ+1

λ

W (λ)
(1 + o(1)), λ → +∞.

Thus, we complete the proof of Lemma 1.

Lemma 2. Let b and σ be any positive real number, then

ϕ(x) =
x

W (bx)
− σx,

obtain the maximum

ρρ

b(ρ+ 1)ρ+1
U

(
1

σ

)
(1 + o(1)), σ → 0+

in

x =
1

b

(
ρ

ρ+ 1

)ρ+1
1

σ
U

(
1

σ

)
(1 + o(1)), σ → 0+.

Proof. From (6), we can get

dt

t
=

U(r) + rU ′(r)

U(r)

dr

r
,

dr

r
=

tW ′(t)

W (t)

dt

t
.

Differentiating U(r) = rρ(r) and applying (5) and the above two equalities, we can
have

tW ′(t)

W (t)
=

U(r)

U(r) + rU ′(r)
=

1

ρ+ 1
+ o(1), t → +∞.

By (6), (7) and the above equality, we can have

ϕ′(x) =
W (bx)− bxW ′(bx)

W 2(bx)
− σ

=
1

b
1

ρ+1

ρ

ρ+ 1

1

W (x)
(1 + o(1))− σ, x → +∞.

Then we can get that

W (x) =
1

b
1

ρ+1

ρ

ρ+ 1

1

σ
(1 + o(1)), x → +∞
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as ϕ′(x) = 0, i.e.,

x =
1

b
1

ρ+1

ρ

ρ+ 1

1

σ
(1 + o(1))U

(
1

b
1

ρ+1

ρ

ρ+ 1

1

σ
(1 + o(1))

)
=

1

b

(
ρ

ρ+ 1

)ρ+1
1

σ
U

(
1

σ

)
(1 + o(1)), σ → 0+,

as ϕ′(x) = 0.
With the value of x increased through the above given value, the value of ϕ′(x)

changes from a positive one to a negative one. Then, from (6), (7) and the definition
of ϕ(x), we can get that ϕ(x) obtains the maximum when

x =
1

b

(
ρ

ρ+ 1

)ρ+1
1

σ
U

(
1

σ

)
(1 + o(1)), σ → 0+,

and the maximum is(
ρ

ρ+1

)ρ+1
1
σU
(
1
σ

)
(1 + o(1))

bW

[(
ρ

ρ+1

)ρ+1
1
σU
(
1
σ

)
(1 + o(1))

] − 1

b

(
ρ

ρ+ 1

)ρ+1

U

(
1

σ

)
(1 + o(1))

=
1

b

(
ρ

ρ+ 1

)ρ

U

(
1

σ

)
(1 + o(1))− 1

b

(
ρ

ρ+ 1

)ρ+1

U

(
1

σ

)
(1 + o(1))

=
1

b

ρρ

(ρ+ 1)ρ+1
U

(
1

σ

)
(1 + o(1)).

Thus, we complete the proof of this lemma.

Lemma 3. Let A > 0 and {λnν} be a strictly increasing sequence tending to
∞(ν → ∞) and satisfy λn1 > Ar′0U(r′0) where r′0 is stated as in Section 1. If

limν→+∞
λnν+1

λnν
= 1, then there exists a monotone decreasing positive sequence {σν}

convergent to 0 satisfying

λnν
= A

1

σν
U

(
1

σν

)
, lim

ν→∞

1
σν+1

U
(

1
σν+1

)
1
σν

U
(

1
σν

) = 1.

Proof. Let t(σ) = A 1
συ

U
(

1
συ

)
, then t(σ) is a continuous function as σ > 0, and is

increasing with σ reduced as 0 < σ < 1
r′0
. Hence for λn1 > Ar′0U(r′0) = t( 1

r′0
) > 0,

there exists σ1 for 0 < σ1 < 1
r′0

and it satisfies

λn1 = t(σ1) = A
1

σ1
U

(
1

σ1

)
.

Since λn2 > λn1 , there exists σ2 for σ2 < σ1 and it satisfies

λn2 = t(σ2) = A
1

σ2
U

(
1

σ2

)
.
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...
Therefore, we can get a positive, decreasing sequence {συ}(υ → +∞) satisfying

λnυ = t(συ) = A
1

συ
U

(
1

συ

)
.

By the definition of U( 1σ ) and λnυ → +∞(υ → +∞), we can get συ → 0(υ → +∞).

Hence, from the condition of this lemma and λnν = A 1
σν

U
(

1
σν

)
, we can get

lim
ν→∞

1
σν+1

U
(

1
σν+1

)
1
σν

U
(

1
σν

) = 1.

Thus, we complete the proof of this lemma.

3. The proof of Theorem 2

Proof. Firstly, we prove the sufficiency of the theorem. For any ε > 0, ∃N1 ∈
N+ := N \ {0}, as n > N1, we have

log+ A∗
n < (1 + ε)BU

(
λn

log+ A∗
n

)
,

i.e.,

λn < (1 + ε)B
λn

log+ A∗
n

U

(
λn

log+ A∗
n

)
.

Since r = W (t) and t = rU(r) are two reciprocally inverse functions and mono-
tone increasing functions, then we can get

W

(
λn

B(1 + ε)

)
≤ λn

log+ A∗
n

.

Hence we have

log+ A∗
n ≤ λn

W
(

λn

B(1+ε)

) .
Thus, there exists a positive constant D, such that

A∗
n < D exp

 λn

W
(

λn

B(1+ε)

)
 , n = 0, 1, 2, · · · . (12)

Let

Ik(x; it) =

∫ x

λk

e−itydα(y), λk ≤ x ≤ λk+1

for any t ∈ R, then we have
|Ik(x; it)| ≤ A∗

k. (13)
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Therefore, for any x : λk ≤ x ≤ λk+1, σ > 0, we can get∫ x

0

e−(σ+it)ydα(y) =

n−1∑
k=1

∫ λk+1

λk

e−σydyIk(y; it) +

∫ x

λn

e−σydyIk(y; it) (14)

=
n−1∑
k=1

[
e−λk+1σIk(λk+1; it) + σ

∫ λk+1

λk

e−σyIk(y; it)dy

]

+ e−xσIn(x; it) + σ

∫ x

λn

e−σyIn(y; it)dy.

Thus, for any σ > 0 and any t ∈ R, we have∣∣∣∣∫ x

0

e−(σ+it)ydα(y)

∣∣∣∣ ≤ n−1∑
k=1

A∗
k(e

−λk+1σ + |e−λk+1σ − e−λkσ)|

+A∗
n(e

−σx + |e−σx − e−λnσ|) ≤
n∑

k=1

A∗
ke

−λkσ. (15)

From (12) and (15), we can get

Mu(σ, F ) ≤
∞∑

n=0

A∗
ne

−λnσ ≤D

∞∑
n=0

exp

 λn

W
(

λn

B(1+ε)

) − λnσ


≤D sup

n≥0

exp

 λn

W
(

λn

B(1+ε)

) − λn(1− ε)σ


∞∑

n=0

e−λnεσ.

(16)

From (9), there exists ρ1 ∈ (0, ρ) such that

lim sup
n→∞

log log n

log λn
<

ρ1
1 + ρ1

. (17)

Thus there exists N2 ∈ N+ such that

λn > (log n)
ρ1+1
ρ1 > 1, n > N2. (18)

Hence we can get

∞∑
n=0

e−λnεσ ≤ N2 + 1 +
+∞∑

n=N2+1

n−εσ(logn)
ρ1+1
ρ1

≤ N2 + 1 +
T∑

n=N2+1

n−εσ +
+∞∑

n=T+1

n−2

≤ D1 +

∫ T

N2

dx

xεσ
= D2 +

1

1− εσ
T 1−εσ,
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where T =
[
e(

2
εσ )ρ1

]
and D1, D2 are two real constants.

Therefore, by Lemma 2, we have

Mu(σ, F ) ≤ D exp

[
(1 + ε)U(

1

(1− ε)σ
)(1 + o(1))

](
D2 +

1

1− εσ
T 1−εσ

)
,

thus we get

log+ Mu(σ, F ) ≤ (1 + 3ε)U(
1

σ
)(1 + o(1)). (19)

Hence we have

lim sup
σ→0+

log+ Mu(σ, F )

U( 1σ )
≤ 1.

Suppose that the above inequality is right, we have

lim sup
σ→0+

log+ Mu(σ, F )

U( 1σ )
= β < 1. (20)

Set ε1 > 0 and β + 3ε1 < 1, then there exists σ0 > 0

log+ Mu(σ, F ) < (β + ε1)U(
1

σ
). (0 < σ < σ0).

On the other hand, let

I(x;σ + it) =

∫ x

0

e−(σ+it)ydα(y).

From (3), there exists K > 0 satisfying 0 < λn+1 − λn ≤ K(n = 1, 2, · · · ). For
σ(> 0) sufficiently reaching 0, it follows eKσ < 3

2 .
When x > λn, we have∫ x

λn

e−itydα(y) =

∫ x

λn

eσydyI(y;σ + it)

= I(y;σ + it)eσy|xλn
− σ

∫ x

λn

eσyI(y;σ + it)dy.

For any σ > 0 and any x ∈ (λn, λn+1], it follows that∣∣∣∫ x

λn
e−itydα(y)

∣∣∣ ≤ Mu(σ, F )[|eσx + eσλn |+ |eσx − eσλn |]
≤ 2Mu(σ, F )e(λn+K)σ ≤ 3Mu(σ, F )eλnσ.

(21)

From (21), we have

log+ A∗
n < (β + 2ε1)U(

1

σ
) + λnσ. (22)

When n is sufficiently large, from Lemma 1, we have

log+ A∗
n ≤ (β + 2ε1)

1
ρ+1

ρ+ 1

ρ
ρ

ρ+1

λn

W (λn)
(1 + ε1) = (B(β + 2ε1))

ρ+1 λn

W (λn)
(1 + ε1),
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i.e.,

W (λn) ≤
λn

log+ A∗
n

(B(β + 2ε1))
ρ+1(1 + ε1).

For x > x0 = r′0U(r′0), the function W (x) is monotone increasing, then we have

λn ≤ λn

log+ A∗
n

(B(β + 2ε1))
ρ+1(1 + ε1)U

(
λn+1

log+ A∗
n

(B(1 + ε))ρ+1(1 + ε)

)
≤ λn

log+ A∗
n

(B(β + 2ε1))(1 + ε1)
ρ+1(1 + o(1))U

(
λn

log+ A∗
n

)
.

Therefore we can get

log+ A∗
n

BU
(

λn

log+ A∗
n

) ≤ (β + 3ε1)
ρ+2(1 + o(1)).

Hence

lim sup
n→+∞

log+ A∗
n

BU
(

λn

log+ A∗
n

) ≤ β < 1.

Hence we get a contradiction to the condition of the theorem. Thus, sufficiency
of the theorem is completed.

The necessity of the theorem can be easily proved similarly to the proof of suffi-
ciency.

4. The proof of Theorem 3

Proof. We first prove sufficiency of Theorem 3. From conditions (i),(ii) of Theorem
3, for any ε ∈ (0, 1) and for sufficiently large ν, we have

log+ A∗
nν

> (1− ε)BU

(
λnν

log+ A∗
nν

)
,

i.e.,

λnν

(1− ε)B
>

λnν

log+ A∗
nν

U

(
λnν

log+ A∗
nν

)
.

Since r = W (t) and t = rU(r) are two reciprocally inverse functions and mono-
tone increasing functions, then we can get

W

(
λnν

(1− ε)B

)
>

λnν

log+ A∗
nν

,

i.e.,

log+ A∗
nν

>
λnν

W
(

λnν

(1−ε)B

) .
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We take a positive real sequence {σν} satisfying

λnν =

(
ρ

ρ+ 1

)ρ+1

(1− ε)B
1

σν
U

(
1

σν

)
(1 + ε) = ρ(1− ε2)

1

σν
U

(
1

σν

)
.

From Lemma 3, we have σν ↓ 0, then for any sufficiently small σ > 0, there exists
ν ∈ N+ such that σν+1 ≤ σ ≤ σν . By Lemma 2 and Lemma 3, we have

log+ µ(σ, F ) ≥ log+ A∗
nν

− λnνσ ≥ log+ A∗
nν

− λnνσν

≥ λnν

W
(

λnν

(1−ε)B

) − λnνσν

= (1− ε)(1 + o(1))U

(
1

σν

)
= (1 + o(1))

σν

σν+1
U

(
1

σν+1

)
≥ (1 + o(1))U

(
1

σν+1

)
≥ (1 + o(1))U

(
1

σ

)
.

From (21), we have log+ Mu(σ, F ) ≥ log+ µ(σ, F ) + log 1
3 . Then from this and

the above inequality, we can get

lim inf
σ→0

log+ Mu(σ, F )

U( 1σ )
≥ lim inf

σ→0

log+ µ(σ, F ) + log 1
3

U( 1σ )
≥ 1.

Combining Theorem 2, we get

lim
σ→0

log+ Mu(σ, F )

U( 1σ )
= 1.

We prove the necessity of Theorem 3 in the following.

If limσ→0+
log+ Mu(σ,F )

U( 1
σ )

= 1, by Theorem 2, we can easily get (i) of Theorem 3.

Then we will prove (ii) of Theorem 3 in the following. We take a positive decreasing
sequence {εi}(0 < εi < 1), εi → 0(i → ∞). Let

Ei =

n :
log+ A∗

n

BU
(

λn

log+ A∗
n

) > 1− εi

 , (23)

it follows that ∀i, Ei ̸= Φ and Ei ⊂ Ei−1. For each i, we arrange n(∈ Ei) in an

increasing sequence {n(i)
ν }∞ν=1, then we consider the two cases as follows.

Case 1. Suppose that limν→+∞

λ
n
(i)
ν+1

λ
n
(i)
ν

= 1 for any i. Then there exists Ni ∈

Ei(i ∈ N+), when n
(i)
ν ≥ Ni, we have

λ
n
(i)
ν+1

λ
n
(i)
ν

≤ 1 + εk. (24)
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Note Ei+1 ⊂ Ei, take Ni+1 > Ni, denote by E′
i the subset of Ei

E′
i = {n ∈ Ei : Ni ≤ n ≤ Ni+1},

thus the elements of E′
i satisfy (23) and (24).

Therefore, let E =
∪∞

i=1 E
′
i and arrange n(∈ E′

i) in an increasing sequence {nν},
(ii) is proved.

Case 2. If there exists i ∈ N+ satisfying limν→+∞

λ
n
(i)
ν+1

λ
n
(i)
ν

̸= 1, then since λ
n
(i)
ν+1

>

λ
n
(i)
ν
, we get limν→+∞

λ
n
(i)
ν+1

λ
n
(i)
ν

> 1. Hence there exists {n(i)
νk } ⊆ {n(i)

ν } (still marked

with {n(i)
ν }) and δ ∈ (0, 1

2 (1 +
1
ρ )

−ρ), and it follows that

λ
n
(i)
ν+1

λ
n
(i)
ν

> 1 + δ. ν = 1, 2, · · · .

Let

n′
1 = n

(i)
1 , n′

2 = n
(i)
3 , · · · , n′

ν = n
(i)
2ν−1, · · ·

n′′
1 = n

(i)
1 , n′′

2 = n
(i)
4 , · · · , n′′

ν = n
(i)
2ν , · · · ,

where {n′
ν}, {n′′

ν} are two increasing positive integer sequences, and

n′′
ν < n′

ν+1, λn′′
ν
> (1 + δ)λn′

ν
, ν = 1, 2, · · · .

Take γ = 1
2εi > 0 and from (23), for any sufficiently large ν, when n ̸∈ Ei satisfies

n′
ν < n < n′′

ν , we can get

log+ A∗
n

BU
(

λn

log+ A∗
n

) ≤ 1− εi < 1− γ,

thus

log+ A∗
n <

λn

W
(

λn

B(1−γ)

) ,
i.e.,

log(A∗
ne

−λnσ) <
λn

W
(

λn

B(1−γ)

) − λnσ.

For σ sufficiently reaching 0+ and from Lemma 2, it follows that

log(A∗
ne

−λnσ) ≤ (1− γ)(1 + o(1))U

(
1

σ

)
, n′

ν < n < n′′
ν . (25)

Take µ > 0 and
1 + µ

1 + δ
< 1− η, 0 < η < 1.
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Let σν =
[
W
(

λn′′
ν

B(1+µ)

)]−1

, then we have σν ↓ 0 and

λn′′
ν
= (1 + µ)B

1

σν
U

(
1

σν

)
. (26)

For above µ > 0 and from Theorem 3 (i), there exists a positive integer n0 ∈ N+,

log(A∗
ne

−λnσ) <
λn

W
(

λn

B(1+µ)

) − λnσ. n ≥ n0. (27)

When n ≥ n′′
ν > n0, then λn ≥ λn′′

ν
. Since W (t) is an increasing function, from

(26) and (27), we have

log(A∗
ne

−λnσν ) < λn(
1

W
(

λn′′
ν

B(1+µ)

) − σν) = 0. (28)

From Lemma 2 and for sufficiently large ν, when n0 ≤ n ≤ n′
ν , it follows that

λn ≤ λn′
ν
< 1

1+δλn′′
ν
, then we have

log(A∗
ne

−λnσν ) ≤
1

1+δλn′′
ν

W

(
1

1+δλn′′
ν

B(1+µ)

) − 1

1 + δ
λn′′

ν
σν (29)

=
1 + µ

1 + δ
B

1

σν
U

(
1

σν

) 1

W
(

1
(1+δ)σν

U
(

1
σν

)) − σν


≤ 1− η

1 + o(1)
B
[
(1 + δ)

1
1+ρ − 1 + o(1)

]
U

(
1

σν

)
≤ 1− η

1 + o(1)

[
δB

1 + ρ
+ o(1)

]
U

(
1

σν

)
=

1− η

1 + o(1)

[
δ(1 +

1

ρ
)ρ + o(1)

]
U

(
1

σν

)
≤ (1− η)(1 + o(1))U

(
1

σν

)
,

when n ≥ n0, from (25), (28) and (29), we have

log(A∗
ne

−λnσν ) < (1− β)(1 + o(1))U

(
1

σν

)
, 0 < β = min{η, γ} < 1.

Hence we have

µ(σν , F ) ≤ C exp

[
(1− β)(1 + o(1))U

(
1

σν

)]
, (30)

where C is a positive real number.
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From (19), for any ε > 0 we have

Mu(σν , F ) ≤
∞∑

n=0

A∗
ne

−λnσν ≤ µ((1− ε)σν , F )
∞∑

n=0

e−εσνλn ,

from the process of proving Theorem 2 and (30), we have

Mu(σν , F ) ≤ C1 exp

[
(1− β)(1 + o(1))U

(
1

σν

)][
C2 +

1

1− εσν
T 1−εσν

]
,

where T =
[
e(

2
εσν

)ρ1
]
and C1, C2 are two constants.

Therefore, when ν is sufficiently large, we have

log+ Mu(σν , F ) ≤ (1− β)(1 + o(1))U

(
1

σν

)
+ (1− ε)(

2

εσν
)ρ1 + C3

≤ (1− β

2
)(1 + o(1))U(

1

σν
),

where C3 is a constant.
Therefore, we get

lim sup
ν→∞

log+ Mu(σν , F )

U
(

1
σν

) ≤ 1− β

2
.

This is contradictory to the condition of Theorem 3. Then the necessity of Theorem
3 is proved.

Therefore, we complete the proof of Theorem 3.
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